
Functional description of geoprocessing services
as conjunctive datalog queries

Daniel Fitzner & Jörg Hoffmann & Eva Klien

Received: 10 January 2008 /Revised: 18 February 2009
Accepted: 14 September 2009
Springer Science + Business Media, LLC 2009

Abstract Discovery of suitable web services is a crucial task in Spatial Data Infrastructures
(SDI). In this work, we develop a novel approach to the discovery of geoprocessing
services (WPS). Discovery requests and Web Processing Services are annotated as
conjunctive queries in a logic programming (LP) language and the discovery process is
based on Logic Programming query containment checking between these descriptions.
Besides the types of input and output, we explicitly formalise the relation between them and
hence are able to capture the functionality of a WPS more precisely. The use of Logic
Programming query containment allows for effective reasoning during discovery.
Furthermore, the relative simplicity of the semantic descriptions is advantageous for their
creation by non-logics experts. The developed approach is applicable in the Web Service
Modeling Framework (WSMF), a state-of-the-art semantic web service framework.

Keywords Geoprocessing services . Service discovery . Semantic anotation .

Logic programming . Conjunctive queries

1 Introduction

In recent years, the paradigm shift from the use of monolithic software systems and
databases to Service Oriented Architectures (SOA) had a great impact on geospatial
information products. Both, spatially referenced data as well as geospatial functionality

Geoinformatica
DOI 10.1007/s10707-009-0093-4

D. Fitzner (*) : E. Klien
Fraunhofer Institut für Graphische Datenverarbeitung, Abteilung Graphische Informationssysteme,
Fraunhoferstraße 5, 64283 Darmstadt, Germany
e-mail: daniel.fitzner@igd.fraunhofer.de

E. Klien
e-mail: eva.klien@igd.fraunhofer.de

J. Hoffmann
SAP Research, Vincenz-Prießnitz-Straße 1, 76131 Karlsruhe, Germany
e-mail: joe.hoffmann@sap.com

usually provided by Geographic Information Systems (GIS), are increasingly spread over
the internet and made accessible to users all over the world via web services.

This paradigm change can be illustrated with the help of a simple—but practically
relevant—example. A regional planner has the task to find potential building sites. He has
several constraints on the areas. For example, potential areas that are lowlands should be at
least 500 meter away from rivers to minimize the risk of being flooded. In order to process
this information, he has data sets containing river objects (represented as lines or polygons)
as well as data sets with potential developable areas (represented as polygons). To get the
information product he wants, further processing on this data is needed.

Usually, this processing is performed on a standalone PC: First, the regional planner
needs to gather the regional data on rivers and potential building sites. After receiving the
data, e.g. on a CD-ROM or via download from the provider’s web site, the regional planner
imports it into his standalone GIS and employs the system’s processing functionality in
order to achieve a suitable output, i.e. all potential developing areas more than 500 meter
away from rivers. In this example, this processing consists of a 500 meter buffering around
the river objects and the subsequent application of the difference operation. The application
of the difference operation returns a polygon-layer containing all potential developable
areas (or parts of them) that do not intersect with the buffered polygon layer that represents
a 500 meter area around rivers.

As pointed out in several publications such as [1] or [2], this common approach to
geospatial tasks has several drawbacks. For example, each time the regional planer wants to
repeat his task of finding potential building sites, he has to check, if the data he received is
still valid/up do date, since especially the data on potential developable areas is subject to
rapid changes. Hence, the regional planner probably needs to reorder the data each time he
performs the task, which can be time consuming and involves additional work. Moreover,
the regional planner needs a GIS to perform the necessary processing steps. If he has no
GIS available, he will not be able to achieve his task.

Spatial Data Infrastructures (SDI) have been designed to overcome these problems. SDI
provide multidisciplinary access to distributed and heterogeneous geodata and geoservices
with the help of web service technology. This has the advantage that the regional planner
does not need to have specialised software or specific data sets on his computer in order to
achieve his task. In this case, both, the data (rivers, potential developable areas) as well as
the processing functionality (buffer, difference) are offered via geospatial web services.
These services can be accessed and combined from users all over the world via the World
Wide Web.

To employ and compose the web services that (altogether) support the regional planner
in generating the information product he wants, he first needs to discover these services.
Discovery is one of the crucial tasks in such open and distributed environments and can be
characterized as the process of locating web services that provide the requested data or
functionality.

This paper is concerned with the discovery of geoprocessing functionality, such as buffer
or overlay operations. We assume that the input data in our example (i.e. data representing
rivers and potential developable areas), has already been located, e.g. via the discovery of
suitable Web Feature Services (WFS) [3]. The regional planner’s task is now to discover
suitable processing functionality that can help him in achieving his task, i.e. finding all
potential developable areas that are not too close to rivers. Hence, the regional planer needs
to discover Web Processing Services (WPS [10]) that implement the buffer and difference
operations and that are able to execute on the input data provided by the (already
discovered) WFS.

Geoinformatica

Discovery of web service is usually realised with so called registries or catalogue
services. Web service providers publish descriptions of the web services’ capabilities in
some registry or catalogue. Requesters can then query the catalogue in order to locate web
services that deliver the requested service. These web service advertisements used for
discovery are often called functional descriptions ([4–6]). Disregarding on how to invoke a
web service and how to process the output (and how the web service achieves this output),
functional descriptions are declarative description of what is provided (output) and what is
required (input) by the web service they describe. Hence, functional descriptions "shall
provide a black box description for determining the usability of a web service for some
request or usage scenario with respect to the provided functionality" [5]. For example, in
the case of a buffer operation, a functional description contains the information that the
buffer inputs some geometrical objects (the objects to be buffered) and some number (the
buffer distance).

Multiple possibilities for web service discovery exist. The most obvious one is to base
the discovery process on the comparison of natural language descriptions of requests and
web services. Another possibility is to use some sort of shared vocabulary inside the
functional descriptions. This shared vocabulary can either have the form of keywords (e.g.
“polygon” or “buffer”) or more complex expressions in some formal language. In the latter
case, discovery requests and web service advertisements are described using the shared and
formalised background knowledge, which is usually provided in the form of domain
ontologies. Ontologies can be characterised as explicit specifications of conceptualisations
[7]. The term conceptualisation refers to an “abstract simplified view of the world” [7]. In
case of domain ontologies, the conceptualisation covers a whole knowledge domain such as
the domain of Regional Planning. In computer science and information systems, ontologies
are formalised. This formalisation (usually in a declarative, logical language) enables
automatic reasoning/inferencing tasks within the domain that can usually only be performed
by humans.

Within ontology-based approaches to web service discovery such as [8] or [9], the
discovery process relies on automatic inference mechanisms based on the ontology
language. These approaches are usually subsumed under the term semantic web service
discovery. This is the approach we follow in this work. The advantage of using ontologies
for search and discovery of geospatial information is clearly pointed out in several
publications such as [18, 19] or [20]. Ontologies deliver unambiguous semantics of terms as
well as the possibility for automated reasoning. Both are of huge importance for geospatial
information discovery and retrieval. Herein, we develop a new approach for exploiting this
for improved precision and recall in the discovery of WPS services.

In our approach, two domain ontologies provide the formalised background knowledge
to be used inside the functional descriptions of requests and geoprocessing functionality.
The functional descriptions have the form of conjunctive datalog queries. The discovery
process then establishes a query containment relation between these descriptions. Figure 1
gives an overview. The requester, who wants to discover a WPS, formalises his request as a
conjunctive datalog query. The terms within the query are taken from the background
ontologies. The web service provider does the same for the advertised WPS. The discovery
itself then relies on query containment, a well known reasoning technique in the area of
databases and, especially, query optimisation.

In a little more detail, our approach requires two background ontologies, one formalizing
the possible datatypes of the web service’s arguments (e.g. polygon, point), and one
formalizing the possible operations performed by web services (e.g. intersect). To describe
a Web service, the provider uses terms from these ontologies, conjoining them into a

Geoinformatica

conjunctive query which specifies what types the arguments have, what operation is
performed on them, and how the output parameters relate to the input parameters.1 The
same is done by the web service requester to construct a discovery query. The discovery is
then performed through matching each web service description—the respective conjunctive
query—against the discovery query. A match occurs iff there exists a containment relation
between the queries. The discovery result consists of those Web services whose descriptions
match the query.

The core question in an approach such as the above is: How are the queries formed and
how are they compared to each other? That is, how do we describe Web services/discovery
requests, and how do we match them? Herein, we develop a specific approach that is
particularly suitable for handling Web Processing Services. We target an aspect that is not
dealt with adequately by any of the existing approaches, namely how the output parameters
of the Web service result from its inputs. Note that this is crucial for WPS services, which
after all compute a function of their inputs. Our matching operation is derived from a more
basic well-known operation known as the “Plug-in match”. According to what we have just
discussed, we term our approach In-Out-Aware Plug-in match. We prove that this match
adheres with a number of desirable properties regarding inputs and outputs; we provide
encouraging initial empirical results.

The remainder paper is organized as follows: In Section 2, the necessary background for
our approach is given. This contains a discussion of foundations of web service discovery, a

1 Another property of some WPS services is how they deal with the non-spatrial attributes of their inputs;
herein, we ignore this issue and focus only on the spatial aspects. Note that the two issues are entirely
orthogonal.

Fig. 1 Overview on the presented approach to web service discovery

Geoinformatica

list of requirements on the WPS discovery process and an introduction to the technologies
used. Section 3 introduces the structure of the functional descriptions we use as well as
examples of simple domain ontologies and standard matching techniques. Section 4
contains the heart of our approach, for the In-Out-Aware Plug-in match. Preliminary
empirical results are described in Section 5. Section 6 discusses related work, and Section 7
concludes.

2 Background

In the following, we provide the reader with the necessary background knowledge.
Section 2.1 discusses foundations of web service (especially WPS-) discovery. Section 2.2
introduces the notion of subtyping of software operations (functional descriptions of WPS
and requests, in our case). In Section 2.3, the key notions from Logic Programming,
especially Query Containment and Containment Mappings are given.

