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Abstract

It is well-known that h+(ΠC) is perfect in the limit, i. e., we
can always choose C so that h+(ΠC) = h∗. But the proof
is trivial (select C as the set of all conjunctions), and com-
pletely ignores the actual power of h+(ΠC), basically pre-
tending that h+ is the same as h1. It is thus interesting to ask:
Can we characterize the power of h+(ΠC) more accurately?
How large does C have to be, under which circumstances?
We present first results towards answering these questions.
We introduce a “direct” characterization of h+(ΠC), in terms
of equations, not employing a compilation step. We iden-
tify a first tractable fragment (similar to fork causal graphs)
where size-2 conjunctions suffice to render h+(ΠC) perfect.
We present results comparing h+(ΠC) to alternative par-
tial delete relaxation methods (red-black planning and fluent
merging). We finally present a number of wild speculations
as to what might be interesting to investigate in the future.

Disclaimer: We are enthusiastic about the research direc-
tion, but our work as yet raises far more questions than an-
swers. We think that HSDIP is a great forum to discuss this
big riddle, and we hope that other researchers may feel com-
pelled to look at it.

Introduction
Haslum’s (2009) work on compiling fact conjunctions into
the planning task, allowing to simulate hm via h1, led a few
years later to a partial delete relaxation method able to inter-
polate all the way between h+ and h∗: The ΠC compilation
(Haslum 2012) allows to select any subset C of fact con-
junctions, and outputs a compiled task ΠC so that h+(ΠC)
is admissible and perfect in the limit, i. e., we can always
choose C so that h+(ΠC) = h∗.

The size of ΠC is worst-case exponential in |C|, which
has been solved via a slightly weaker compilation ΠC

ce (Key-
der, Hoffmann, and Haslum 2012) exploiting conditional ef-
fects, but for the sake of simplicity we abstract from that
issue here and consider only h+(ΠC). Our primary ob-
jective is to scratch the itch that results from reading the
proof of h+(ΠC) convergence: The proof is derived from
the inequalities (a) hm ≤ h1(ΠC) when C contains all
m-tuples, and (b) h1(ΠC) ≤ h+(ΠC). In other words,
h+(ΠC) convergence is inherited from that of hm which is
completely impractical (set m to the total number of facts).

The proof completely ignores the actual added power of
h+(ΠC), namely (a) being able to choose C freely, as well
as (b) the advantage of h+ over h1!

Another way to say this is that our theory so far is
completely disconnected from practice, where of course
h+(ΠC) with C being all fact pairs will in most cases be
a much better heuristic than h2. Can we reconcile the theory
with practice?1 Can we characterize more accurately the cir-
cumstances under which h+(ΠC) becomes perfect? When
does that require C to be exponentially large, and when is
polynomial-size C enough? Can we exploit such insights to
choose C in a targeted manner?

We believe that these are interesting research questions.
We are not so sure about the significance of our answers so
far. Certainly, we are nowhere near answering the last ques-
tion, i. e., it is unclear how (and whether at all) our results
so far can be made useful in practice. Our hope is that other
HSDIP researchers will find our questions and partial an-
swers inspiring, leading to interesting discussions and, even-
tually, better progress on this subject.

After preliminaries (notations, ΠC compilation), we make
a few simple observations about the size of C depending
on the value of h∗. We then introduce a “direct” charac-
terization of h+(ΠC), in terms of equations, that does not
need to go via a compilation step (as a side effect, this also
yields a somewhat novel view on h+). Towards an anal-
ysis of “tractable fragments”, i. e., planning sub-classes in
which polynomial-size C suffices to render h+(ΠC) per-
fect, we introduce a first such fragment similar to fork causal
graphs, where size-2 conjunctions suffice. We present re-
sults comparing h+(ΠC) to alternative partial delete relax-
ation methods, namely red-black planning (Katz, Hoffmann,
and Domshlak 2013b; 2013a; Katz and Hoffmann 2013) and
fluent merging (van den Briel, Kambhampati, and Vossen
2007; Seipp and Helmert 2011). We close the paper (“con-
clusion”) with a number of wild speculations as to what
might be interesting to investigate in the future.

1To be fair, it should be said that, while the above proof is given
by both Haslum (2012) and Keyder et al. (2012), Haslum also gives
an alternative proof via convergence of iterative relaxed plan re-
finement. The latter proof, however, involves excluding all flawed
relaxed plans one-by-one, which does not seem to be any more di-
rectly illuminating regarding the practical power of h+(ΠC).



Preliminaries
In difference to prior works on ΠC , we use an FDR frame-
work. Planning tasks are tuples Π = (V,A, I,G) of vari-
ables, actions, initial state, and goal, each action a being a
pair (pre(a), eff (a)) as usual. We consider uniform costs
only (i. e., all action costs are 1). We refer to variable/value
pairs as facts, and we perceive (partial) variable assignments
as sets of facts. The set of all facts in a planning task is de-
noted F . We will from now on assume this setup tacitly, i. e.,
we won’t repeat it in formal claims etc.

We say that a set X of facts is consistent if there does not
exist a variable v so that X contains more than one value for
v. Otherwise, we say that X is contradictory.

When we talk about heuristic functions h, we mean their
value h(I) in the initial state (i. e., for the moment we do
not consider renderingh+(ΠC) perfect across all states). By
h(Π′), we denote a heuristic function for Π whose value is
given by applying h in a modified task Π′. It is sometimes
of advantage to make explicit that h is a heuristic computed
on Π itself; we will denote that by h(Π).

The delete relaxation in FDR, and thus h+ in our setup,
is defined by interpreting states as fact sets allowed to be
contradictory, and where applying action a to state s yields
the outcome state s ∪ eff (a); the initial state is the same as
before. Intuitively, this just means that we are interpreting
the effect list eff (a) exactly like the add lists in STRIPS.

