
Semantic Annotation and Composition of
Business Processes with Maestro?

Matthias Born1, Joerg Hoffmann1, Tomasz Kaczmarek3, Marek Kowalkiewicz1,
Ivan Markovic1, James Scicluna2, Ingo Weber1, and Xuan Zhou1

1 SAP Research, Karlsruhe, Germany,
{mat.born | joerg.hoffmann | marek.kowalkiewicz | ivan.markovic | ingo.weber |

xuan.zhou}@sap.com
2 STI Innsbruck, Austria, james.scicluna@sti2.at

3 Poznan University of Economics, Poland, t.kaczmarek@kie.ae.poznan.pl

Abstract. One of the main problems when creating execution-level pro-
cess models is finding implementations for process activities. Carrying
out this activity manually can be time consuming, since it involves
searching in large service repositories. We present Maestro for BPMN, a
tool that allows to annotate and automatically compose activities within
business processes. We explain the main assumptions and algorithms un-
derlying the tool, and we overview what will be demonstrated at ESWC.

1 Introduction

One of the biggest challenges within Service Oriented Architectures (SOA) is the
composition of different Web services, achieving a higher utility. While in the
realm of Web services such a combination is usually presented as a new service,
we focus on how such compositions can be used as partial implementations of
business processes, which is one of the key aspects of the SUPER project.

Web services need to be formally annotated in order for tools to automat-
ically compose them into an orchestration (defining the control flow between
them). We tackle the composition problem as a key part of the question on
how to implement a business process with a set of given Web services. Business
processes are often modeled as a set of activities (or tasks) together with their
control flow. In order to make a process executable, e.g., in a workflow execution
engine, all tasks in the process have to be carried out manually or automatically
by Web services. Our aim is to semantically annotate such tasks and to automat-
ically discover or compose (if needed) the services which collectively implement
the required functionality. A business process modeling tool serves as a main
user interface for performing these activities. This article focuses on the exten-
sions made to Maestro for BPMN, a modeling tool from SAP Research. These
extensions enable semantic annotation of the business process and automatic
discovery and composition of Web services for this process.
? This work is partly funded by the EU 6th Framework Programme, within In-

formation Society Technologies (IST) under the SUPER project (http://www.ip-
super.org). Thanks also to Alina Dima, Florian Dörr, and Mario Karrenbrock for
their coding support and Christian Drumm and Christian Brelage for their advice.

In the last years, Business Process Modeling Notation (BPMN) has received
wide attention as a graphical representation of business process models. Within
SUPER, business processes are stored as ontology descriptions. The sBPMN
ontology1[1] serves as a meta model for BPMN process models, featuring the
concepts, relations and attributes for standard BPMN. This ontology has been
extended, mainly featuring the ability to define a state of the process before
and after execution of successive activities. With these extensions we can derive
semantic goal descriptions for activities – i.e., formal descriptions of the func-
tionality which an implementation of a particular task needs to perform. This
is in line with most popular approaches to Semantic Web Service description2

where Web services can be annotated with pre and postconditions.
Handling semantic descriptions for activities was one of the features added

to Maestro for BPMN. We also equipped it with the ability to call a composition
tool with the annotated tasks as input3 and integrated its output back to the
user interface provided by the modeling tool.

Fig. 1. A fragment of a process model represented in Maestro for BPMN.

Within the composer, we tackle some of the interesting opening issues in the
Semantic Web Service Composition (WSC) area. We define a formal framework
for WSC, inspired by A.I. Planning methodologies [9, 3]. We consider plug-in
matches, where services do not have to match exactly, but have to be able to
connect in all possible situations. In particular, we take the background ontology
into account during the composition process; in contrast, many existing works
assume exact matches (of concept names). The distinguishing feature of our
work on composition is that we explore restrictions on the background ontology
in order to find a solution (i.e., a composition) efficiently.

1 sBPMN is written in WSML (http://www.wsmo.org/TR/d16/d16.1/v0.21/)
2 Followed for example in WSMO (http://www.wsmo.org)
3 Note that the annotated tasks will in effect be equivalent to a WSMO Goal

2 Process Modeling

From the graphical point of view, Maestro for BPMN follows BPMN. However,
it makes use of the sBPMN ontology, by creating on-the-fly a set of instances for
sBPMN classes. If a new BPMN task is created on the drawing pane, an instance
of the concept Task is created in the in-memory working ontology. This enables
supportive reasoning over the working ontology. The underlying conceptual work
on the ontology and design choices are documented in [2].

The main goal of the tool extensions is to allow a user-friendly semantic
annotation of process models. This is achieved by allowing to link semantically
expressed process activities to a domain ontology. We focus on how process
activities manipulate business objects in terms of their life cycles. E.g., a task
“Send offer” sets the status of the object “Offer” to the state “sent”. For this
purpose, the domain ontology needs to specify the business objects of interest
together with their life cycles[2]. This technique enables the user to define formal
pre and postconditions of tasks in a human-friendly way.

For creating such links, we implemented matchmaking methods that filter the
domain ontology based on the process context and rank the concepts to include
the pre/postconditions. The textual descriptions of tasks (or other elements) are
matched against the entities of interest in the domain ontology using linguistic
methods, such as the edit distance between strings. E.g. if a task has label “Send
offers”, then the object “offer” from the domain ontology may be suggested as a
top match. Another way to restrict the set of matches is by employing the process
structure, e.g., by not suggesting the same activity twice or by comparing the
process control flow to the object life cycle. The extensions made are conceptually
independent of the tool chosen, and could be ported to other modeling notations.