2.1 Foundations of WPS discovery

In this section, we introduce Web Processing services and discuss some general foundations
of WPS discovery. Afterwards, we give a number of requirements we consider being crucial
for the functional descriptions and the discovery of WPS.

The process of web service discovery strongly depends on the type of web service to be
discovered. Discovery of data-providing web services such as the OGC´s Web Feature
Service [3] mainly deals with metadata descriptions of the provided data. Requesters can
query them in order to locate those web services that provide suitable data. Discovery of
functionality-providing web services such as geoprocessing services is different. In contrast
to data-providing web services, they offer operations on spatially referenced data instead of
the data itself. WPS are intended to offer multiple types of operations on spatially
referenced (vector or raster) data, which include well-known GIS operations such as
overlay, but also arbitrarily complex calculations such as a global climate change model
[10]. Despite the wide variety of possible operations, WPS have a few things in common,
as pointed out in [11]:

& WPS are information providing web services. This means, there is no "real world"
counterpart to the computation performed. The execution of a WPS does not affect the
real world but only the information space in which the WPS is executed.

& After WPS execution, either a new fact becomes known or a known fact has been
updated. For example a web service offering the geospatial intersection operation
creates a new spatial feature based on the input features, whereas a web service offering
coordinate transformation updates the spatial attribute of the input.

One category of GIS operations that are potentially offered by WPS is overlay. "The
reason overlay plays a key role is that most applications of geographic information must
integrate information from different sources" [12]. For this reason, we use overlay
operations as our running example. Since the main driving force behind SOA is integration
of information from different sources, it is likely that overlay operations offered via WPS
will play a crucial role in future SDI.

Overlay operations receive multiple (at least two) layers of spatially referenced data as
input and yield one layer as output that is the result of spatially overlaying the input. As
pointed out in [12], overlay operations have a certain similarity to joins between tables in a

Geoinformatica

relational data model in the sense that they combine different datasets based on a common
key. In the case of overlay operations, this key is the geometry instead of some non-spatial
attribute inside the attribute tables. For this reason, a useful output layer can only be
computed, if all of the input layers adhere to a common spatial reference system (unless the
WPS also performs coordinate transformation). Different ways for computing the output
geometries from the input exist, namely Intersection, Union, Difference and Symmetric-
Difference. For example, intersecting two polygons A and B delivers a polygon that covers
the geometric area where A and B overlap. Figure 2 shows the different overlay operations
on polygons.

In general, the possibility to describe the functionality of a WPS for the purpose of
discovery ranges from its classification by keywords to a detailed description of the
implemented mathematical equations or algorithms. Both options have several drawbacks.
Automated discovery based on keywords or natural language descriptions suffers from low
precision and recall due to synonyms and homonyms in natural language and moreover due
to the inability of computers to perform reasoning/inferencing on this kind of information.
On the other hand, the automated discovery based on algorithm descriptions is also not a
good idea. It requires the requester to provide a detailed description of the requested
algorithm, which is not a realistic assumption since geoprocessing algorithms can be
arbitrarily complex. Moreover, if a requester is able to provide such a detailed description,
then she can simply use an executable programming language for encoding her request, and
no longer needs a WPS.

Therefore, a suitable level of detail for functional descriptions is needed. On the one
hand, these descriptions should be expressive and detailed enough to enable web service
discovery with high precision and recall. On the other hand, the task of annotating a WPS
or formulating a request should still be feasible. In order to achieve such level of detail, we
formulate the following requirements for functional descriptions to be used for WPS
discovery. In the following, the term functional description refers to a WPS advertisement
as well as a request. Hence, we adopt the usual way of treating requests as "desired" web

Fig. 2 Different overlay operations on polygons

Geoinformatica

services. In our opinion, functional descriptions used for WPS discovery should at least
contain some description of...:

& ...type signatures (the input/output types)
& ...constraints on in- and output
& ...the operation that is performed/requested
& ...the dependencies between input and output

The description of the signature is a crucial part of functional descriptions. It ensures
syntactic interoperability between requester and web service. Corresponding type signatures
guarantee that the web service can execute on the provided input and that the requester can
accept the delivered output with respect to their syntactic types. In Section 2.2, we introduce
the common notion of function subtypes for comparing type signatures. To additionally
ensure that the web service really executes on the provided input in the way expected,
constraints need to be formulated that further narrow the possible input and output values.
As described above, a WPS offering overlay calculations on polygons requires all input
values (besides being of type polygon) to adhere to a common coordinate reference system
in order to be able to calculate a useful output. Furthermore, since web services with equal
type signatures and equal constraints on the input and output variables can compute very
different operations, some description of the implemented algorithm or operation is needed.

However, this will again not be sufficient in many cases. For example, consider a WPS
offering the difference operation on polygons. When discovery is only performed based on
some description of type signatures, constraints and the operation, it is e.g. not possible to
differ between the calculation of Difference(A,B) and Difference(B,A), although their
results are quite different. Referring to the real world example from the introduction, the
execution of the difference operation with a wrong permutation of the two input layers
would result in a layer of polygons that consists of all areas within a 500 meter radius
around rivers, which do not intersect with developable areas. Regarding the initial regional
planer’s task, this is obviously a wrong result.

Hence, in order to ensure that the WPS´ input variables are instantiated with a valid
permutation of the requester input, some description of the relation or dependency between
input and output is needed. This description should guarantee that both, requester and web
service, agree on the way the output is computed from the input. We consider these
dependencies as crucial for the discovery of WPS, since they lie in the very nature of
processing services, providing an output computed as some function of a set of given input
parameters. In particular, these dependencies constitute a characteristic difference between
data processing and data providing services.

2.2 Function subtypes

This section introduces the common notion of Function Subtypes and a characterisation of
Function Subtypes for multi-argument functions/operations is given.

In the literature, multiple efforts are described that try to clarify whether software
operations (or web services) match, that is: whether one of them can be replaced "with
another without affecting the observable behaviour of the entire system" [13]. Usually, two
software components are considered as a match, if both, their signatures (i.e. the input/
output datatypes) and their behaviour (the operation or algorithm) correspond. For
determining this correspondence, several notions of signature and behavioural subtypes
for operations have been identified. Transferring this to web service discovery, a web
service should be discovered if it is a (signature and behavioural) subtype of the "desired"

Geoinformatica

web service described in the request. We characterise function subtypes for multi-argument
operations or web services as follows:

Let X1,...,Xn (A1,...Am) be a list of input types.
Let Y and B be output types.

The function type X1,...,Xn→Y is a subtype of the function type A1,...,Am→B if

– for each input type Xi 2 X1; :::;Xn; 1 � i � n there exists a distinct input type Aj 2
A1; :::;Am; 1 � j � m with Aj being a subtype of Xi

– Y is a subtype of B

Intuitively, this means that each input variable of the subtype operation (i.e. the web
service) needs to have a corresponding input variable of the supertype operation (i.e. the
request), whose type is a subtype. The output type of the web service is required to be a
subtype of the desired output type of the request.2 Note that, with the above character-
isation, the request is allowed to provide more input than required by the web service, as
long as some of this input is sufficient for executing the web service. We consider this as an
intuitive condition for matchmaking.

Example 1: (Function Subtypes) Consider the signatures of two software operations or web
services A and B:

Operation A: (Polygon, Polygon) → Polygon
Operation B: (GM_Object, GM_Object) → Polygon

The type GM_Object represents a generic geometric object and we assume that a subtype
relationship holds between Polygon and GM_Object. In the following, we show that
Operation A can not be a function subtype of Operation B, that is: Operation A can not
replace Operation B. The reason is, since Polygon is a subtype of GM_Object, there are values
of GM_Object that are no values of Polygon. Hence, some of the input values of Operation B
are not acceptable by Operation A, namely those values that are GM_Objects but no
Polygons. For this reason, Operation A can not be executed in place of Operation B without
risking a runtime exception. Hence, Operation A can not be a subtype of Operation B.

Although software operations or web services can be identified by their input and output
types, this is by far not sufficient as described in Section 1. Considering type signatures delivers
not much information about the actual "behaviour" of the operations since software operations
or web services that have equal type signatures can compute very different functions (e.g
“Intersection(A,B) and “Difference(A,B)” have the same type signature). Behavioural
subtyping tries to overcome this lack by further considering the operation’s behaviour.
Usually, this behaviour is described in terms of pre- and postconditions [14] that hold before or
after the operation's execution. The most common notion of behavioural subtyping is that of a
Plug-in match that directly transfers the function subtype characterisation to the operation’s
behaviour. We will further explain a variant of the Plug-in match in Section 3.3.2.

2.3 Query containment in LP

This Section introduces the technology we use for WPS discovery, namely Logic
Programming, Query Containment in LP and Containment Mappings.

2 We assume that a WPS has a single output, e.g. a single polygon or polygon-layer

Geoinformatica

Logic programming (LP) transfers the declarative style of 1st order logics to the realm of
computer programming. In particular, LP focuses on logical reasoning problems that are
decidable and that are hence suitable as the basis of practical applications. LP languages
provide a formal syntax that includes: constant symbols for the representation of
individuals; predicate symbols for specifying relations between individuals; logical
connectives such as “or”, “and”; variables for making general statements about unknown
individuals. In particular, herein we focus on datalog [15], which features LP rules of the
form

P : �Q1 ^ Q2 ^ . . . ^ Qn

The meaning of such a rule is that, whenever all the Qi are true, then P is also true. The
left hand side of the rule is its head, the right hand side is its body. Here, P and each Qi has
the form p(t1,...,tm) where p is a predicate of arity m, and each ti is either a variable or a
constant. One special form of rules are those with an empty body and a head which is
ground, i.e. whose arguments contain no variables. Such rules are called facts. Facts can be
used to specify the instances (represented as constant symbols) on which a certain predicate
holds.

The most prominent reasoning task in LP is query answering, i.e. the process of deriving
new facts from a database of already established facts. Following the characterization of
conjunctive datalog queries in [16], we define:

A conjunctive query is a rule in which a predicate is defined in terms of one or more
predicates other than itself.