The ΠC compilation and its relatives are based on intro-
ducing π-fluents of the form πc, each of which represents a
conjunction c of facts. In the context of FDR, πc is a Boolean
variable; we will treat it like a STRIPS fact, e. g., we write
πc ∈ s if πc is true in s, and πc 6∈ s otherwise. We identify
conjunctions with fact sets. For fact setsX , we use the short-
handXC = X∪{πc | c ∈ C∧c ⊆ X}. In other words,XC

consists of the set of facts X itself, together with all facts πc
representing conjunctions c ∈ C such that c ⊆ X . With
this, ΠC can be defined as follows:

Definition 1 (The ΠC compilation) Given a set C of con-
junctions, ΠC is the planning task (V C , AC , IC , GC),
where V C = V ∪ {πc | c ∈ C}, and AC contains an action
aC

′
for every pair a ∈ A, C ′ ⊆ C such that

• for all c′ ∈ C ′, eff (a)∩ c′ 6= ∅, and eff (a)∪ c′ is consis-
tent.

Here, aC
′

is given by

• pre(aC
′
) = (pre(a) ∪

⋃
c′∈C′(c′ \ eff (a)))C , and

• eff (aC
′
) = eff (a) ∪ {πc′ | c′ ∈ C ′}.

This definition, apart from using FDR instead of STRIPS,
diverges from Haslum’s (2012) in three ways. We do not
demand C ′ to be “downward closed”, i. e., to contain all c′
subsumed by C ′; we do not automatically include πc′ facts
relying on non-deleted preconditions; and we do not include
any delete effects. None of these changes have any conse-
quences for the results we present. The first just introduces
some superfluous actions, the second change means that we
need to include these πc′ facts explicitly into C ′, and the
third change is made as such effects are irrelevant to h+

which is our exclusive focus here.

We denote by Cm := {c ⊆ F | |c| ≤ m} the set of all
size-≤ m conjunctions. We denote ΠC with C = Cm by
ΠCm. We will often consider ΠCm only, abstracting from
the ability of ΠC to choose an arbitary C. The underly-
ing intuition/hypothesis is that, in most cases, this abstrac-
tion level will suffice to determine the desired distinction
between polynomial-size C and exponentially large C.

We will sometimes employ regression-based characteri-
zations of h∗ and h+. The regression of fact set g over ac-
tion a, R(g, a), is defined if eff (a) ∩ g 6= ∅ and eff (a) ∪ g
is consistent.2 If R(g, a) is defined, then R(g, a) = (g \
eff (a)) ∪ pre(a); otherwise, we write R(g, a) = ⊥.

Obviously, h∗ = h∗(G) where h∗(g), for a set g of facts,
is the function that satisfies h∗(g) ={

0 g ⊆ I
1 + mina∈A,R(g,a)6=⊥ h

∗(R(g, a)) otherwise (1)

Similarly, h+ = h+(G) where h+(g), for a set g of facts, is
the function that satisfies h+(g) = 0 g ⊆ I

1 + mina∈A,eff (a)∩g 6=∅
h+((g \ eff (a)) ∪ pre(a)) otherwise

(2)

Under the delete relaxation, a sub-goal g can be achieved
through action a iff part of it is achieved by a’s effect, re-
gardless of any contradictions that may be present.

Remember finally that hm is defined as hm = h(G)
where hm(g), for a set g of facts, is the function that sat-
isfies hm(g) = 0 g ⊆ I

1 + mina∈A,R(g,a)6=⊥ h
m(R(g, a)) |g| ≤ m

maxg′⊆g,|g′|≤m hm(g′) otherwise
(3)

The Size of C vs. the Value of h∗

A possible starting point for thinking about the size of C
is comparing it to the value of h∗. A trivial observation is
immediately made:

Proposition 1 If h+(ΠC) < ∞, then h+(ΠC) − h+(Π) ≤
|C|.

This holds simply because a relaxed plan needs to achieve
every fact (including π-fluents) at most once. We get:

Proposition 2 If, in a planning task family {Πn} whose size
relates polynomially to n, h∗ grows exponentially in n, then
so must C in order to render h+(ΠC) perfect.

Denoting by Fn the set of facts in Πn, with Proposition 1
we have |C| >= h∗(Πn)− Fn, showing this claim.

Proposition 2 opens the question whether there exist cases
with polynomial h∗, but where super-polynomial growth of
C is needed nevertheless. The answer is a qualified “yes”:

2It is sometimes required also that (g \ eff (a)) ∪ pre(a) is
consistent. The two definitions are equivalent as contradictory sub-
goals will be unreachable anyhow. We use the simpler definition as
it is closer to h+ and its relatives.



Proposition 3 There exist planning task families {Πn}
whose size relates polynomially to n, where h∗ grows poly-
nomially in n for solvable tasks, but where (unless P=NP)
C must grow super-polynomially in n in order to render
h+(ΠC) perfect.
Proof: Simply encode SAT into a planning task whose size
relates polynomially to the number n of clauses, and where
a plan consists of choosing a value for each variable, then
evaluating that all clauses are satisfied. Then h∗ grows poly-
nomially in n for solvable tasks. Assume that polynomial-
sized C suffices to render h+(ΠC) perfect. As relaxed plan
existence is equivalent to h1 < ∞, we could then in poly-
nomial time decide whether or not h∗ = h+(ΠC) < ∞,
yielding P=NP.

Proposition 3 is only a “qualified” yes because its setup
is not fair: Whereas we require h∗ to grow polynomially
only on solvable tasks (ignoring the ∞ cases), we require
h+(ΠC) to be perfect everywhere, including the ∞ cases.
For solvable SAT instances, h+(ΠC) might very well get
perfect with small C already – or, at least, the current proof
makes no statement about that.

