
Beyond Soundness: On the Semantic Consistency of Executable Process Models

Ingo Weber, Jörg Hoffmann
SAP Research Karlsruhe, Germany

first.last@sap.com

Jan Mendling
Humboldt-Universität zu Berlin, Germany,

jan.mendling@hu-berlin.de

Abstract

Executable business process models build on the spec-
ification of process activities, their implemented business
functions (e.g., Web services) and the control flow between
these activities. Before deploying such a model, it is impor-
tant to verify control-flow correctness. A process is sound
if its control-flow guarantees proper completion and there
are no deadlocks. However, a sound control flow is not suf-
ficient to ensure that an executable process model indeed
behaves as expected. This is due to business functions re-
quiring certain preconditions to be fulfilled for execution
and having an effect on the process (postconditions).

Semantic annotations provide a means for taking such
further aspects into account. Inspired by OWL-S and
WSMO, we consider process models in which the individual
activities are annotated with logical preconditions and post-
conditions specified relative to an ontology that axiomatizes
the underlying business domain. Verification then means to
determine whether the interaction of control flow and log-
ical states of the process is correct. To this end, we for-
malize the semantics of annotated processes and point out
which kinds of flaws may arise. We then identify a class of
processes with restricted semantic annotations where cor-
rectness can be verified in polynomial time; and we prove
that the semantic annotations cannot be generalized with-
out losing computational efficiency. The paper is written
at a semi-formal level using an illustrative example, details
can be looked up in a longer technical report.

1. Introduction

Nowadays, verifying control-flow correctness is under-
stood as an important step before deploying executable
business process models as templates for handling individ-
ual process instances. In this context, the soundness crite-
rion and its derivatives, e.g. [1, 2, 3, 4], are typically used to
check whether proper completion is possible or even guar-
anteed. Tools like Woflan [5] provide the functionality to ef-
ficiently verify soundness based on Petri nets theory. While

soundness is indeed a necessary condition for correctness,
it covers only the control-flow perspective of the process
model. To assure that a process model behaves as expected,
it is necessary to take further aspects into account. This is
particularly important for Web service composition where
third-party services assume preconditions to be true and
have effects in terms of postconditions.

For instance, recent work on the composition of exe-
cutable process models aims to support the designer in find-
ing suitable service implementations based on semantic de-
scriptions [6, 7]. While this approach requires services to
be semantically formalized in languages like OWL-S [8, 9]
or the Web Service Modeling Ontology (WSMO) [10, 11],
it enables several analysis options beyond control-flow ver-
ification. In particular, OWL-S and WSMO cover precondi-
tions and postconditions, as well as ontological axiomatiza-
tions of the underlying domain. These constructs interfere
with control-flow correctness in three ways: first, the state
of the process determines which preconditions are true; sec-
ond, the execution of a service governs which postcondi-
tions become effective, and as a result to which state the
process changes; third, any state of the process is known to
adhere to the domain axioms.

The identification of preconditions and postconditions as
well as ontological axioms is, in particular, beneficial for
the validation of process models since users and stakehold-
ers can much easier express constraints of the domain than
define control-flow [12]. The research problem in this con-
text is the missing combination of ontology reasoning and
control-flow analysis. We address this research gap and pro-
vide the following contributions. Firstly, we define opera-
tional semantics of a process modeling language that cap-
tures workflows annotated with preconditions, postcondi-
tions, and ontological axiomations; to do so, we draw on
widely used notions of token passing from the workflow
literature [13, 14] and on widely accepted notions of log-
ical updates from the AI actions and change community
[15, 16, 17]. Secondly, we identify important correctness
properties for such annotated workflows. Finally, we iden-
tify a particular class of annotated process models for which
we are able to define polynomial-time analysis algorithms.
This is of crucial importance since many verification tech-

niques do not scale due to exponential complexity [18]. We
prove that in several aspects the class cannot be generalized
without losing computational efficiency. The analysis tech-
niques are implemented in a tool.