In other words, every non-recursive rule is a conjunctive query. The predicates
appearing in the body of a conjunctive query are referred to as the query’s subgoals. The
variables appearing in the head of a conjunctive query are called exported variables; this
may be an arbitrary subset of the variables appearing in the rule body. Within this paper,
we will ignore this issue, since it is not of essential importance for the approach we are
proposing, where queries correspond to functional preconditions/postconditions which do
not have a natural notion of “exported” variables.3 We will simply assume that all
variables are exported, and we will often ignore the rule head; by convention, this should
be taken to mean that the head consists of some new predicate containing all of the body’s
variables.

One question that is of particular importance in our work is query containment, which is
defined as follows:

A conjunctive query Q1 is contained in a conjunctive query Q2, written Q1⊆Q2, if,
whatever the established database of facts is, the set of additional facts provable from
Q1 is a subset of those provable from Q2 [16] .

In other words, Q1⊆Q2, if and only if the set of facts on which the head of Q1 holds is a
subset of the set of facts on which the head of Q2 holds, independently from the actual
database that is evaluated by the two queries. Due to this independence from a particular
database, query containment can be tested syntactically based on the structure of the two
queries and on the set of rules given in the datalog ontology.

3 This notwithstanding, marking precondition/postcondition variables as “exported” may be useful to
explicitly distinguish input/output variables; such special markers are not supported by current Semantic Web
Services approaches, and exploring this option is a topic for future work.

Geoinformatica

2.3.1 Containment mappings

An interesting characterization of when a containment holds is in the form of so-called
containment mappings [17]. Containment mappings turn the containing query Q2 into the
contained query Q1 by mapping each subgoal from Q2 to a corresponding subgoal that can
be derived—by applying rules—from the body of Q1. Namely, a function h from the set of
symbols (predicates, constants, variables) used in Q2 into the set of symbols used in Q1 is
said to be a containment mapping from Q2 to Q1 if:

– h is the identity function on constants;
– and, for each subgoal Gi y1; :::; ynð Þ in the body of Q2 ,Gi h y1ð Þ; :::; h ynð Þð Þ is a fact in

Q1, where Q1 is the deductive closure of the body of Q1.

In other words, as mentioned in [15], a containment mapping from a query Q2 to a query
Q1 exists, if and only if the body of Q1 logically implies the body of Q2: the deductive
closure of the body of Q1 is the set of all facts that can be derived from the body of Q1 by
iteratively applying datalog rules until a fixpoint is reached. It is then easy to see that a
query containment relation Q1⊆Q2 holds if and only if there exists a containment mapping
from Q2 to Q1. To illustrate this by an extreme case: if the database of rules is empty, i.e., if
the ontology specifies no rules on the behaviour of the predicates, then the deductive
closure of the body of Q1 is the same as that body itself and the containment mapping must
map every subgoal Gi(y1,...yn) in the body of Q2 to a subgoal in the body of Q1. A less
extreme version of this special case is when the particular predicate Gi to be mapped does
not appear in the head of any of the datalog rules: then, Gi cannot be deduced and hence, as
in the extreme case, it must be mapped directly to a subgoal in the body of Q1. This latter
special case will be relevant in our investigation, where in the In-Out-Aware Plug-in match
we use certain special new predicates—that are not mentioned in the underlying datalog
ontologies—in order to constrain the queries in a way enforcing the desired behaviour of
the matching.

Example 2: (Query Containment and Containment Mappings) Consider the following
datalog ontology O:

gm objectðX Þ : �pointðX Þ:

Consider two conjunctive queries Q1 and Q2:

Q1 : qðX Þ : �pointðX Þ ^ hasSRS X ; Yð Þ ^ geogSRSðY Þ

Q2 : qðAÞ : �gm objectðAÞ ^ hasSRS A;Bð Þ

Applying the rule of the datalog ontology O on Q1 delivers the deductive closure Q1:

Q1 : qðX Þ : �pointðxÞ ^ hasSRS x; yð Þ ^ geogSRSðyÞ ^ gm objectðxÞ

Geoinformatica

As can easily be seen, each subgoal in the body of Q2 has a corresponding fact in the
deductive closure Q1. Therefore, the containment relation Q1⊆Q2 holds with the
containment mapping that maps A to X and B to Y.

3 Functional descriptions for WPS, and standard matching techniques

In this section, we introduce our ontology based approach to semantic WPS discovery.
In Section 3.1 we explain what kinds of background ontologies our approach relies on.
Section 3.2 introduces the structure of functional descriptions used for discovery. In
Section 3.3, standard matching techniques between functional descriptions are described
and their drawbacks are identified.

3.1 Ontologies for functional descriptions of WPS

Our discovery approach relies on two ontologies in the background. (1) a geographic
datatypes ontology is used to formalize geographic datatypes derived from already well-
agreed standards such as the ISO Spatial Schema [21]. That is, the scope of the geographic
datatype ontology is the terminology used to describe the typing of the parameters of the
relevant WPS services, such as “Polygon” (2) a geospatial operation ontology is used to
formalize GIS operations. The scope of this ontology is a categorization of different
operations; at an informal level, one may view it as an organized collection of keywords,
where each keyword names one particular operation such as “SymmetricDifference”.

Herein, we do not provide sophisticated instances of these two ontologies. Our focus is
on discovery, and within this section we only present simple ontologies for illustration
purposes. From a theoretical point of view (disregarding runtime and performance issues),
our approach works with any background ontology, as long as it is formalised in a datalog
language and consistent.

Within our example ontologies, geographic datatypes are represented as unary
predicates and sub type relationships are formalised as LP implication between them. For
example, a polygon is defined as a subtype of a generic gm_object:

gm objectðAÞ : �polygonðAÞ: ð3:1Þ
Additionally, the geographic datatypes ontology contains instance specifications such as

the projected spatial reference system Gauß-Krüger:

projSRS gkð Þ: ð3:2Þ
The adopted standards for geographic datatypes such as ISO Spatial Schema can serve as

a basis for the development of a geographic datatypes ontology and therefore for the
annotation of type signatures. But (as mentioned in [11]) they provide no information about
the functionality or behaviour of geospatial operations. For this reason and since, as
described in Section 2, the functional descriptions should not in detail refer to the
mathematical equations of the underlying algorithms, an abstract conceptualisation of
operations is needed. The geospatial operations ontology contains a lightweight character-
isation of operations as ternary predicates. The first two variables refer to the operations
input. The third argument represents the operations output. For example the statement

Geoinformatica

difference(A,B,C) denotes that C is the output of the difference operation on A and B. In
order to allow requesters to search for all of the different overlay operations using a single
request, we formalise the following dependencies:

overlay A;B;Cð Þ : �union A;B;Cð Þ
overlay A;B;Cð Þ : �intersection A;B;Cð Þ
overlay A;B;Cð Þ : �difference A;B;Cð Þ
overlay A;B;Cð Þ : �symmetricDifference A;B;Cð Þ

ð3:3Þ

Additionally, some overlay operations compute the same output when executed with
different permutations of the input. As can be seen in Fig. 2, the geometric output of symmetric
difference(A,B) is equivalent to the geometric output of symmetric difference(B,A). We
formalise this as LP implication between the predicates that represent the operations:

symmetricDifference A;B;Cð Þ : �symmetricDifference B;A;Cð Þ ð3:4Þ
Furthermore, since the different overlay operations are quite similar to set-theoretic

relationships, it is possible to naturally formulate dependencies between them. Some
overlay operations can be computed via other overlay operations. For example, as can be
seen in Fig. 2, a symmetric difference operation can be computed via difference and union
operations. These dependencies between operations are formalised as LP rules:

symmetricDifference A;B;Cð Þ : �difference A;B;Xð Þ^
difference B;A; Yð Þ ^ union X ; Y ;Cð Þ ð3:5Þ

Formalising dependencies between the operations theoretically allows to automatically
generate a service chain out of several WPS for a given request. For example, Eq. 3.5
allows to chain a difference and a union WPS for calculating a symmetric difference
(assuming that the type signatures correspond). However, how this is exactly done is
outside the scope of this paper and subject to future research.

3.2 Functional descriptions

The functional descriptions of requests and WPS are formalised using the formal
background knowledge from the domain ontologies. Following the framework for semantic
web services provided by WSMO [22], they consist of preconditions, postconditions and a
set of shared variables appearing in both. Note: WSMO additionally differs between the
"real world" (assumptions/effects) and the information space (pre-/postconditions). Since, as
described in Section 2, WPS are information providing web services, only pre- and
postconditions are required.

Each of the formulas—precondition and postcondition—is a conjunctive query, i.e., a list
of logical literals constraining the possible values of the set of variables they refer to; some
of the variables may be shared between precondition and postcondition, meaning they must
be instantiated with the same entities in both. Hence, they can be used to formalise
dependencies between web service input and output.

These pre/postcondition definitions include a specification of the signature as well as
further constraints on the input and output variables. The terminology is derived from the
ontology of geographic datatypes. The postcondition specification additionally contains the
operation description derived from the ontology of geospatial operations.

Geoinformatica

Example 3: (Functional Description) The functional description F (either request or web
service advertisement) annotates the intersection operation on two polygons adhering to the
Gauß-Krüger reference system.

Fpre : polygonðAÞ ^ polygonðBÞ ^ hasSRS A; gkð Þ ^ hasSRS B; gkð Þ
Fpost : polygonðCÞ ^ intersection A;B;Cð Þ
Fshare : A;B

In the example above, the variables A and B are shared and so the meaning is that “C”—
the output—is the intersection between the two input polygons and not between some other
anonymous polygons. While this may seem a marginal observation at first sight, it is
important to note that the most wide-spread formalism used for semantically describing
Web services is Description Logics (DL), where it is not possible to formulate this kind of
dependencies. Further, the input/output dependencies exhibited by WPS descriptions/
requests involve all sorts of other, more subtle, issues regarding whether the variables are
instantiated in a correct way, not using the same value to instantiate two input variables, not
using a shared variable as if it was not shared, etc. A substantial part of our work
concentrates on formulating the In-Out-Aware Plug-in match in a way so that all these
details are treated right

3.3 Standard matches

In the following, we present different standard notions of matchmaking between the
functional descriptions introduced in the previous section. All of them have several
drawbacks, which will be discussed in detail.