Open Question 1 Do there exist families of solvable tasks
{Πn} whose size relates polynomially to n, where h∗

grows polynomially in n, but where C must grow super-
polynomially in n to render h+(ΠC) perfect? Most ex-
tremely, where on top of this h∗ can be computed in poly-
nomial time?

We conjecture that the answer to this one is “yes”, but our
proof attempts so far did not succeed. Note here that the sim-
ple proof of Proposition 3 above relies crucially on needing
to test only whether h+(ΠC) = ∞, which can be done in
polynomial time. On solvable tasks, as demanded in Open
Question 1, perfect h+(ΠC) will be finite, so even for small
C it is NP-hard to decide whether a given bound is met. For
illustration: Say that, in the proof of Proposition 3, we in-
troduce a “side route” in the SAT encoding, rendering unsat
cases solvable but via a longer plan. Then we can still read
off sat vs. unsat from perfect h+(ΠC), but we can no longer
do so in polynomial time, so do not get a contradiction to the
hardness of SAT.

Characterizing h+(ΠC) w/o Compilation
Trying to lead proofs about h+(ΠC), it can be annoying that
one always has to do the mapping from original task to com-
piled task first. To make do without this, we now character-
ize h+(ΠC) directly in terms of the original planning task.
Focusing on ΠCm only for the moment, h+(ΠCm) can be
understood as the following hybrid of hm and h+:

Definition 2 (Marrying hm with h+: hm+) The criti-
cal path delete relaxation heuristic hm+ is defined as
hm+ := hm+({G}), where hm+(G), for a set G of fact sets,
is the function that satisfies hm+(G) =

0 ∀g ∈ G : g ⊆ I
1 + mina∈A,∅6=G′⊆{g∈G|R(g,a)6=⊥}
hm+((G \ G′) ∪ {

⋃
g∈G′ R(g, a)}) ∀g ∈ G : |g| ≤ m

hm+(
⋃

g∈G{g′ ⊆ g | |g′| ≤ m}) otherwise

The underlying idea here is that the delete relaxation can
be understood as allowing to achieve sub-goals separately:
We worry only about the part of the sub-goal we can sup-
port, not about other parts that the same action may contra-
dict. For m = 1, this means to ignore “delete lists” alto-
gether as the same action never both supports and contra-
dicts a single fact. For m > 1, we have to adequately (non-
contradictingly) achieve all size-m sub-goals. That general-
ization is exactly the one made by h+(ΠCm). Definition 2
captures this by splitting up the goal (initially, the global
goal fact set of the planning task) into all size-≤ m sub-goals
in the bottom case. For any given action in the middle case,
these sub-goals are regressed separately, so each must be
achieved non-contradictingly but contradictions across sub-
goals are ignored.

There are two important subtleties in Definition 2, which
distinguish it from what we would have to write in order to
capture ΠC

ce instead of ΠC . First, we hand over the union⋃
g∈G′ R(g, a) of the regressed sub-goals, forcing achieve-

ment of all these conditions conjunctively, like in ΠC when
selecting C ′, for aC

′
, to correspond to the set of conjunc-

tions G′. In particular, taking the union will give rise to
cross-dependencies arising from several size-≤ m sub-goals
g ∈ G′ (“cross-context π-fluents” in the parlance of Keyder
et al. (2012)). To capture ΠC

ce , we can instead hand over each
sub-goal g ∈ G′ separately. Second, in the minimization, we
minimize over pairs of action a and achieved sub-goal set
G′, as opposed to minimizing only over a and forcing G′ to
be maximal, i. e., setting G′ = {g ∈ G | R(g, a) 6= ⊥}.
The latter would be suitable for capturing ΠC

ce , where there
is no point in leaving out a “possible benefit” of the action
a. In ΠC , that is not so because larger G′ may give rise to
additional cross-dependencies. For example, if eff a = {p}
and G = {{p, q1}, {p, q2}} where q1 and q2 are impossible
to achieve together, then G′ = {{p, q1}, {p, q2}} leads to the
unsolvable sub-goal {{q1, q2}}, while G′ = {{p, q1}} leads
to the sub-goal {{q1}, {p, q2}}which is solvable because we
can achieve each of q1 and {p, q2} separately.

To prove that Definition 2 does indeed capture h+(ΠCm),
we start with the simple case m = 1, which will be em-
ployed below in the proof for the general case:

Theorem 1 h+ = h1+.
Proof: We show that, for m = 1, the hm+ equation simpli-
fies to Equation 2. For m = 1, the bottom case just splits G
up into its single goal facts. Hence the internal structure of
G – the fact subsets it contains – does not matter; it matters
only which facts are contained in any of these fact subsets.
We can thus perceive G as a set goal facts, equivalently re-
writing the equation to:{

0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′⊆{g∈G|R({g},a)6=⊥}
h1+((G \ G′) ∪

⋃
g∈G′ R({g}, a)) otherwise

For a single goal fact g ∈ G′, R({g}, a) is defined iff g ∈
eff (a). Thus we can re-write the above to:{

0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′⊆G∩eff (a)

h1+((G \ G′) ∪
⋃

g∈G′ R({g}, a)) otherwise



Next, consider the regressed goal (G\G′)∪
⋃

g∈G′ R({g}, a).
For each g ∈ G′, R({g}, a) = pre(a). Thus the regressed
goal is (G \ G′) ∪ pre(a), giving us:{

0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′⊆G∩eff (a)

h1+((G \ G′) ∪ pre(a)) otherwise

Observe that there is no point in choosing G′ ⊂ G ∩ eff (a),
i. e., using a to achieve a strict subset of its possible benefit
G ∩ eff (a), because that can only lead to a larger sub-goal
(G \ G′) ∪ pre(a). So we equivalently obtain:{

0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′=G∩eff (a)

h1+((G \ G′) ∪ pre(a)) otherwise

With minimal re-writing, this turns into:{
0 G ⊆ I
1 + mina∈A,∅6=G∩eff (a)

h1+((G \ eff (a)) ∪ pre(a)) otherwise

This last equation is obviously equivalent to Equation 2,
proving the claim.