For the sake of readability, we choose a semi-formal pre-
sentation style throughout the paper, illustrating our tech-
niques with an example annotated BPMN process model.
Formal details are extensively discussed in a technical re-
port (TR) where we define process models and their execu-
tional semantics [19]. There, we present our analysis meth-
ods in full technical detail and prove correctness relative
to the semantics. We also prove formally that our analy-
sis methods run in polynomial time, and that richer classes
of processes – with more complex semantic annotations –
cannot be analyzed in polynomial time (unless P=NP). We
include these formal results in this paper but refer the reader
to [19] for the proofs.

The paper is organized as follows. Section 2 introduces a
BPMN process model that we use as a running example; we
illustrate execution problems that arise due to the interaction
between control-flow and semantic annotation, and we de-
scribe the formalism that we use to reason about these prob-
lems. Section 3 explains the analysis techniques that we use
to validate the semantically enriched process models and il-
lustrates them using the results of our tool for the running
example. Section 4 discusses related work, and Section 5
concludes the paper.

2. Preliminaries

In this section we introduce our running example, a sales
order process. In particular, Section 2.1 discusses the vali-
dation that is needed before deploying it. Then, Section 2.2
explains how we formalize the validation problem.

2.1. Motivating Example

We consider a sales order process that is inspired by
the BPEL specification [20]. Fig. 1 shows this process in
BPMN. The AND-gateways (symbol +) represent parallel
execution and synchronization. The receipt of a sales order
triggers three concurrent activities: initiating the production
scheduling, deciding on the shipper, and drafting a price cal-
culation. Once the shipper has been selected, the price cal-
culation can be completed and the logistics can be arranged.
After the latter, the production can be completed. Finally,
the invoice is processed. The process model is obviously
sound, i.e. proper completion is guaranteed, and in partic-
ular, there are no deadlocks. In the following we will take
the perspective of a German machine producer (we call it
GMP) that manufactures to order. As depicted in the model
this involves that production, delivery, and pricing are tai-
lored to the product requirements of the customer.

4. Decide on
Shipper

5. Arrange
Logistics

2. Production
Scheduling 3. Production

6. Draft Price
Calculation

7. Complete
Price

Calculation

8. Invoice
Processing

1. Receive
Order

Figure 1. Example of a sales order process
modeled in BPMN.

GMP has used this process successfully for years to pro-
duce and deliver to the national market. Now the company
has made the decision to consider also international orders.
Recently, it has received an order of 10 impulse turbines for
power generation from a country that currently faces polit-
ical unrest. According to German legislation such a deliv-
ery requires approval from the “Bundesamt für Wirtschaft
und Ausfuhrkontrolle” (BAFA), i.e. the authority control-
ling German foreign trade. In order to deal with the com-
plexity of international trade, GMP has decided to replace
some of its production steps with services from experts. The
key account manager for international clients has signed
agreements with respective service providers. The new set
of services including their preconditions and postconditions
are summarized in the top part of Table 1. In particular, the
Production Scheduling, the Production, and Arrange Logis-
tics tasks are now provided by new services that have more
specialized preconditions and postconditions. Further, a do-
main theory (bottom part of Table 1) has beed added, cap-
turing some simple domain constraints that can be easily
validated by stakeholders. Finally, Table 1 shows the pro-
cess variables that capture the state of the involved business
objects: order (o), production (p), calculation (c), shipper
(s), and shipment (sh).

In a discussion with the production engineer the key ac-
count manager is embarrassed to learn that his new set of
services will not work for the production process of GMP,
although the control flow of this process is sound. There are
three different kinds of problems: executability problems,
precondition conflicts, and effect conflicts.