3.3.1 Matchmaking with shared variables: predicate matches

In this section, we discuss the notion of predicate matches introduced in [23]. But instead
of treating a functional description as a logical implication between pre- and postcondi-
tions, we build the conjunction of both that is: Rpred ¼ Rpre ^ Rpost and Spred ¼ Spre ^ Spost,
with Rpre Spre

� �
being the request’s (web service’s) precondition, Rpost Spost

� �
the request’s

(web service’s) postcondition. Hence, a functional description is handled as one conjunctive
query and it is possible to share variables between pre- and postconditions and therefore to
formulate dependencies between web service in- and output.

Note: For the same reason, it is impossible to distinguish between these conditions when
matching two functional descriptions. In order to do so, one has to introduce e.g. some
predicates marking the variables appearing in either pre- or postconditions. Furthermore, no
state changes between pre- and poststates can be considered since they are represented in
one conjunctive query.

Treating a functional description as a single conjunctive query allows two different
ways of matchmaking that only differ in the direction of the query containment relation.
In the following, we only introduce one of them, namely the generalized predicate
match:

Generalized Predicate Match :

matchgen pred S;Rð Þ ¼ Spred � Rpred
ð3:6Þ

Geoinformatica

The generalized predicate match holds, if the functional description representing a web
service is more restrictive than the functional description representing a request. It is
therefore especially useful for matching simple queries such as "give me all services that
compute overlay" with quite detailed web service advertisements. However, there are some
cases, where this match possibly delivers wrong results:

& If Rpre is more specific/restrictive than Spre, the generalized predicate match does not
succeed, although the web service could execute on the input provided by the requester.
Hence, this match possibly decreases recall.

& If Spre is more specific than Rpre, the generalized predicate match succeeds although the
user cannot guarantee to provide an input that is acceptable by S. Hence, this match
possibly decreases precision.

Note: Since we include the input and output types into the pre- and postcondition
definitions, the possible drawbacks not only refer to the behaviour of the operations but also
to their types. The generalized predicate match reverses the function subtype relation for
the input types. Hence, even if the generalized predicate match succeeds, it is not sure if the
(requester-) delivered input values are syntactically inside the range of values that are
acceptable by the discovered web services.

Example 4: (Predicate Matches) R requests an overlay calculation on polygons A and B,
without exactly specifying which type of overlay. Both input polygons adhere to the
coordinate reference system Gauß-Krüger:

Rpre : polygonðAÞ ^ polygonðBÞ ^ hasSRS A; gkð Þ ^ hasSRS B; gkð Þ
Rpost : polygonðCÞ ^ overlay A;B;Cð Þ
Rshare : A;B

S advertises the difference calculation on polygons. Both input polygons should belong
to a common (anonymous) projected spatial reference system:

Spre : polygonðX Þ ^ polygonðY Þ ^ hasSRS X ; SRSð Þ ^ hasSRS Y ; SRSð Þ ^ projSRS SRSð Þ
Spost : polygonðZÞ ^ difference X ; Y ; Zð Þ
Sshare : X ; Y

Obviously, the WPS could deliver a suitable output when executed with the requests
input.4 Nonetheless, neither of the predicate matches succeeds. In order to apply them, we
transfer R and S to the following conjunctive queries:

Request R:

q A;B;Cð Þ : �polygonðAÞ ^ polygonðBÞ ^ hasSRS A; gkð Þ ^ hasSRS B; gkð Þ ^
polygonðCÞ ^ overlay A;B;Cð Þ

4 Assuming the (taxononomic) relationships from the domain ontologies that a difference calculation is an
overlay calculation and Gauß-Krüger is a specific projected spatial reference system.

Geoinformatica

Service S:

q X ; Y ; Z; SRSð Þ : �polygonðX Þ ^ polygonðY Þ ^ hasSRS X ; SRSð Þ ^ hasSRS Y ; SRSð Þ ^
projSRS SRSð Þ ^ polygonðZÞ ^ difference X ; Y ; Zð Þ

Applying the generalized predicate match to both descriptions does not succeed since the
web services precondition is more generic than the requests precondition. Applying the
reversed version of the generalized predicate match would also not succeed since the web
services postcondition is more specific (difference) than the requests postcondition (overlay).

3.3.2 Matchmaking based on function subtypes: Plug-in match

In this section, we present a matchmaking technique that is capable of avoiding the
drawbacks from the predicate matches identified in the previous section. This can be done
by comparing the preconditions and postconditions separately. However, this comes at a
cost: the shared variables and therefore the dependencies between input and output can no
longer be considered in the matchmaking process. By comparing the pre- and
postconditions separately, a functional description is no longer handled as a conjunction
of pre- and postconditions. In the following, we introduce the Plug-In match, and
exemplarily show for Example 4 from the previous section why it is unsuitable for our
purposes. Afterwards, we formulate conditions on the use of the shared variables and
extend the Plug-in match in order to meet these conditions.

The Plug-in Match is well known in the area of behavioural matchmaking between
software components. It compares two functional descriptions based on the notion of
function subtypes as introduced in Section 2.2. We define the Plug-in match based on query
containment as follows:

Plug � in match :

matchplug in S;Rð Þ � Rpre � Spre
� � ^ Spost � Rpost

� � ð3:7Þ

By matching a request R with a web service description S using the Plug-in match, the
following conditions are ensured:

1. If Rpre holds before executing the service, then Spre also holds (this is directly expressed
in the query containment relation). Therefore, the service can be executed with Rpre.

2. If we assume that, executing S on Spre delivers Spost (which is a reasonable definition of
a web service), then Rpost also holds after execution (again, this is directly expressed in
the query containment relation).

These two conditions lead to the fact that S can be plugged-in for R. Since we use query
containment for matchmaking and do not consider any variable renaming, it is impossible
to maintain the roles "played" by the shared variables in the preconditions when comparing
the postconditions. Hence, it is impossible to formulate dependencies between input and
output. Using the definition of a Plug-in match from Eq. 3.2, the shared variables in the
postcondition containment match are treated as if they were new variables. They could be
replaced with arbitrarily chosen variable names without any impact on the result of the
matchmaking.

Geoinformatica

Yet, as described in Section 2, the dependencies between input and output and therefore
the use of the shared variables in the matchmaking process are crucial for WPS. For this
reason, the Plug-in match in the current form is unsuitable for our purposes.

To further explain these drawbacks, we briefly recall the characterisation of query
containment and how it relates to containment mappings as introduced in Section 2.3: a
query containment relation between two queries holds, if and only if there is a containment
mapping from the containing to the contained query. Hence, we can assume that, if the
Plug-in match holds between some request specification R and some web service
specification S, then there exists some (at least one) input mapping from Spre to Rpre and
additionally some (at least one) output mapping from Rpost to Spost.

Example 5: (Plug-in match) In the following, we apply the Plug-in match to Example 4.
We translate the pre- and postconditions of S and R to the following conjunctive queries:

Request R:

q A;B; gkð Þ : �polygonðAÞ ^ polygonðBÞ ^ hasSRS A; gkð Þ ^ hasSRS B; gkð Þ
q A;B;Cð Þ : �polygonðCÞ ^ overlay A;B;Cð Þ

Web Service S:

q X ; Y ; SRSð Þ : �polygonðX Þ ^ polygonðY Þ ^ hasSRS X ; SRSð Þ ^ hasSRS Y ; SRSð Þ
^ projSRS SRSð Þ

q X ; Y ; Zð Þ : �polygonðZÞ ^ difference X ; Y ; Zð Þ
Applying the Plug-in match succeeds and yields the following input and output

mappings:

Input mapping 1: im1ðX Þ ¼ A; im1ðY Þ ¼ B; im1 SRSð Þ ¼ gk
Input mapping 2: im2ðX Þ ¼ B; im2ðY Þ ¼ A; im2 SRSð Þ ¼ gk
Output mapping: omðCÞ ¼ Z; omðAÞ ¼ X ; omðBÞ ¼ Y

Intuitively, the fact that we get two different input mappings means that the web service
can be executed with two different permutations of the requests input variables. However,
since the web service calculates the difference operation, it delivers only for one of them a
suitable result, namely the difference between A and B instead of B and A. The Plug-in
match as introduced above does not filter out those permutations of input variables that
possibly deliver wrong results. As described above, the shared variables A and B (resp. X
and Y) are simply treated as new variables in the postcondition containment check.

4 The In-Out-Aware Plug-in match

In the following, we introduce a technique of matchmaking that combines the advantages of
both, the predicate matches (shared variables) as well as Plug-in matches (function
subtypes). In order to do this, we provide formalised conditions on the input and output
containment mappings in Section 4.1. The role of each condition in the matching process is

Geoinformatica

shown by means of concrete discovery examples. Afterwards, Section 4.2 extends the Plug-
in match in order to satisfy these conditions. Section 4.3 concludes with a concrete
discovery example that shows the benefits of the In-Out-Aware Plug-in match.

4.1 Formalised correctness conditions

In the following, we give some formal conditions on the input- (im) and output (om)
mappings derived from Plug-in matching two functional descriptions. The Plug-in match
should only succeed if:

(1) im is injective...

(a) ... with respect to Rshare; that is:

8x; x; 2 Spre; imðxÞ ¼ im x;ð Þ 2 Rshare) x ¼ x;

(b) ... over all; that is: 8x; x; 2 Spre; imðxÞ ¼ im x;ð Þ) x ¼ x;

(2) 8a 2 Rshare, there exists x 2 Spre with im(x)=a
(3) 8a 2 Rshare; 8x 2 Spre : imðxÞ ¼ a) x 2 Sshare
(4) 8a 2 Rshare : im�1ðaÞ ¼ omðaÞ

Condition (1a) ensures that the WPS` distinct input variables are instantiated with
distinct user input, as long as this input is marked as shared. Condition (1a) is a slight
relaxation of Condition (1b), which requires distinct web service input to be instantiated
with distinct user input in any case, independent from the shared variables. Condition (2)
ensures that every of the request's shared variables is used as input, when executing the
WPS. Condition (3) goes one step further since it requires that every of the request's shared
variables is not only used as input but also appears in the output when executing the service
(i.e. that the shared variables are used as such). This ensures (together with condition (4))
that the web service "behaves" in the way requested.