For m = 1, ΠCm = Π so h+ = h+(ΠCm) and by The-
orem 1 we get h+(ΠCm) = hm+(Π) as desired. We now
generalize this to arbitrary m:

Theorem 2 h+(ΠCm) = hm+(Π).
Proof Sketch: By Theorem 1, for any Π we have h+(Π) =
h1+(Π). Applying this to Π := ΠCm, we get h+(ΠCm) =
h1+(ΠCm). It thus suffices to prove that h1+(ΠCm) =
hm+(Π). This is straightforward (but notationally cum-
bersome) based on comparing two equations, characterizing
h1+(ΠCm) respectively hm+(Π).

For h1+(ΠCm), our equation (called Equation I) simply
applies Definition 2 to ΠCm:

0 ∀g ∈ G : g ⊆ IC
1 + minaC′∈AC ,∅6=G′⊆{g∈G|R(g,aC′ )6=⊥}
hm+((G \ G′) ∪ {

⋃
g∈G′ R(g, aC

′
)}) ∀g ∈ G : |g| ≤ 1

hm+(
⋃

g∈G{g′ ⊆ g | |g′| = 1}) otherwise

For hm+(Π), we need to do a little more work as we
need to get rid of an irrelevant conceptual difference be-
tween ΠCm and the equation defining hm+: Whereas the
latter splits up sub-goals only if their size is greater than m,
ΠCm always includes all possible π-fluents, even into sub-
goals of size ≤ m. Our new equation (called Equation II)
modifies Definition 2 to do the same. We call G completed
if, for all g ∈ G, every g′ ⊆ g with |g′| ≤ m is contained in
G as well:

0 ∀g ∈ G : g ⊆ I
1 + mina∈A,∅6=G′⊆{g∈G|R(g,a)6=⊥}
hm+((G \ G′) ∪ {

⋃
g∈G′ R(g, a)})

G is completed and ∀g ∈ G : |g| ≤ m
hm+(

⋃
g∈G{g′ ⊆ g | |g′| ≤ m}) otherwise

This is equivalent because we only add subsumed sub-goals.
Viewing each of Equations I and II as a tree whose root

node is the “initializing call” containing the goal of the

planning task, we show that the two trees are isomorphic.
Namely, using the suffixes [I] and [II] to identify the tree,
whenever the middle case applies we have:

(∗) G[I] = {{πg} | g ∈ G[II]}

To understand this intuitively, consider Equation II. This
works on size-≤ m sub-goals. Equation I works on single-
ton π-fluents representing size-≤ m sub-goals. The original
goal G gets split up into size-≤ m subsets in II, vs. the π-
fluents GC in I, so we have (*). A sub-goal g[I] = πg in
I can be regressed through aC

′
iff a achieves part of g and

contradicts none of it; the same condition is applied in II.
So the set G′ of sub-goals tackled by a in II corresponds via
(*) with that tackled by aC

′
in I. Finally, with G′ having (*),

the regressed sub-goal in I collects pre(a) and g \ eff (a)
for all πg ∈ G′; the same is done in II, so (*) is preserved,
concluding the proof.

We remark that, from known results about h+(ΠCm),
Theorem 2 implies that both hm ≤ hm+ and h+ ≤ hm+:
The marriage of hm with h+ yields a heuristic stronger than
each of its sources, as one would expect.

Regarding dead-end detection power, it is easy to see that
hm+ = ∞ iff hm = ∞, i. e., like for m = 1, the dead-end
detection power of hm+ is the same as that of the corre-
sponding critical-path heuristic.3

The above can be generalized to deal with arbitrayC, i. e.,
to compute hC+ = h+(ΠC) using arbitrary ΠC instead of
ΠCm: In the bottom case of Definition 2, instead of split-
ting up into all size-m subsets, split up into the sets c ∈ C
(adapting the condition for the middle case accordingly to
∀g ∈ G∃c ∈ C : g ⊆ c).

Despite these niceties, we can’t help but record:

Open Question 2 What is this good for?

We see two potential uses: (a) as a more direct way to for-
mulate h+(ΠC) and thus ease leading proofs about its prop-
erties; and (b) as a more direct way to compute h+(ΠC),
not necessitating a compilation step and thus being more
efficient. Regarding (a), we haven’t found any use case
yet. Regarding (b), the most immediate idea is to extract
“h2FF” from a planning graph in a similar manner as for hFF

from a relaxed planning graph, considering pairs of sub-goal
facts instead of single facts, following the correspondence
between the equations characterizing h2+ vs. h1+. How-
ever, there is no need for these equations to come up with
h2FF, and indeed Alcazar et al. (2013) already devised, im-
plemented, and tested a variant of this idea, simply from the
perspective of extending hFF to correspond to ΠC2. As Al-
cazar et al. also already pointed out, “hmFF” for arbitrary m
can be computed from hm respectively from an m-planning
graph maintaining size-m mutexes. From that perspective,
the main value of our work here is providing a theory back-
ground towards understanding and extending that technique.

3Similarly, for any C whose largest conjunction has size m,
h+(ΠC) = ∞ only if hm = ∞.