Executability: Executability refers to a problem class
where the execution of a service is not possible be-
cause its precondition is not necessarily true. In order
to cover the BAFA export approval, GMP has chosen
a shipper whose Arrange Logistics service provides a
postcondition of shipmentApproved if BAFA approves
the delivery. Furthermore, GMP selected a Produc-
tion Scheduling service that requires orderApproved
as a precondition in order to block production until it
is clear that the ordered goods can be exported. This

2

Precondition Postcondition
1 orderReceived(o)
2 orderReceived(o) productionScheduled(o,p)

orderApproved(o)
3 productionScheduled(o,p) productionCompleted(o,p)

calculationPrepared(o,c) calculationUpdated(o,c)
4 orderReceived(o) shipperDecided(o,s)
5 shipperDecided(o,s) calculationUpdated(o,c)

calculationPrepared(o,c) shipmentApproved(o,sh)
6 orderReceived(o) calculationDrafted(o,c)
7 calculationPrepared(o,c) calculationCompleted(o,c)
8 productionCompleted(o,p)

calculationCompleted(o,c) orderCompleted(o)

Object Definition
Order o is at most one of received or completed
Production p is at most one of scheduled or completed
Calculation if c is drafted, then c is prepared

if c is updated, then c is prepared
c is at most one of drafted, updated, completed
c is at most one of prepared or completed

Shipment if shipment sh is approved, then o is approved

Table 1. Semantic annotations for the sales
order process activities. Top: preconditions
and postconditions of the services (numbers
referring to the task enumeration in Fig. 1).
Bottom: ontology axioms.

alone is fine since, by the axiomatization, an order is
approved if its shipment is approved. However, there
is now a dependency between arranging logistics and
scheduling the production, which determines the order
of these two activities. Logistics must be arranged be-
fore the production is scheduled. This is not done by
the process, and hence the precondition of production
scheduling is not fulfilled when trying to execute it.
Further executability problems arise with the new ser-
vices for Arrange Logistics and Production, because
they require the calculation to be prepared, although
Draft Price Calculation is not guaranteed to be exe-
cuted beforehand. Also, Complete Price Calculation
may be done in parallel, which causes problems due to
a precondition conflict.

Precondition conflict: A precondition conflict exists if
one of two concurrent tasks may negate the precon-
dition of the other through its effect. The new Arrange
Logistics task requires the calculation c to be prepared
(drafted or updated) so that it can be updated. How-
ever, Complete Price Calculation is not ordered with
respect to Arrange Logistics, and if it is executed first
then the status of c changes to completed. In this case,
the precondition of Arrange Logistics is no longer ful-
filled: calculationDrafted and calculationCompleted

exclude each other. The same conflict exists between
Production and Complete Price Calculation.

Effect conflict: An effect conflict exists if two concurrent
tasks overlap in their postcondition such that the exe-
cution of one of them overwrites the postcondition of
the other. In this case, the final outcome depends on
the execution order in a process instance. Such a con-
flict appears between Arrange Logistics and Complete
Price Calculation, as well as Production and Com-
plete Price Calculation. The new Arrange Logistics
and Production services of GMP update the price cal-
culation, as indicated by their effect calculationUp-
dated. On the other hand, the parallel task Complete
Price Calculation establishes the conflicting postcon-
dition calculationCompleted. Hence, whether or not
the calculation is completed at the end of the process
depends on which one of these nodes is executed last
– a clearly undesirable behavior (which also causes In-
voice Processing to not be executable).

In the future, GMP wants to be able to analyze such
problems during the design phase of the process. Next, we
describe how we formalize the behavior of annotated pro-
cesses, so that reasoning techniques for this kind of analysis
become applicable.

2.2. Formalization of Process Behavior

For the workflow part of annotated processes, we as-
sume straightforward execution semantics based on token-
passing similar to Petri Nets; in particular, we adapt the def-
initions from [14]. We extend those with a notion from AI
to deal with semantic annotations and their meaning. For a
formal presentation please refer to [19].