In the following, a more detailed description of these conditions and their impact on the
discovery process is given by means of concrete discovery examples.

4.1.1 The role of condition 1

The following example further explains Condition 1 (injectivity). Consider a user request R
that requests an overlay calculation on two polygons A and B:

Rpre : polygonðAÞ ^ polygonðBÞ
Rpost : polygonðCÞ ^ overlay A;B;Cð Þ
Rshare : A;B

A web service S advertises an overlay calculation on two polygons X and Y.

Spre : polygonðX Þ ^ polygonðY Þ
Spost : polygonðZÞ ^ overlay X ; Y ; Zð Þ
Sshare : X ; Y

Obviously, the service S delivers the requested functionality. However, applying the
Plug-in match succeeds with exactly four different input mappings. For two of these input
mappings, namely those that map X to A and Y to A (resp. X to B and Y to B), the service

Geoinformatica

delivers a wrong result. For example, consider the input mapping that maps both variables
X and Y to the single variable A. When executed with this mapping, the services input
variables X and Y are both instantiated with the single user input A. As can be seen in
Fig. 2 in Section 2, executing an overlay on a single polygon delivers either a polygon with
no geometric extent (e.g. in case of the difference operation) or a polygon with the same
geometric extent as the single input polygon (e.g. in case of the intersection operation).
Hence, we want to exclude those cases, where (at least) two distinct web service input
variables map to a single (shared) input variable of the request. This is exactly the purpose
of condition (1a), which requires the input mapping to be injective with respect to the
requests shared variables.

Condition (1a) is a slight relaxation of condition (1b) which requires the input mapping
to be injective over all variables. It is not a priori clear which of the two conditions is more
adequate in which situation; both are thinkable. In what follows, we concentrate on
condition (1b) which is slightly easier to present and digest; we will summarize how our
definitions need to be adapted to handle (1a) instead.

To further explain condition (2), we introduce the following example.

4.1.2 The role of Condition 2

The role of Condition 2 is further explained with the following example: F is a functional
description representing a request. F requests some overlay calculation on two polygons
that are defined with respect to the same (not further specified) spatial reference system
SRS. The resulting overlay polygon C should also refer to SRS. Hence, the variable SRS is
(besides the input polygons A and B) shared between pre- and postconditions.

Fpre : polygonðAÞ ^ polygonðBÞ ^ hasSRS A; SRSð Þ ^ hasSRS B; SRSð Þ
Fpost : polygonðCÞ ^ overlay A;B;Cð Þ ^ hasSRS C; SRSð Þ
Fshare : A;B; SRS

E advertises an overlay calculation on two polygons. It ensures that the output polygon
is defined with respect to the Gauß-Krüger reference system

Epre : polygonðX Þ ^ polygonðY Þ
Epost : polygonðZÞ ^ overlay X ; Y ; Zð Þ ^ hasSRS Z; gkð Þ
Eshare : X ; Y

Obviously, the web service E can not exactly deliver the functionality requested by F. It
cannot ensure that the output polygon has the same spatial reference system as the input
polygons, since it does not consider any spatial reference system for the input at all (and the
output polygon adheres to the Gauß-Krüger reference system). Hence, the request’s shared
variable SRS is not mapped to by im (i.e. im is not surjective with respect to Fshare).
Condition (2) ensures that every of the request’s shared variables is used as input, when
executing the WPS. Hence, condition (2) prevents the Plug-in match from succeeding in
this case. Still, condition (2) is not sufficient as we show with the following example.

4.1.3 The roles of condition 3 and 4

F is a functional description of an overlay calculation on two polygons that are defined with
respect to the same (not further specified) spatial reference system SRS. The resulting

Geoinformatica

overlay polygon C should also refer to SRS. Hence, the variable SRS is (besides the input
polygons A and B) shared between pre- and postconditions.

Fpre : polygonðAÞ ^ polygonðBÞ ^ hasSRS A; SRSð Þ ^ hasSRS B; SRSð Þ
Fpost : polygonðCÞ ^ overlay A;B;Cð Þ ^ hasSRS C; SRSð Þ
Fshare : A;B; SRS

E´ annotates an overlay calculation on polygons that both refer to a common spatial
reference system REF. E´ ensures that the output polygon refers to some reference system
REFSYS which is not necessarily the same as for the input.

E0
pre : polygonðX Þ ^ polygonðY Þ ^ hasSRS X ;REFð Þ ^ hasSRS Y ;REFð Þ

E0
post : polygonðZÞ ^ overlay X ; Y ; Zð Þ ^ hasSRS Z;REFSYSð Þ

E0
share : X ; Y

Now let F be a request and E´ a web service description. Hence, the web service has less
shared variables than the request. In this case, the Plug-in match should not succeed since
the web service can not exactly deliver the requested functionality. E´ cannot ensure that the
output polygon has the same spatial reference system as the input since the variable REF is
not shared between pre- and postconditions. Nonetheless, the Plug-in match succeeds and
yields the following input/output mappings:

im1ðX Þ ¼ A; im1ðY Þ ¼ B; im1 REFð Þ ¼ SRS

im2ðX Þ ¼ B; im2ðY Þ ¼ A; im2 REFð Þ ¼ SRS

omðCÞ ¼ Z; omðAÞ ¼ X ; omðBÞ ¼ Y ; om SRSð Þ ¼ REFSYS

As described above, we do not want the Plug-in match to succeed. Condition (1b) is
obviously not violated for both input mappings. Condition (2) is not violated since both
input mappings are surjective with respect to Fshare. Hence, condition (2) is obviously not
sufficient. To prevent the Plug-in match from succeeding is the purpose of condition (3)
which is violated for both input mappings since the variable REF is not shared.

If—vice versa—F represents a web service description and E´ a discovery request, then
the web service has more shared variables than the request. In this case, the Plug-in match
should succeed since the web service F can obviously deliver the requested functionality. F
ensures that the output polygon has the same spatial reference system as the input although
the request E´ only requires the output polygon to have some spatial reference system (not
necessarily the same as for the input).

The following input/output mappings exist:

im1ðAÞ ¼ X ; im1ðBÞ ¼ Y ; im1 SRSð Þ ¼ REF

im2ðAÞ ¼ Y ; im2ðBÞ ¼ X ; im2 SRSð Þ ¼ REF

omðZÞ ¼ C; omðX Þ ¼ A; omðY Þ ¼ B; om REFSYSð Þ ¼ SRS

Condition (1) is obviously not violated for both input mappings. Condition (2) is also
not violated since both input mappings are surjective with respect to E

0
share. Condition (3) is

not violated since each of E´s shared variables is mapped to by a shared variable of F.
Conditions (1), (2) and (3) also imply that im is a bijection between a subset of Fshare

and E
0
share and we can assume that the inverse mapping im−1 exists for all of the request’s

shared variables. For im2, condition (4) is obviously violated since it has no corresponding

Geoinformatica

output mapping at all. Therefore, the Plug-in match only succeeds for im1 with im1
�1ðX Þ ¼

A ¼ omðX Þ and im1
�1ðY Þ ¼ B ¼ omðY Þ.

4.2 Definition and correctness of the in-out-aware plug-in match

To give a short summary of the conditions: Condition (1a) ensures that the WPS` distinct input
variables are instantiated with distinct user input, as long as this input is marked as shared.
Condition (1a) is a slight relaxation of Condition (1b), which requires distinct web service
input to be instantiated with distinct user input in any case, independent from the shared
variables. Condition (2) ensures that every of the request's shared variables is used as input,
when executing the WPS. Condition (3) goes one step further since it requires that every of
the request's shared variables is not only used as input but also appears in the output when
executing the service (i.e. that the shared variables are used as such). This ensures (together
with condition (4)) that the web service "behaves" in the way requested. From conditions (1)
to (3), it directly follows that a web service must have at least as many shared variables as a
request. Conditions (1a), (2) and (3) also imply that im is a bijection between a subset of
Sshare and Rshare. Hence we can assume that the inverse mapping im-1 exists for all of the
request’s shared variables Rshare. In condition (4), we require this inverse input mapping to be
equal to the output mapping. This ensures that request and web service agree on the way, the
output is computed from the input. Hence, condition (4) allows the consideration of
dependencies between web service input and output in the matchmaking. Condition (4) is
obviously the strongest one and definitely requires im to meet conditions (1a), (2) and (3). In
order to satisfy all of these conditions when Plug-in matching two functional descriptions, we
define the following In-Out-Aware Plug-in match:

Denoting with x1...xn (a1...am) the web service’s (request’s) precondition variables, with
y1...yl (b1...bk) the web services (requests) postcondition variables. We define the following
two queries: 5

SQ � Spost ^ order x1; :::; xnð Þ^

^
xi2Sshare

shared xið Þ
� �

^ ^
xi;xj2Spre;i 6¼j

dif xi; xj
� �� �

RQ � Rpost ^ order im x1ð Þ; :::; im xnð Þð Þ^

^
ai2Rshare

shared aið Þ
� �

^ ^
ai;aj2X ;i6¼j

dif ai; aj
� �� �

ð4:1Þ

with

X ¼ Rshare [ai 2 Rpre 9yj 2 Spre : im yj
� � ¼ ai

��� �
The order(...)-predicate is used to filter out those input mappings im that cannot fulfil

condition (1b) (injectivity over all variables).The dif(..) predicates ensure condition (2)
(surjectivity with respect to Rshare). We have to include the dif(..)-predicate into RQ not only
for all of the requests shared variables but also for all variables that are mapped to by im
(hence the definition of X) in order to ensure that im is still surjective concerning Rshare

even if web service and request only have one shared variable each.
The shared(.)-predicates guarantee that im maps only web service variables that are

shared to the request's shared variables and hence ensures condition (3). All of these

5 We assume that the dif(..) predicate is symmetric.

Geoinformatica

predicates are required to ensure condition (4). We define the In-Out-Aware Plug-in
match:

In� Out � Aware Plug � in match :

1: Rpre � Spre
2: Test for every im whether : SQ � RQ

ð4:2Þ

Theorem 1: (In-Out-Aware Plug-in match) The In-Out-Aware Plug-in match succeeds
only if the following conditions hold:

(1) im is injective over all; that is: 8x; x; 2 Spre; imðxÞ ¼ im x;ð Þ) x ¼ x;

(2) 8a 2 Rshare, there exists x 2 Spre with im(x)=a
(3) 8a 2 Rshare; 8x 2 Spre : imðxÞ ¼ a) x 2 Sshare
(4) 8a 2 Rshare : im�1ðaÞ ¼ omðaÞ

Proof

Condition (1b)

Suppose S Plug-in matches R using the In-Out-Aware Plug-in match and the input
mapping im is non-injective. Then there exist some xi; xj 2 Spre; i 6¼ j such that
im xið Þ ¼ im xj

� � ¼ ak 2 Rpre. Consider only the order(...) predicates in SQ and
RQ: ::::order :::; xi; :::; xj; :::

� �
:::: � :::order :::; ak ; :::; ak ; :::ð Þ:::. Since no possible con-

tainment mapping om exists, this contradicts our assumption that im is non-njective.