3 Task Discovery and Composition

As a first step in finding process task implementations, we try to discover a single
Semantic Web Service (SWS) for each annotated task. To achieve this, we check
if the concept from the domain ontology describing a SWS matches the concept
used for annotating the task. We follow a matching technique proposed in [8],
analysing intersection of ontological elements in service descriptions and rating
two descriptions as relevant whenever they specify an overlapping functionality.
For that, we use standard reasoning task of concept satisfiability of a conjunction
between the concepts taken from the task and Web service descriptions [7].

If a Web service cannot be found, WSC is performed. This is computationally
hard and has two main sources of complexity: (i) combinatorial explosion of pos-
sible compositions, and (ii) worst-case exponential reasoning. We tackle (i) using
heuristic search - a well known technique for dealing with combinatorial search
spaces. We address (ii) by trading off expressivity of the background ontology
against efficiency, i.e., we investigate restricted classes of ontologies allowing rea-
soning to be performed in polynomial time. Problem (ii) is closely related to the
notion of ”belief updates” in A.I. We define a clear formal model that combines

s0 := reasoning-startstate(); (h, H) := heuristic-function(s0); open-list := 〈(s0, h, H)〉;
while TRUE do

(s, h, H) := remove-front(open-list);
if is-solution(s) then return path leading to s;
for all applicable calls a of SWS in H do

s′ := reasoning-resultstate(s, a);
(h′, H ′) := heuristic-function(s′);
insert-ordered-by-increasing-h(open-list,s′,h′,H ′);

Fig. 2. The main loop of our WSC algorithm.

these notions and those from planning techniques, following recent formalisa-
tions of WSC [6, 4] and use heuristic methods for efficient searching [5]. One
of our results is a polynomial time reasoning over background ontologies with
Binary Clauses. For Horn Ontologies, we use an approximate update-reasoning
technique that still runs efficiently but sacrifices some precision, preserving either
soundness or completeness. The restricted ontologies allow to describe (amongst
others) subsumption hierarchies, cardinality bounds and image type restrictions.
Other features (such as QoS) are part of our ongoing work.

The main algorithm of the composer is shown in Fig. 2. The algorithm per-
forms a forward search in a space of states s corresponding to different situations
during the execution of the various possible compositions. The key elements are
the reasoning-startstate, reasoning-resultstate, and is-solution procedures - main-
taining the search states and detecting solutions - and the heuristic-function
procedure - taking a state and returning a solution distance estimate h as well
as a set H of promising Web services by solving a relaxed version of the problem.
The states are ordered by increasing h, which is a standard method called “best-
first-search”. The set H is used for filtering the explored SWS calls. Filtering
is widely perceived to be essential in WSC since it “forces” to check the most
promising services first, leading to a considerable speed-up of the search.

The performance of our WSC tool was tested on two testbeds: the Teleko-
munikacja Polska (TPSA) which defines how a service (e.g. VoIP) is created
for a new customer and the Virtual Traveling Agency (VTA) whereby the user
specifies the kind of services that she/he would like for a trip (such as flight
and hotel). The composer was set up in different configurations: Blind uses nei-
ther h nor H; Heuristic uses only h; Filtering uses only H; Full uses both. The
results are plotted in Fig. 3, showing how runtime scales over the number of
available services N ; N was increased by generating additional services through
randomized modifications of the original services.

4 Demo Scope

The demo will show an example of a realistic Business Process (Fig. 1). We will
first demonstrate how data objects are associated with tasks (annotation) and
how the states of these objects can be attached to the pre and postconditions of
the task. Discovery is then used to find a Web service that fulfils that particular
task. We will also show a task for which composition is required (rather than
discovery). The annotated task will serve as the input goal to the composer. The

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Blind
Heuristic
Filtering

Full

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250 300 350 400 450 500

Blind
Heuristic
Filtering

Full

Fig. 3. Results for TPSA (left) and VTA (right), plotted as Seconds (y-axis) against
N (x-axis)

component is run in the background and once a solution is found, the task in the
process is replaced with the sequence of Web services found by the composer.
The search for a solution will be performed within a large number of Web services
such that the audience can clearly see the scalability of our approach.

5 Conclusion

We have presented extensions to Maestro for BPMN, which demonstrate tool
support for semantic annotation of the process models, as well as task discov-
ery and composition. This enables more agile business process development and
deployment. We showed how business analysts can easily annotate process ele-
ments (in particular—tasks) and automatically find Web services that fulfil them
using discovery. If the latter fails, an efficient composer tool that we developed
can be used to find a chain of Web services that can adequately fulfil the task.

References

1. W. Abramowicz, A. Filipowska, M. Kaczmarek, and T. Kaczmarek. Semantically
enhanced business process modelling notation. In SBPM Workshop, 2007.

2. M. Born, F. Dörr, and I. Weber. User-friendly semantic annotation in business
process modeling. In Hf-SDDM Workshop, December 2007.

3. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming
approach to knowledge-state planning: Semantics and complexity. Transactions on
Computational Logic, 5(2):206–263, 2004.

4. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the approximation of
instance level update and erasure in description logics. In AAAI, 2007.

5. J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. J. AI Research, 14:253–302, 2001.

6. C. Lutz and U. Sattler. A proposal for describing services with DLs. In DL, 2002.
7. I. Markovic and M. Karrenbrock. Semantic web service discovery for business pro-

cess models. In Hf-SDDM Workshop, December 2007.
8. D. Trastour, C. Bartolini, and C. Preist. Semantic web support for the business-to-

business e-commerce lifecycle. In WWW, pages 89–98, 2002.
9. Marianne Winslett. Reasoning about action using a possible models approach. In

AAAI, pages 89–93, 1988.