We define a process model as a process graph with nodes
of various types – a single start and end node, task nodes,
XOR split/join nodes, and parallel split/join nodes – and di-
rected edges (expressing execution order). The number of
incoming (outgoing) edges are restricted as follows: start
node 0 (1), end node 1 (0), task node 1 (1), split node 1
(>1), and join node >1 (1). The location of all tokens,
referred to as a marking, manifests the state of a process
execution. An execution of the process starts with a token
on the outgoing edge of the start node and no other tokens
in the process. Task nodes are executed when a token on
the incoming edge is consumed and a token on the outgoing
edge is produced. The execution of a XOR (Parallel) split
node consumes the token on its incoming edge and produces
a token on one (all) of its outgoing edges, whereas a XOR
(Parallel) join node consumes a token on one (all) of its in-
coming edges and produces a token on its outgoing edge.
We assume that a process is sound, i.e., it always completes
with one token on the incoming edge of the end node and
no tokens elsewhere [1]. Since we use semantics similar to

3

free-choice nets, this also implies that the process is safe,
i.e., there is never more than one token on an edge [1].

The semantic annotations are made with respect to a
background ontology O consisting of two parts: the vocab-
ulary as a set of predicates P , and a logical theory T as a
collection of first order formulae over these predicates. Fur-
ther, there is a set of process variables (o, p, c, s, sh in the
example) over which logical statements can be defined in
the form of literals involving these variables. All the men-
tioned sets are finite. Intuitively, the logical theory is like a
rule base stating, e.g., that the approval of a shipment im-
plies that the respective order is also approved or that no cal-
culation can be in two different states simultaneously (such
as being both completed and drafted). These rules can be
applied to the concrete process variables, i.e., this particular
shipment and order, or this particular calculation. Fur-
ther, each task node n can be annotated using preconditions
(pren) and effects (effn, also referred to as postconditions),
which are conjunctions of literals using the process vari-
ables. The task can only be executed if pren is true; n is
executable if that is the case whenever n’s incoming edge
carries a token, i.e., whenever the control flow reaches n;
the process is executable if all its tasks are. If executed, n
changes the state of the world (i.e., the state reached by the
process in its execution) according to its postcondition. The
postcondition states the explicit effects. Depending on the
current state and the axioms in the theory, the task may also
have implicit effects. For example, the Complete Price Cal-
culation activity in the example completes the calculation as
its explicit effect; by the theory of the example (because the
calculation must have a unique status), as implicit effects
we get that the calculation is neither drafted nor updated.

It is important to note that implicit effects are not always
as easy to determine as in this example. In particular, the
conclusions to be made from T may be ambiguous, so that
several possible outcomes must be taken into consideration.
The issue of implicit effects – the question how explicit ef-
fects do or do not change the state of the world, in the pres-
ence of a domain axiomatization – has been extensively in-
vestigated in AI, under the name “frame and ramification
problems”. We follow a widely adopted semantics based on
a notion of “minimal” change [15]. This is best understood
as a kind of local stability: the world does not change of its
own accord; properties that were true before are still true
unless there is a reason to change them. A little more for-
mally, an outcome state is taken to be possible if there is no
other outcome state that makes strictly less changes to the
previous state. For full details refer to [19].

Let us illustrate the formalization using our GMP sales
order process example. The ontology includes those
predicates that are listed as preconditions and postcon-
ditions in Table 1, namely P = {orderReceived(x),
orderApproved(x), . . . , shipmentApproved(x, y)}. The

theory T consists of the formulae shown in Table 2, formal-
izing their intuitive counterparts from Table 1.