Condition (2)

Suppose S Plug-in matches R using the In-Out-Aware Plug-in match and the input
mapping im is non-surjective with respect to Rshare. From non-surjectivity, it follows
that some ai 2 Rshare exists that is not mapped to by im. With the definition of query
containment, it follows that the output mapping om maps ai to some xk 2 Spre
om aið Þ ¼ xkð Þ. Again, with the query containment definition it follows that there exists
some aj 2 Rpre that is different from ai (i≠ j) with im xkð Þ ¼ aj. Therefore (from the
definition of RQ) some predicate dif ai; aj

� � 2 RQ must exist.
Remember that we already had that om aið Þ ¼ xk . The order(...), ensures that also

om aj
� � ¼ xk and with the definition of RQ some dif om aið Þ; om aj

� �� � ¼ dif xk ; xkð Þ 2
SQ must exist. This is not the case and therefore contradicts our assumption that im is
non-surjective.

Condition (3)

Suppose S Plug-in matches R using the In-Out-Aware Plug-in match and the input
mapping im maps some variable xi 2 Spre to some variable a 2 Rshare. With the
definition of query containment (and the shared(.) predicates), it follows that om maps
a to some xj 2 Sshare omðaÞ ¼ xj

� �
. The order(..)-predicate ensures that also

omðaÞ ¼ xi. Hence omðaÞ ¼ xi ¼ xj and xi 2 Sshare.

Condition (4)

Suppose S Plug-in matches R using the In-Out-Aware Plug-in match and there exists an
a 2 Rshare with imðaÞ�1 6¼ omðaÞ. Then there exists a xi 2 Spre with im�1ðaÞ ¼ xi and a
xj 2 Sshare with omðaÞ ¼ xj and i 6¼ j (xj 2 Sshare follows from the shared(.) predicates).
The order(..) ensures that also omðaÞ ¼ xi and hence im�1ðaÞ ¼ xi ¼ omðaÞ ¼ xj.

Geoinformatica

4.3 Example

In order to show the benefits of the In-Out-Aware Plug-in match, we briefly recall the
Example from Section 4.1.3:

F is a functional description of an overlay calculation on two polygons that adhere to the
same (not further specified) spatial reference system SRS. The resulting overlay polygon C
should also adhere to SRS. Hence, the variable SRS is (besides the input polygons A and B)
shared between pre- and postconditions.

Fpre : polygonðAÞ ^ polygonðBÞ ^ hasSRS A; SRSð Þ ^ hasSRS B; SRSð Þ
Fpost : polygonðCÞ ^ overlay A;B;Cð Þ ^ hasSRS C; SRSð Þ
Fshare : A;B; SRS

E describes an overlay calculation on polygons that adhere to a common spatial
reference system REF. E ensures that the output polygon adheres to some reference system
REFSYS which is not necessarily the same as for the input.

Epre : polygonðX Þ ^ polygonðY Þ ^ hasSRS X ;REFð Þ ^ hasSRS Y ;REFð Þ
Epost : polygonðZÞ ^ overlay X ; Y ; Zð Þ ^ hasSRS Z;REFSYSð Þ
Eshare : X ; Y

Now let F again be a request and E a web service description. Remember, we do not
want the Plug-In Match to succeed since the request has more shared variables than the
web service. Applying Step 1 of the In-Out-Aware Plug-in match yields the following
mappings:

im1ðX Þ ¼ A; im1ðY Þ ¼ B; im1 REFð Þ ¼ SRS
im2ðX Þ ¼ B; im2ðY Þ ¼ A; im2 REFð Þ ¼ SRS

Building the service query EQ yields:

polygonðZÞ ^ overlay X ; Y ; Zð Þ ^ hasSRS Z;REFSYSð Þ ^ order X ; Y ;REFð Þ^
sharedðX Þ ^ sharedðY Þ ^ dif X ; Yð Þ ^ dif X ;REFð Þ ^ dif Y ;REFð Þ

Building the requests query FQ for im1 yields:

polygonðCÞ ^ overlay A;B;Cð Þ ^ hasSRS C; SRSð Þ ^ order A;B; SRSð Þ^
sharedðAÞ ^ sharedðBÞ ^ shared SRSð Þ ^ dif A;Bð Þ ^ dif A; SRSð Þ ^ dif B; SRSð Þ

The containment check fails since the variable REF is not shared.
Building the requests query FQ for im2 yields:

polygonðCÞ ^ overlay A;B;Cð Þ ^ hasSRS C; SRSð Þ ^ order B;A; SRSð Þ^
sharedðAÞ ^ sharedðBÞ ^ shared SRSð Þ ^ dif A;Bð Þ ^ dif A; SRSð Þ ^ dif B; SRSð Þ

The containment check fails due to the conflict between overlay(...) and order(...)
(furthermore—as above—it fails since the variable REF is not shared).

Now let E be a request and F a web service description. Remember, we want the Plug-
in match to succeed for one of the input mappings that has a corresponding output

Geoinformatica

mapping. Applying Step 1 of the In-Out-Aware Plug-in match yields the following
mappings:

im1ðAÞ ¼ X ; im1ðBÞ ¼ Y ; im1 SRSð Þ ¼ REF
im2ðAÞ ¼ Y ; im2ðBÞ ¼ X ; im2 SRSð Þ ¼ REF

Building the service query yields:

polygonðCÞ ^ overlay A;B;Cð Þ ^ hasSRS C; SRSð Þ ^ order A;B; SRSð Þ^
sharedðAÞ ^ sharedðBÞ ^ shared SRSð Þ ^ dif A;Bð Þ ^ dif A; SRSð Þ ^ dif B; SRSð Þ

Building the requests query for im1 yields:

polygonðZÞ ^ overlay X ; Y ; Zð Þ ^ hasSRS Z;REFSYSð Þ ^ order X ; Y ;REFð Þ^
sharedðX Þ ^ sharedðY Þ ^ dif X ; Yð Þ ^ dif X ;REFð Þ ^ dif Y ;REFð Þ

The containment check succeeds. Note: The output mapping is not injective since om
(REFSYS)=SRS and om(REF) = SRS, but this is not required. We skip the containment
check for the input mapping im2 since it obviously fails due to the conflict between the use
of variables in overlay(...) and order(...).

In the current form, the In-Out-Aware Plug-in match satisfies condition (1b). In order to
refer to condition (1a) instead of (1b), the scope of the order(...) predicate has to be revised
by including only a subset of the web services precondition variables. Instead of including
each of the web service precondition variables into the order(...) predicate in SQ (and the
range of the input mapping into the order(...) predicate in RQ), only those web service
precondition variables have to be included, that map to shared variables of the request.

5 Preliminary empirical results

In this section, we show the application of the presented approach within the semantic web
service framework WSMO [24]. WSMO is an upper level ontology that provides a
conceptualization for various aspects related to semantic web services and the semantic
web. It comprises elements such as WSMO ontologies, WSMO web services, WSMO
Goals. WSMO ontologies provide the shared and formal background knowledge to be used
in all other WSMO elements. WSMO Goals are functional descriptions of user requests,
WSMO Web Services represent functional descriptions of web services. WSMO comes
with a family of formal languages called WSML [25]. WSML is based on well know
logical language paradigms such as FOL, LP or DL. The WSML-variant corresponding to
datalog is called WSML-Flight.

Our experimental evaluation is preliminary in that we considered only one small use
case relating to our illustrative overlay operations example, We outline our implementation
in Section 5.1, describe our test example in Section 5.2, and give our empirical runtime
results in Section 5.3.

5.1 Implementation

Our approach is implemented in WSMX [26], a reference implementation of WSMO. IRIS
(Integrated Rule Inference System), the reasoner underlying WSMX, is a datalog reasoner
extended with (locally) stratified ‘negation as failure’ and with extended support for data

Geoinformatica

types and built-in predicates. While pure datalog only supports integers and strings, IRIS
follows the line of WSML and supports all the XML schema data types. Furthermore it
allows the use of an extended and extensible set of built-in predicates. IRIS supports
different deductive database algorithms and evaluation strategies, like for example naïve or
semi-naïve evaluation.

IRIS evaluates queries over a knowledge base consisting of facts (instances of
predicates) and rules. The combination of facts, rules and queries (a logic program) forms
the input to a reasoning task, as for example query answering or query containment. For
query containment, IRIS can either return a Boolean value, saying whether yes or no, a
query is contained within another query, or it can return the containment mapping, i.e. the
mapping of the variables of one query to the variables of another query. Within IRIS, the
“frozen facts” method [27] is used to determine query containment. The datalog engine
supports query answering and query containment for WSML-Core and WSML-Flight.