It appears straightforward to extend hmFF to arbitrary con-
junction sets C. A more tricky question, that might be an-
swered using our formalization, is how exactly hmFF relates
to the previous techniques hFF(ΠC) vs. hFF(ΠC

ce).

Causal Graphs et al.
We now get back to the core motivation of this work,
“scratching the itch”. The aim is to understand under what
circumstances “small” (i. e., polynomial-size) C is enough
to render h+(ΠC) perfect. As an approach towards an-
swering that question, we have taken the line of identifying
causal graph (CG) fragments (plus restrictions on the DTGs
as needed) where h+(ΠC2) is perfect. In other words, adopt
distinction lines as in many previous works on tractability,
and see how far they carry when using only fact pairs.

The restriction to fact pairs is a bit arbitrary and mainly
practically motivated. In particular, Keyder et al.’s (2012)
implementation of semi-relaxed plan heuristics uses a subset
of fact pairs. Then again, using all fact pairs in that imple-
mentation typically is infeasible, so we’re still on the ideal-
ized side in our theory. In any case, the far more limiting fact
here is that we got stopped in tracks right at the beginning.
Having in mind initially to kill fork CGs quickly and then
move on to more interesting quarters, we ended up spending
lots of time racking our brains about even very small exten-
sions to fork CGs, and indeed quite some time about fork
CGs themselves.

What follows is thus a very simple fragment that we did
manage to analyze. We remark that the proof is derived
from a proof for (a generalization of) the VisitAll domain,
for which also selecting all fact pairs is enough to render
h+(ΠC) perfect.

We presume the reader is familiar with fork causal graphs.
We will denote them here as planning tasks with a single
“root variable” x, and with n “leaf” variables y1, . . . , yn.
The actions moving x do not have any preconditions on vari-
ables other than x, while the actions moving yi may have
preconditions on both yi and x. So far, this is the standard
fork CG setup. We impose the additional restriction, for all
yi, that yi is Boolean and that there is only a single action
affecting yi. This essentially means that achieving the goal
for yi comes down to reaching a particular node in DTGx

(namely the one forming the precondition for yi). We fur-
thermore impose the restriction that x has no own goal, i. e.,
solving the task is just about moving the leaves into place
(we will show later on that this restriction can be lifted, at
least partially), and that every action moving x has a pre-
condition on x.

We assume WLOG that initially each yi is false, that the
goal for each yi is to be true (if yi has no goal we can re-
move it without affecting either of h∗ or h+(ΠC)), and that
the action for each yi does have a precondition on x (else yi
moves independently and can be removed affecting h∗ and
h+(ΠC) in exactly the same way) and no precondition on yi
(that precondition could only be yi = False, which is al-
ready true anyhow and thus affects neither h∗ nor h+(ΠC)).

We denote the DTG of x as a graph DTGx = (N,E)
where the nodes N are the x values and the edges E corre-
spond to the actions moving x. We denote by ni ∈ N the

precondition on x of the action moving yi, and by Ny the
union of all ni, i. e., those nodes we need to reach. We de-
note by n0 the initial value of x. We denote facts x = n
simply by n, and we denote facts yi = True simply by yi.
We denote actions moving x by go(d, d′), and actions mov-
ing yi by do(i).

We refer to the class of planning tasks just described as
simple forks with binary leaves.

Theorem 3 h+(ΠC2) is perfect for simple forks with binary
leaves.

The proof of this theorem is via a series of lemmas. First,
it is easy to see that h2-mutexes are recognized by ΠC2:

Lemma 1 If h2({p, q}) = ∞, then πp,q is unreachable in
ΠC2.

This is simply because ΠC2 captures support paths for all
pairs of facts, just like h2 does.

The following lemmas are basically concerned with paths,
through the graph (N,E), that must be present in a relaxed
plan for ΠC2. In the proofs, we will not explicitly distin-
guish the compiled actions in ΠC2 from the original actions
they are based on; instead, we will just talk about what pre-
conditions are needed (will be present in ΠC2) if the orig-
inal action a is to add a particular π-fluent πc, i. e., if the
corresponding conjunction c is added into the set C ′ for the
compiled action aC

′
.

The first lemma is a simple observation about achieving a
pair of facts of the form “have yi and now at n”. Namely, to
get that pair, we first need to get yi and then move along a
path to n:

Lemma 2 Let Π be a simple fork with binary leaves, and let
~a = 〈a1, . . . , am〉 be any sequence of actions applicable in
ΠC2. Let sk be the state that results from executing the prefix
〈a1, . . . , ak〉. If πyi,n ∈ sk, then 〈a1, . . . , ak〉 contains a
subsequence of actions that form a directed path in (N,E)
from ni to n.
Proof: By induction on k. The base case, k = 0, is trivial,
as it does not contain any πyi,n. Assume the claim holds for
all j < k. The induction step proves it holds for k as well.

If πyi,n ∈ sk, this either means that πyi,n ∈ sk−1 (cov-
ered by induction hypothesis), or that ak adds πyi,n. Say
first that ak = do(i). Then πyi,n can only be added if the
compiled action has the precondition πni,n (only the yi part
can be added, n must have been true beforehand already).
With Lemma 1, we must have ni = n or else the compiled
action’s precondition would be unreachable, in contradiction
to applicability. But then, the directed path from ni to n is
empty and the claim holds trivially.

Say now that ak = go(d, d′). Then πyi,n can only be
added if ak = go(d, n) (only the n part can be added, yi
must have been true beforehand already). But that compiled
action has the precondition πyi,d, so by induction hypothesis
〈a1, . . . , ak−1〉 contains a subsequence of actions that form
a directed path from ni to d in (N,E). Adding ak to that
subsequence forms the desired path from ni to n.