Now, we can formally discuss the behavior of the
process. At the start node of the process, Receive
Order, the explicit effect is orderReceived(o). By T ,
this has the implicit effect that orderCompleted(o) is
false. Apart from that, any state of the world is con-
sidered possible. Say the process execution next per-
forms the steps Draft Price Calculation and Decide on
Shipper. Both are applicable in all possible worlds be-
cause their precondition, orderReceived(o), is definitely
true. Their effects are calculationDrafted(o,c), which im-
plies calculationPrepared(o,c), ¬calculationUpdated(o,c),
and ¬calculationCompleted(o,c); and shipperDecided(o,s),
which has no other implications via T . As a result, we may
be in any state of the world that complies with T , and where
all the mentioned explicit and implicit effect literals are true.

Say we decide to next execute the Production Schedul-
ing activity, whose preconditions are orderReceived(o) and
orderApproved(o). The former is certainly true, in all the
worlds possible at this point. However, the order is not nec-
essarily approved – there are possible worlds in which or-
derApproved(o) is false. In other words, at the formal level
we see that no assumptions can be made regarding whether
or not the order is approved, and hence we conclude that
Production Scheduling may not be able to execute. Note
that, if Receive Order explicitly stated in its effect that the
order is initially not approved, then we would even conclude
that Production Scheduling cannot execute in any possible
world. From the perspective of whether or not the process
is correct, both cases are bad since we need the process to
guarantee that Production Scheduling will always be able
to execute. On the other hand, it may of course be impor-
tant to distinguish these two cases. As we will see later, our
analysis methods provide this functionality.

Say we decide differently, and execute the Arrange Lo-
gistics activity instead of Production Scheduling. This ac-
tivity is guaranteed to be applicable since its preconditions,
calculationPrepared(o,c) and shipperDecided(o,s), are true
in all possible worlds. After the execution, due to the ex-
plicit effects all worlds will satisfy calculationUpdated(o,c)
and shipmentApproved(o,sh). By T , via the axiom ∀x, y :
shipmentApproved(x,y) =⇒ orderApproved(x), the latter
involves the implicit effect orderApproved(o). Hence the
order is now certain to be approved, and we can safely exe-
cute Production Scheduling.

The precondition and effect conflicts in the running
example manifest themselves in a straightforward way;
the only subtle point is that the conflicts concern im-
plicit, not explicit, effects. Consider the Production
and Complete Price Calculation activities. The for-
mer has the explicit effect calculationUpdated(o,c), the
latter has the explicit effect calculationCompleted(o,c).

4

Purpose Definition
Order status ∀x : ¬orderReceived(x) ∨¬orderCompleted(x)
Production status ∀x, y : ¬productionScheduled(x,y) ∨¬productionCompleted(x,y)
Calculation status ∀x, y : calculationDrafted(x,y) =⇒ calculationPrepared(x,y)

∀x, y : calculationUpdated(x,y) =⇒ calculationPrepared(x,y)
∀x, y : ¬calculationDrafted(x,y) ∨¬calculationCompleted(x,y)
∀x, y : ¬calculationUpdated(x,y) ∨¬calculationCompleted(x,y)
∀x, y : ¬calculationDrafted(x,y) ∨¬calculationUpdated(x,y)
∀x, y : ¬calculationPrepared(x,y) ∨¬calculationCompleted(x,y)

Order approval ∀x, y : shipmentApproved(x,y) =⇒ orderApproved(x)

Table 2. Formalization of the ontology axioms in Table 1.

These effects are not in immediate conflict; how-
ever, T tells us that ∀x, y : ¬calculationUpdated(x,y)
∨¬calculationCompleted(x,y), implying that an implicit ef-
fect of Production is ¬calculationCompleted(o,c), the nega-
tion of the effect of Complete Price Calculation. Hence, we
detect the conflict.

Notably, the T formulae in our example are fairly re-
stricted, each being equivalent to the (universally quanti-
fied) disjunction of only 2 literals. This is not coincidental:

Theorem 1 Assume an annotated process graph. Decid-
ing whether the process is executable is Πp

2-hard for un-
restricted T , and coNP-hard if T consists of Horn clauses
only. This holds even if predicate arity is fixed to 0.