In order to support the In-Out-Aware Plug-in match as defined in Section 4, we extended
the WSMX discovery framework. The In-Out-Aware Plug-in match was implemented
within WSMX on the basis of IRIS query containment.

5.2 Use case

For testing the WPS discovery, we used two settings. One setting, the ‘Good Case’, results
in a match between the goal and the Web service, and the second setting, the ‘Bad Case’,
does not result in a match. For the test setting, we used the two background ontologies from
Section 3.1, translated to WSML-Flight. The WSMO Goal and WSMO Web Service
descriptions that we use in both of our test settings import the two background ontologies.

Figure 3 show the user request. It requests, in short, a WPS that inputs two polygons and
outputs a single geometric object that is the result of overlaying the input polygons. The

Fig. 3 WSMO test goal

Geoinformatica

precondition states that the two shared variables ?x and ?y denote members of type Polygon
and both adhere to a spatial reference system that is member of (i.e. instance of) projSRS.
The postcondition defines that the output must be the result of an overlay operation, without
exactly specifying, which type of overlay (intersection, union, etc.).

Our corresponding Web service, UnionWPS, is shown in Fig. 4. It advertises a WPS that
calculates the union operation on two geometric objects. Both input geometric objects (and
the output geometric object) should be defined with respect to a common projected spatial
reference system. To enforce the reference system to be common, the Web service shares
three variables between its pre- and postconditions: both the variables denoting the
geometric objects to be used in the union operation, as well as the variable denoting the
reference system.

5.2.1 Good case

Using our prototype to execute discovery on the example goal results in a match.
During the discovery execution we do not see anything of the internal behaviour of
the discovery engine. The background ontologies provide the necessary information to
relate concepts from the goal with concepts from the Web service. For example, the
geographic datatypes ontology states that GeoTypes#Polygon used in the goal
precondition is a subconcept of GeoTypes#GM_Object as used in the Web service
precondition. The geospatial operations ontology states that the union operation
GeoOp#union in the Web Service postconditions implies the overlay operation Geo-
Op#overlay as used in the goal postcondition.

Fig. 4 WSMO test web service

Geoinformatica

In the first step of the In-Out-Aware Plug-in match, the engine gets four containment
mappings from the execution of the descriptions preconditions: {[?A→?X, ?REFSYS→
?SRS, ?B→?X], [?A→?X, ?REFSYS→?SRS, ?B→?Y], [?A→?Y, ?REFSYS→?SRS,
?B→?X], [?A→?Y, ?REFSYS→?SRS, ?B→?Y]}. In the second step queries are build for
each possible containment mapping, and submitted to the containment check. In our
example we get exactly one positive containment check, with the mapping [?A→?X,
?REFSYS→?SRS, ?B→?Y].

5.2.2 Bad case

In this setting we use the same background ontologies and the same Web service and
goal as in the good case. We only changed the goal and Web service descriptions in
that they use different shared variables. The goal now wants to share the variables
denoting both the polygons and the spatial reference system, while the Web service
only shares the variables denoting the geometric objects. The In-Out Aware Plug-in
match does not allow the goal to have more shared variables than the Web service,
since then the web service can not exactly deliver the requested functionality. But as
this is the case in our ‘Bad Case’ setting, the discovery on the example goal results in
an empty set, i.e. we find no match.

5.3 Runtime

The runtime behavior is virtually identical for both the good case and the bad case.
The discovery step took 1.500 milliseconds, i.e. 1,5 seconds, total time. It took
844 milliseconds to build up the example background ontologies, the goal and the
Web service. Starting the discovery engine in WSMX, and adding the example Web
service to it, took 31 milliseconds. Initially registering the ontologies at the IRIS
reasoner took 218 milliseconds. The reasoning time itself is absolutely negligible. The
first step of the In-Out-Aware Plug-in match, i.e. getting all containment mappings for
the preconditions, takes 16 milliseconds. The second step, the containment checks with the
queries build upon the containment mapping result takes also 15–16 milliseconds each. The
total runtime of the second step (i.e. 312 milliseconds) is very similar to the runtime of
the first step, including the above mentioned initial registration at the reasoning engine
(i.e. 313 milliseconds only diverged minimally on repeated execution of our discovery
example. Of course, the test example is very small and so it remains to be seen whether
similar efficiency can be achieved in the context of larger examples, in particular of
larger ontologies.

6 Related work

There are multiple approaches for web service discovery. In the following, we discuss those
that are either closely related to our work by using e.g. a similar technique of matchmaking
or that explicitly deal with WPS discovery.

In [28], a functional description consist of a list of input and output types, formalized as
OWL-DL concepts. The dependencies between in- and output are then formalized using the
notion of conjunctive DL queries. Obviously, since the relation from in- to output is
represented in a single query (quite similar to the predicate matches in our approach), the
matchmaking in [28] is not capable to distinguish between pre- and postconditions.

Geoinformatica

Moreover, the notion of conjunctive DL queries is quite new and not supported by current
Semantic Web Services approaches such as OWL-S or WSMO.

The semantic matching in [29] has certain similarity to our work. It is a two step
matchmaking, which performs signature in a first, and pre/post matching in a second step.
The signatures are compared using subtype rules that have to hold on the input and output
types. In a second step, the pre- and postconditions (in [29] called InConstraints and
OutConstraints) are compared using the behavioural notion of Plug-in match. These
constraints have the form of Horn rules and the matching establishes a θ-subsumption
relation [30] between them, which has certain similarity to LP query containment. The
differences to our approach are the following: Since in [29], the input/output types are not
included in the specification of the InConstraints and OutConstraints, it is not possible to
maintain the "roles" of the input and output variables when comparing the constraints.
Since no variable renaming (or something similar) is mentioned in [29], it seems quite
unclear how this problem is solved. Another difference is that no dependencies between
InConstraints and OutConstraints can be formalised in [29], since no variables are
shared.

Several approaches for discovering data-providing geospatial web services exist. For
example [8] deal with OGC Web Feature Services [3]. The approach relies on DL
ontologies that provide a shared vocabulary for the annotation of WFS or, more precisely,
the data they offer. At discovery time, concept queries, expressed in terms of the shared
vocabulary and classified in a subsumption hierarchy enable service requesters to discover
WFS that provide suitable data. Since WFS do not require the requester to deliver a specific
input, only the output is semantically annotated/formalised and therefore, these approaches
are not suitable for dealing with WPS.

There are only a few approaches that explicitly deal with WPS discovery. For example,
Lemmens [9] annotates a WPS or request as a single OWL-DL concept. The discovery is
then based on standard OWL-DL concept subsumption. Due to the inherent restrictions of
DL, the annotation of WPS as single DL concepts does not allow formalising dependencies
between input and output. Moreover, the input- and output types (resp. pre- and
postconditions) can not be treated separately, which obviously violates the notion of
function subtypes.

The only previous approach that is able to capture WPS behaviour at a similar level of
detail is that of Lutz [11]. It is based on a combination of DL and FOL. The input and
output types are annotated as DL concepts, derived from a DL ontology of geographic
datatypes (including semantic types such as distance). The pre- and postconditions that
further constrain the input and output values are described by means of first-order formulas.
Lutz [11] provides a FOL-based conceptualisation for the different distance calculations,
such as euclidean or spherical distance. The provided conceptualisation is somehow a trade-
off between the mathematical equations of distance and the lightweight (keyword-like)
conceptualisation in our approach. It traces the different distance calculations back to the
underlying space, such as sphere or plane. The discovery is then a two-step process. In a
first step, DL subsumption testing is used to match the signatures based on the notion of
function subtypes. In a second step, the FOL specifications (pre- and postconditions) of the
request and the remaining WPS (from the first step) are compared using FOL-theorem
proving. Although the approach presented in [11] is in principle more expressive than ours,
it has some drawbacks. Using FOL and DL for annotating web services makes the
annotation process a difficult task. Since web service providers and requester are usually no
experts in logics, powerful user interfaces have to be developed to hide the complexity of
the underlying logics and to make the approach applicable. Moreover, the reasoning process

Geoinformatica

of FOL is quite unpredictable, even undecidable, which heavily threatens the efficiency of
the whole process of WPS discovery.

7 Conclusion

This work presents an approach to WPS discovery based on the logic programming
(datalog) paradigm. The discovery process relies on functional descriptions of requests and
WPS that are equally structured: they include specifications of pre- and postconditions,
formalised as conjunctive datalog queries. The pre- and postconditions comprise a
specification of type signatures, derived from an ontology of geographic datatypes, as
well as further constraints on the in- and output variables. The postcondition additionally
contains the operation description, derived from a lightweight ontology of geospatial
operations. The dependencies between input and output are formalised using shared
variables that appear in both, pre- and postconditions. Several notions of matchmaking
between functional descriptions based on query containment have been introduced,
including the common notion of Plug-in match. Various conditions for Plug-in matching
two functional descriptions have been identified. The In-Out-Aware Plug-in match has been
developed in order to satisfy these conditions.

Thus, our approach satisfies the requirements for WPS discovery as introduced in
Section 2, by considering type signatures, constraints, the performed/requested operation
as well as the relation between input and output in the discovery process.

As described in the previous section, the only approach we are aware of that is able to
capture WPS behaviour at a similar level of detail, meeting the above requirements, is the
approach based on first order logics proposed by Lutz [11]. The obvious difference to our
approach lies in the logics used: our approach makes do with datalog, i.e., with a less
general form of logics. In that way, we are able to achieve our goal—a sufficient level of
detail of semantic description and discovery—while using technology that is less complex.
This is quite advantageous in several respects. First, the worst-case complexity of datalog is
polynomial in “data size”, i.e. in the number of entries of any underlying Geospatial
knowledge base. The worst-case complexity is exponential only in the number of variables
involved, which can be assumed to be reasonably small in practice. By comparison, first
order logics are undecidable. Since runtime is a critical resource in practice, this is quite
important.