Our next lemma exploits the previous observation to show
that any relaxed plan for ΠC2 must, for every pair of the



target nodes Ny , contain a directed path between these two
nodes in some order:4

Lemma 3 Let Π be a simple fork with binary leaves, and
let ~a = 〈a1, . . . , am〉 be a relaxed plan for ΠC2. Then, for
every ni 6= nj ∈ Ny , there is a subsequence of actions in ~a
that form a directed path in (N,E) either from ni to nj or
from nj to ni.

Proof: The goal in ΠC2 contains πyi,yj . The only compiled
actions which can achieve this are (1) do(i) with precon-
dition πyj ,ni (only the yi part can be added, yj must have
been true beforehand already), or (2) do(j) with precon-
dition πyi,nj

(only the yj part can be added, yi must have
been true beforehand already). Thus ~a must contain either
of these two compiled actions. If ~a contains (i) do(i) with
precondition πyj ,ni

, then by Lemma 2 ~a contains a subse-
quence of actions that form a directed path in (N,E) from
nj to ni, showing the claim. Similarly for (2).

We are now finally ready to prove Theorem 3 itself, by
exploiting Lemma 3 in an argument as to how a relaxed plan
can move through DTGx:

Proof:[of Theorem 3] Let Π be a simple fork with binary
leaves, and let ~a = 〈a1, . . . , am〉 be a relaxed plan for ΠC2.
It suffices to prove that there exists a subsequence of ~a that
is a plan for Π.

By Lemma 3, for each pair of nodes ni, nj ∈ Ny , ~a con-
tains a path from from ni to nj or vice versa. Hence, the
graph

Ty = 〈Ny, {(ni, nj) | a path from ni to nj is in ~a}〉

(or a subgraph of it, should ~a happen to contain paths in
both directions between some pairs of nodes) is a tourna-
ment graph, and therefore must contain a Hamiltonian path,
i.e., a directed path that visits every node (exactly once,
in the graph Ty).5 Furthermore, ~a must contain a path
from n0 to every ni, as otherwise it could not achieve yi.
Hence, a subsequence of ~a must form a contiguous path,
n0, ni1 , . . . , nin , through the nodes inNy . Although in~a the
do(i) actions can be applied at any time point after passing
through ni, whereas a plan for Π must apply do(i) exactly
when it is at ni, the summed-up cost for applying all these
actions is the same, proving the claim.

Having concluded this proof, the immediate question is
whether all the restrictions on Π, such as the root variable
having no own goal, and every action moving it having a
precondition, are necessary.

4As a reminder: Being a relaxed plan for ΠC2 is the same as
being a plan for ΠC2, as we do not include any delete effects in our
definition of the compilation here. We include the “relaxed” in the
hope that being explicit is clearer.

5A tournament graph on n nodes is any directed graph obtained
by assigning a direction to every edge in a complete undirected
graph of size n. The proof that such graphs must contain a Hamil-
tonian path is due to Rédei (1934). A proof can be found in, e.g.,
the textbook by Moon (1968), or at http://en.wikipedia.
org/wiki/Tournament_(graph_theory).

Some of the restrictions can be relaxed. For example, if
the root variable x has a goal value, nx, and nx 6= ni for all
ni ∈ Ny , the theorem still holds. The goal of ΠC2 includes
πyi,nx

, for all ni ∈ Ny , so by Lemma 2 any relaxed plan ~a
contains a path from ni to nx. Thus, adding nx to the graph
Ty in the proof above still leaves it a tournament graph, and
because all edges between nx and other nodes are (or can be
chosen to be) directed towards nx, this node can appear last
in the Hamiltonian path.

The restriction to a single root variable “target node” per
leaf variable (i.e., a single precondition x = ni common to
actions that achieve yi = True), on the other hand, is indeed
necessary: if there are two options for achieving a fact yi,
we can construct a graph which allows relaxed plans in ΠC2

to cheat, by achieving pairs πyi,yj
and πyi,yl

on separate
branches of a directed tree. As a simple example, suppose
there are three leaf variables, y1, y2 and y3, and DTGx is
the following graph:

0

1 2

3 1′

where 0 is the initial state of x, action do(i) has precon-
dition x = i, but there is an additional action do′(1) with
precondition x = 1′ (and effect y1 = True). In ΠC2,
the relaxed plan go(0, 1), do(1), go(1, 3), do(3) achieves
πy1,y3

, go(0, 2), do(2), go(2, 3), do(3) achieves πy2,y3
and

go(0, 2), do(2), go(2, 1′), do′(1) achieves πy1,y2
, and hence

the concatenation of all three achieves the goal. But the real
problem has no solution.

Many of the other questions surrounding the restrictions
in Theorem 3 do appear easy to answer, while a few may be
hard. The reason we do not yet have answers is that most of
our time was spent considering a slighly more general frag-
ment than fork causal graphs, namely a more direct general-
ization of the VisitAll domain, where moving the root vari-
able may have arbitrary side effects on subsets of Boolean
leaf variables. This setting, it turned out, is substantially
more complex to analyze.

In any case, the real open question remains:

Open Question 3 Can the approach of analyzing CG-
based tractable fragments ever be brought up to a level suit-
able for targeted selection of C in practice?

Our idea here is, if for sufficiently large/many fragments
of planning we know exactly which C are needed to ren-
der h+(ΠC) perfect, then we may be able to use these as
“building blocks” for selection methods with a strong the-
ory justification. In particular, for fact-pair cases, the idea
would be to not necessarily consider all fact pairs but just
the minimal subsets required.