As stated, all proofs are available in [19]. Theorem 1
results from the fact that, with more general formulae –
even with Horn clauses where implication can be decided
in polynomial time – it is computationally hard to reason
about the implicit effects of activities. This is a consequence
of earlier results in AI [16]. Further, we considered the pos-
sibility to annotate conditions at the outgoing edges of XOR
splits, i.e., case distinctions directing the execution depend-
ing on runtime conditions. However:

Theorem 2 Assume an annotated process graph with case
distinctions. Deciding whether the process is executable is
coNP-hard. This holds even if predicate arity is fixed to 0,
and T is empty.

This can be proved by a reduction from SAT. Hence,
both complex T and case distinctions must be dealt with
by worst-case exponential analysis methods (unless P=NP).
Such methods might still be practically feasible, provided
the processes do not grow too large; however, given this
complexity it is clearly important to look for classes of pro-
cesses and annotations where analysis is easier. Herein, we
explore what we call basic process graphs – e.g., the dis-
cussed sales order process graph is basic.

3. Polynomial-Time Analysis

In basic processes, the formulae in T are restricted to
universally quantified disjunctions of at most 2 literals; we

do not allow case distinctions (annotated XOR splits), and
we do not allow loops. Theorems 1 and 2 show that ba-
sic processes are maximally general – one cannot general-
ize them without losing computational efficiency – regard-
ing the formulae in T and the case distinctions. It is yet
an open question whether loops, or structured loops, can
be dealt with efficiently; we are currently investigating this.
Regarding the restriction on T , note that universally quanti-
fied disjunctions of at most 2 literals have significant mod-
elling power, and allow us to formulate common things such
as the subsumption relations and mutual exclusions used in
our running example.

Our analysis method works in two steps. First, it is deter-
mined which pairs of activities n, n′ in the process are par-
allel, i.e., have no ordering constraint between them (there
are execution paths that do n before n′, and there are exe-
cution paths that do n′ before n). Based on this information
and the precondition/effect annotations, it is easy to detect
precondition and effect conflicts. Once such conflicts have
been removed, the second step of the analysis determines
whether the activities are executable. We explain the two
steps of the analysis in one sub-section each.

Before we start, there is a technical remark to be made
regarding deduction in T as present in basic processes. If
predicate arity is fixed, then T can be put into proposi-
tional format, by instantiating the quantifiers with all possi-
ble variables, in polynomial time. Further, it is well known
that reasoning over 2-clauses, i.e., over propositional dis-
junctions of at most 2 literals, is polynomial [21]. Hence,
given the effect effn of a task node n, we can easily deter-
mine all literals l that are implied by effn in conjunction
with T . This ability is important in both steps of the analy-
sis method. We denote the “extended effect”, i.e., the union
of effn with its implied literals l, by effn.

3.1. Precondition and Effect Conflicts

In order to detect precondition and effect conflicts – both
of which exist only between parallel tasks – we first need to
find out which pairs of tasks actually are parallel. We define
an algorithm, called M-propagation, which determines this.

5

Since parallelism is not affected by semantic annotations,
those need not be considered at this stage. The algorithm
populates a matrix M whose rows and columns correspond
to the edges of the process and whose entries are Boolean.
M contains a 1 in the ith row and jth column, denoted M j

i ,
iff i 6= j and ei and ej may hold a control flow token at the
same time; we say in this case that ei and ej are parallel.
Parallelism between task nodes can then be checked sim-
ply by verifying whether their incoming edges are parallel.
(Note that, by its nature, M is irreflexive and symmetric.)

The algorithm assumes a numbering of the edges. The
numbering must be order-preserving in the sense that, if an
edge ei always executes before some other edge ej , then
i < j. Our TR [19] shows how to generate such a num-
bering; it also contains full details on the M-propagation
algorithm. Thanks to being able to order edges in this way,
we do not need to calculate the reachability graph explicitly
which would be exponential [18]. Fig. 2 illustrates the out-
come of the algorithm on our sales order process example.