Possibly even more important is the fact that the use of datalog also facilitates the
comparatively easy creation of semantic annotations, i.e., of functional descriptions, simply
because datalog is a much more restricted language than the DL or FOL languages used by
related works. Still, in order to support users in formalising functional descriptions,
sophisticated user interfaces as well as techniques for automated annotation need to be
developed. It is realistic to assume that the development of such annotation-supporting
techniques is feasible, for a language as simple as datalog (note, e.g., that SQL is much
more complicated). For example, the work presented in [31] uses term-matching algorithms
for the automatic annotation of Web Feature Services resp. the data they offer. The
approach shows promise to be quite useful also for the automatic generation of WPS pre/
postconditions as required for our approach.

Further, since the technique of matchmaking developed in this paper is independent from
the conceptualisation of operations (as long as they are formalised in datalog), it can be
applied to more complex characterisations of geospatial operations.

Geoinformatica

At the moment, our approach allows only rather abstract descriptions of geoprocessing
functionality that rely on predicates and exclude e.g. arithmetics and numerical built-in
predicates. The extension of the approach in this direction, e.g. in order to deal with
arithmetical values inside the pre/postconditions and arithmetical comparison in the
matchmaking process, is subject to future research.

Acknowledgments This work was supported by the SWING project, which is co-funded by the European
Commission under the sixth framework programme within contract FP6-26514. It has been carried out while
the authors were affiliated with the Institute for Geoinformatics at the University of Muenster (Dr. Eva Klien,
Daniel Fitzner) and the Digital Enterprise Research Institute (DERI), Innsbruck (Dr. Jörg Hoffmann).

The authors would like to thank Prof. Dr. Werner Kuhn and the members of his group, the Muenster
Semantic Interoperability Lab (MUSIL) for their support. Further, we want to thank Nathalie Steinmetz who
provided the proof of concept for the ideas by implementing them.

References

1. Bernard L, Fritzke J, Wagner RM (2005) Geodateninfrastruktur—Grundlagen und Anwendungen.
Heidelberg, Wichmann

2. Brox C, Bishr Y, Senkler K, Zens K, Kuhn W (2002) Toward a geospatial data infrastructure for
Northrine-Westfalia. Comput Environ Urban Syst 26(1):19–37

3. Open Geospatial Consortium Inc. (2009) OpenGIS web feature service (WFS) implementation
specification, Version 1.1. Available at: http://www.opengeospatial.org/standards/wfs, Accessed: 28.1.2009

4. Keller U, Lausen H (2006) WSML deliverable D28.1 v.0.1—functional description of web services.
Available at: www.wsmo.org/TR/d28/d28.1/v0.1/d28.1v0.1_20060113.pdf, Accessed 28.1.2009

5. Keller U, Lausen H, Stollberg M (2006) On the semantics of functional descriptions of web
services. In Proceedings of the 3rd European Semantic Web Conference (ESWC2006). Budva,
Montenegro

6. Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIllraith S, Narayanan S, Paolucci M, Parsia
B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S: semantic markup for web services. W3C
Member Submission 22 November 2004. Available at: http://www.w3.org/Submission/2004/SUBM-
OWL-S-20041122/ Accessed: 28.1.2009

7. Gruber T (1993) A translation approach to portable ontology specifications. Knowl Acquis 5
(2):199–220

8. Lutz M, Klien E (2006) Ontology-based retrieval of geographic information. Int J Geogr Inf Sci (IJGIS)
20(3):233–260

9. Lemmens R (2006) Semantic interoperability of distributed geo-services. Ph.D.-thesis at Delft University
of Technology

10. Open Geospatial Consortium Inc. (2009) OpenGIS web processing service specification, Version 1.0.0.
Available at: http://www.opengeospatial.org/standards/wps, Accessed 28.1.2009

11. Lutz M (2007) Ontology-based descriptions for semantic discovery and composition of geoprocessing
services. Geoinformatica 11(1):1–36

12. Chrisman N (1997) Exploring geographic information systems. Wiley, New York
13. Zaremski AM (1996) Signature and specification matching. Technical Report CMU-CS-96-103,

Carnegie Mellon Computer Science Department, Ph.D. thesis
14. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580
15. Ullman JD (1989) Principles of database and knowledge-base systems—Volume II: the new

technologies. Computer Science Press, Rockville
16. Ullman JD (1996) The database approach to knowledge representation. Proceedings of the 13th

National Conference on Artificial Intelligence (AAAI1996). Portland, Oregon, AAAI Press, MIT
Press, USA

17. Chekuri C, Rajaraman A (1997) Conjunctive query containment revisited. Theoretical Computer
Science—Special Issue on the 6th International Conference on Database Theory—ICDT`97 239
(2):211–229

Geoinformatica

http://www.opengeospatial.org/standards/wfs
http://www.wsmo.org/TR/d28/d28.1/v0.1/d28.1v0.1_20060113.pdf
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.opengeospatial.org/standards/wps

18. Egenhofer M (2002) Toward the geospatial semantic web. Proceedings of the 10th ACM International
Symposium on Advances in Geographic Information Science. McLean, Virginia, USA

19. Klien E, Lutz M, Kuhn W (2006) Ontology-based discovery of geographic information services-an
application in disaster management. Comput Environ Urban Syst 30(1):102–123

20. Kuhn W (2005) Geospatial semantics: why, of what, and how? J Data Semantics III 3534:1–24
21. ISO/TC-211, ISO 19107:2003 Geographic Information — Spatial Schema. Available at: http://www.iso.

org/iso/catalogue_detail.htm?csnumber=26012 Accessed: 28.1.2009
22. Fensel D, Lausen H, Polleres A, Stollberg M, Roman D, de Brijin J, Domingue J (2006) Enabling

semantic web services. The web service modeling ontology. Springer Verlag, Berlin
23. Zaremski AM, Wing JM (1997) Specification matching of software components. ACM Trans Software

Eng Meth 6(4):333–369
24. Roman D, Lausen H, Keller U (2005) Web service modeling ontology—WSMO final draft (13 April

2005). Available at: http://www.wsmo.org/TR/d2/v1.2/20050413/ Accessed: 28.1.2009
25. de Bruijn J, Lausen H, Krummenbacker R, Polleres A, Predoiu L, Kifer N, Fensel D (2005) The web

service modeling language WSML—final draft (5 October 2005). Available at: http://www.wsmo.org/
TR/d16/d16.1/v0.21/20051005/ Accessed: 28.1.2009

26. Haller A,Cimpian E, Mocan A, Oren E, Bussler C (2005) WSMX—a semantic service-oriented
architecture. Processdings of the IEEE International Conference on Web Services (ICWS 2005).
Orlando, Florida

27. Ullman JD (1997) Information integration using logical views. Proceedings of the 6th International
Conference on Database Theory (ICDT1997). Delphi, Greece

28. Hull D, Zolin E, Bovykin A, Horrocks I, Sattler U, Stevens R (2006) Deciding semantic matching of
stateless services. Proceedings of the 21st National Conference on Artificial Intelligence (AAAI´2006).
Boston, USA

29. Sycara K, Widoff S (2002) Larks: dynamic matchmaking among heterogeneous software agents in
cyberspace. Auton Agent Multi-Agent Syst 5(2):173–203

30. Muggleton S, De Raedt L (1994) Inductive logic programming: theory and methods. J Logic Program 19
(20):629–679

31. Grcar, M. and E. Klien (2007) Using Term-matching algorithms for the annotation of geo-services.
Proceedings of the Web Mining 2.0 Workshop in conjunction with ECML-PKDD 2007. Warsaw, Poland

Daniel Fitzner received his diploma in Geoinformatics at the University of Muenster, Germany. He works in
the areas of Geographic Information Services, Geospatial Semantics and Semantic Web Services. His current
research is focused on the investigation of formal languages for describing content and functionality of
geographic information services together with the development of efficient search strategies. Since
September 2008, he is a scientific staff member at the Fraunhofer IGD in Darmstadt.

Geoinformatica

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26012
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26012
http://www.wsmo.org/TR/d2/v1.2/20050413/
http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/
http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/

Dr. Jörg Hoffmann obtained a PhD in CS from Freiburg University in 2002, with a thesis that won the
annual ECCAI award for the best European dissertation in the field of Artificial Intelligence. Between 2002
and 2008, Jörg Hoffmann worked in various research projects at University Freiburg, Max Planck Institute
for Computer Science, Cornell University, and the University of Innsbruck. He submitted his Habilitation at
Innsbruck University in 2008, and is currently a Senior Researcher at SAP Research, Karlsruhe, Germany.
He has published more than 50 papers in international journals and conferences, receiving several best paper
awards. He is an Associate Editor of the Journal of Artificial Intelligence Research (JAIR) and Conference
Chair of the 20th International Conference on Automated Planning and Scheduling (ICAPS'10).

Dr. Eva Klien is head of the Graphic Information Systems department at the Fraunhofer Institute for
Computer Graphics since March 2008. Before joining Fraunhofer IGD, she has been working as researcher at
the Institute for Geoinformatics (IfGI) at the University of Muenster. She received her PhD in Geoinformatics
from the University of Muenster in 2008. Her research interest lies in methods for improving the usability of
geographic information by enabling semantic interoperability in geographic web service environments. She
has authored and co-authored a number of publications on geo-ontologies, semantic annotation of geographic
information, and interoperability in geo-service infrastructures.

Geoinformatica

	Functional description of geoprocessing services as conjunctive datalog queries
	Abstract
	Introduction
	Background
	Foundations of WPS discovery
	Function subtypes
	Query containment in LP
	Containment mappings

	Functional descriptions for WPS, and standard matching techniques
	Ontologies for functional descriptions of WPS
	Functional descriptions
	Standard matches
	Matchmaking with shared variables: predicate matches
	Matchmaking based on function subtypes: Plug-in match

	The In-Out-Aware Plug-in match
	Formalised correctness conditions
	The role of condition&newnbsp;1
	The role of Condition&newnbsp;2
	The roles of condition&newnbsp;3 and 4

	Definition and correctness of the in-out-aware plug-in match
	Example

	Preliminary empirical results
	Implementation
	Use case
	Good case
	Bad case

	Runtime

	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