Our speed of progress so far, and counter-examples iden-
tified for very simple fragments of planning, suggests that
this approach is challenging to say the least, doomed per-
haps. But the jury is still out. We speculate some more in
the conclusion, and for now get back to some actual results:



h+(ΠC) vs. Red-Black vs. Fluent Merging
A different way to approach the power of h+(ΠC) is to com-
pare it with other partial delete relaxation methods, i. e., al-
ternative methods able to interpolate all the way between h+
and h∗. Exactly two such alternative methods are known, at
this time: red-black planning (Katz, Hoffmann, and Domsh-
lak 2013b; 2013a; Katz and Hoffmann 2013) and fluent
merging (van den Briel, Kambhampati, and Vossen 2007;
Seipp and Helmert 2011). Which of these approaches can
simulate which other ones, i. e., compute an at least as good
heuristic, with polynomial overhead?

As fluent merging necessitates the use of 0-cost actions,
in what follows we consider the arbitrary-costs case. The
answers to the question we are posing are the same anyhow
when assuming uniform costs (for those cases where that
assumption is possible).

In fluent merging, we choose a subsetM ⊆ V of variables
to merge, and replace them with a single variable vM whose
domain is the cross-product of the domains of v ∈ M .6
Every action a that touches any v ∈ M is then replaced
by a set of actions resulting from the enumeration of pos-
sible precondition/effect values of vM (i. e., states over M )
that match a’s precondition and effect. That is, we com-
plete eff (a) with an assignment p to the remaining variables,
where p matches pre(a); we complete pre(a) with the same
assignment p on variables not occuring in eff (a), and with
an arbitrary assignment on those variables that do occur in
eff (a). If M touches the goal, then an artificial goal value
is introduced for vM , reached by an artificial 0-cost action
from every assignment to M that complies with the goal.
Denote the resulting heuristic, i. e., the length of an optimal
relaxed plan in the pre-merged task, by hMerge+. It hasn’t
to our knowledge been noted before, but is obvious, that for
M = V we get hMerge+ = h∗ (so indeed this is an “interpo-
lation method” in the sense above).

In red-black planning, we “delete-relax” only a subset
V R of the finite-domain state variables (the “red” ones),
applying the original semantics to the remaining variables
V B (the “black” ones). That is, red variables accumulate
their values (eff (a) gets added to the state) while the black
variables switch between their values (eff (a) over-writes
the state). Denote the resulting heuristic, i. e., the length
of an optimal red-black plan, by hRB+. Obviously, setting
V B = ∅ we get hRB+ = h+, and setting V R = ∅ we
get hRB+ = h∗. The known “tractable fragments” (i. e.,
polynomial-time satisficing red-black plan generation) re-
quire (a) a fixed number of black variables each with fixed
domain size, or (b) an acyclic black causal graph (projection
of the causal graph onto V B) where each black variable has
only invertible value transitions in its DTG.

It is not completely clear what “polynomial overhead”
should be taken to mean in this context. We choose to ignore
the complexity of optimal partially-relaxed-plan generation,
which makes sense as this underlies all three frameworks

6Note that this is a restricted version of the technique, merging
only a single subset of variables. One can instead merge several
subsets, potentially with overlaps between them. We restrict out-
selves to the simpler variant in what follows.

and will be approximated by satisficing partially-relaxed-
plan generation just like in the standard delete relaxation.
Given this, “polynomial overhead” for fluent merging means
that |M | is fixed; for h+(ΠC) we take it to mean that |C|
is polynomially bounded.7 For red-black planning, we take
“polynomial overhead” to mean “inside a known tractable
fragment”; this is not fair as there may be yet unknown
tractable fragments, but it is the best we can do for now.

As per this simulation framework, it turns out that all three
approaches are orthogonal, with a single exception:

Theorem 4 None of h+(ΠC), red-black planning, and flu-
ent merging can simulate any other with polynomial over-
head, except that h+(ΠC) simulates fluent merging on M
when setting C to contain all fact conjunctions c over M
(including c mentioning the same variable more than once).

Proof Sketch: To see that red-black planning cannot simu-
late either of h+(ΠC) or fluent merging, it suffices to con-
struct an example whose only “flaw” is small and easy to
fix, but outside a known tractable fragment. This can be
based, e. g., on having to buy a car, consuming a piece of
gold, but the goal being to have both the car and the gold.
Merging the two variables (car and gold) yields hMerge+ =
h∗ =∞, and a single conjunction yields h+(ΠC) =∞. For
hRB+ =∞ we would need both variables to be black, yield-
ing a cyclic causal graph; it is easy to scale variable domains
and the number of variables so that neither hMerge+ = h∗ nor
h+(ΠC) = h∗ is affected.
h+(ΠC) cannot simulate red-black planning because

there are planning tasks whose causal graphs are lines (in
particular, DAGs) and all of whose variables are invertible,
but where h∗ is exponentially large. This is tractable for
hRB+ = h∗ (using a succinct plan representation), but is not
tractable for h+(ΠC) by Proposition 2.

Fluent merging cannot simulate red-black planning be-
cause sometimes painting a single variable black suffices
whereas we would need to merge all variables to obtain
hMerge+ = h∗. One such example is “star-shaped switches”,
where a robot starts in the middle node of a star graph, has
to move to every leaf node turning on a switch, and has to
be back in the middle at the end. Painting the robot variable
black obviously gives hRB+ = h∗. However, ifM leaves out
a single variable then hMerge+ < h∗. This is obvious for the
robot variable. If switch variable v 6∈M , then a relaxed plan
can solve vM as appropriate (switching all other switches on
and moving back to the middle), then move outwards to v’s
node and switch it on, but not move back to the middle as the
two goals “other-switches-on-and-robot-at-middle” as well
as “switch-v-on” are both already true.

The same example shows that fluent merging cannot sim-
ulate h+(ΠC), as by Theorem 3 we have h+(ΠC2) = h∗.

Consider finally the only positive result. Denoting the
pre-merged task by ΠM , our proof considers an optimal

7We ignore the exponential growth of ΠC in |C| because (a)
this can be largely fixed using ΠC

ce (Keyder, Hoffmann, and Haslum
2012), and (b) it appears that alternate methods for computing ap-
proximations of h+(ΠC), not going via a compilation, can avoid
that blow-up altogether, cf. our comments below Open Question 2.



relaxed plan ~a = 〈aC
′
1

1 , . . . , a
C′

n
n 〉 for ΠC , and shows that

we can transform ~a step-by-step into a relaxed plan ~aM =
〈aM1 , . . . , aMn 〉 for ΠM based on the same actions ai from
the original planning task. Then ~aM has the same cost as ~a,
implying that h+(ΠM ) ≤ h+(ΠC) as we need to prove.

While that idea sounds simple, spelling it out was unex-
pectedly cumbersome, taking us a few iterations and ending
up being a full page long in this format (perhaps there are
simpler proofs). Omitting the details, consider the structure
of relaxed plans in ΠC vs. ΠM . In the latter, the M -states
visited form a tree, the root being the initial state, actions aMi
connecting to any M -state already visited. But what is the
structure in ΠC? While it is easy to see that eachC ′i contains
at most one full assignment to M (otherwise the precondi-
tion would contain an unreachable mutex pair, of different
values for the same variable), nothing forces the C ′i to in-
clude any full assignment. So the structure of ~a is less rigid
as that of relaxed plans in ΠM , making commitments only
where necessary. Our proof shows how to instantiate these
partial commitments to full commitments, extending each
C ′i to correspond exactly to a full assignment to M : At the
initial state, the commitment is full already. Every action i
must have a preceding action r(i) adding the π-fluent corre-
sponding to aC

′
i

i ’s entire set of precondition facts. Assuming
that C ′r(i) has been fully committed already, we can extend
the partial commitment made by C ′i accordingly.

We would like to note that, for once, there are no open
questions left here. Except of course what would happen
were we to identify further tractable fragments of red-black
planning, and whether more general variants of fluent merg-
ing (several variable subsets with potential overlaps) make a
difference. As that is not “open enough” for the spirit of this
paper, we now get into open questions for real:

Some Wild Speculations (aka “Conclusion”)
Disregarding issues such as exponential separations between
the different variants of ΠC , or the role of mutex pruning
(removing actions with known mutexes in the precondition)
in all this, let us focus our speculation on the questions
we started out with: Can we characterize more accurately
the circumstances under which h+(ΠC) becomes perfect?
When does that require C to be exponentially large, and
when is polynomial-size C enough?

Our most direct answer to these questions is Theorem 3,
tractability of a restricted fork fragment. While our orig-
inal plan had been to extend that result “bottom-up”, prov-
ing tractability of different/ever larger fragments, the effort it
took to analyze even slightly larger fragments suggests that
perhaps a “top-down” approach might be more suitable:

Open Question 4 Can we identify easily testable sufficient
conditions for some subset D of conjunctions to not be re-
quired for rendering h+(ΠC) perfect?

For example, if there is no undirected CG path between
two variables, then presumably we do not need to include
conjunctions involving both. But what if there is no directed
CG path between them?

Or perhaps we can make progress by considering particu-
lar benchmark domains:

Open Question 5 In which IPC benchmarks is h2+, i. e.,
h+(ΠC) with C being all fact pairs, perfect? In those do-
mains where it isn’t, how does the search topology (local
minima, exit distances, unrecognized dead-ends) differ from
that known for h+ (Hoffmann 2005)?

A major source of speculations is whether we can some-
how identify structural criteria – based on whatever notions,
not necessarily efficiently testable – under which h+(ΠC)
becomes perfect. Let us start with the most plausible one:

Open Question 6 Say that a task Π is “m-decomposable”
if there exists a partitioning {Vi} of its variables whose
largest Vi has size m, and where the length of an optimal
plan for Π is equal to the sum of lengths of optimal plans for
the projections onto Vi. Is hm+ perfect?

While that is more like a conjecture than an open question,
its practical use is doubtful: If we have m-decomposability,
then basically we can split up the planning task into its
pieces and have no need for a global heuristic addressing the
whole task. Unless, of course, we don’t actually know what
the decomposition is, only its size; but that seems unlikely
to happen in practice (?)

We close the paper with what are probably our two most
speculative open questions. One is basically an attempt to
answer Open Question 2:

Open Question 7 Can syntactical criteria be identified
which imply that the hm+ equation simplifies to Equation 1?

We haven’t got any idea how to do this; it should be said
though that we did not spend much time trying.

Finally, thinking about the size of conjunctions needed
often corresponds to thinking about “the value of how many
variables we need to remember in order to avoid cheating”.
The “remembering” here corresponds to deleted values that
are required again later on. The number of variables af-
fected in this way intuitively corresponds to a “level of in-
terference”. For example, in VisitAll (and other fork-like
domains) the only variable whose value we need to remem-
ber is the robot (the root of the fork); in puzzles, by contrast,
achieving a desired value may typically involve deleting ar-
bitrarily many other desired values. Taking “level of inter-
ference” m to be the maximal number of variables affected
while achieving a target value, plus one for the target vari-
able itself, the question is:

Open Question 8 Say that a task Π has level of interference
m (whatever that means, exactly). Is hm+ perfect?

We are looking forward to some answers in the future,
apologize for posing so many un-answered questions, and
thank you for not having laid the paper aside before reaching
this sentence.
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Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th National Confer-
ence of the American Association for Artificial Intelligence
(AAAI’13), 489–495. Bellevue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Moon, J. W. 1968. Topics on Tournaments. Holt, Rine-
hart and Winston, Inc. http://www.gutenberg.org/
ebooks/42833.
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