R
ec

ei
ve

 O
rd

er

P
ro

d
u

ct
io

n

S
ch

ed
u

lin
g

D
ec

id
e

o
n

S

h
ip

p
er

D
ra

ft
 P

ri
ce

C

al
cu

la
ti

o
n

A
rr

an
g

e
L

o
g

is
ti

cs

P
ro

d
u

ct
io

n

C
o

m
p

le
te

 P
ri

ce

C
al

cu
la

ti
o

n

In
vo

ic
e

P
ro

ce
ss

in
g

Receive Order 0 0 0 0 0 0 0 0

Production
Scheduling 0 0 1 1 1 0 1 0

Decide on
Shipper 0 1 0 1 0 0 0 0

Draft Price
Calculation 0 1 1 0 1 1 0 0

Arrange
Logistics 0 1 0 1 0 0 1 0

Production 0 0 0 1 0 0 1 0

Complete Price
Calculation 0 1 0 0 1 1 0 0

Invoice
Processing 0 0 0 0 0 0 0 0

Figure 2. The matrix M for our running exam-
ple, projected to input edges of task nodes.

M-propagation works by propagating parallelism infor-
mation over the nodes in the process graph. M is initialized
with 0 on the first diagonal (i.e., the fields M i

i), and with the
⊥ symbol in all other fields, marking all these values to be
as yet unknown. The propagation then commences at the
start node, which is receive order in our example. Please
note here that our processes have a single start node and
that this node is not parallel to any other nodes. We per-
form propagation steps in an order following the edge num-
berings, making sure that we only propagate over nodes n
whose incoming edges have already been considered (their
M -values have been determined) and whose outgoing edges
have not yet been considered. Each propagation step up-
dates the matrix M in a “global” sense, i.e., a single matrix
M is maintained and updated by every propagation step.
The updates depend on the type of the node n considered:

Task nodes: For such nodes, we copy the M -values up to
the number of the outgoing edge from the incoming

edge. This works because a task node neither synchro-
nizes nor splits the control flow, and thus has no ef-
fect on parallelism; n’s outgoing edge is parallel to the
same edges as n’s incoming edge.

Parallel splits: Here, there are two things to consider.
First, similarly as for task nodes, parallelism from the
ingoing edge is preserved in the outgoing edges. To
account for this, we copy the respective M -values: if
ei is the incoming edge and ej is the outgoing edge
with the lowest number, then we set Mk

i = Mk
j for all

k < j. Second, the outgoing edges of a parallel split
introduce new parallelism. This is covered simply by
setting M j

i = 1 for all outgoing edges ei and ej of n,
i 6= j. In Fig. 2 this can be observed at the first parallel
split node: Production Scheduling, Decide on Shipper,
and Draft Price Calculation are pairwise parallel.

XOR splits: These are handled exactly as parallel splits,
except that we set M j

i = 0 for all outgoing edges ei

and ej of n. Obviously, this reflects the fact that the
outgoing edges of an XOR split can never carry a token
at the same time (since we assume the workflow to be
safe and sound).

Parallel joins Here, matters are slightly more tricky. Say
ei is the outgoing edge. For any j with j < i, we set
M j

i to 1 iff there is no incoming edge ek with M j
k = 0.

This is necessary because parallel joins synchronize
branches that were previously parallel. Thus, if one
of the incoming edges is already synchronized with
ej , then the parallel join will transfer this synchroniza-
tion to ei as well. This can be observed in Fig. 2 at
the parallel join after Production Scheduling. Produc-
tion Scheduling is parallel to Decide on Shipper and
Arrange Logistics, but the latter two are synchronized
(i.e., not parallel to one another). Therefore, Produc-
tion, coming after the parallel join, is not parallel to
Decide on Shipper.

XOR joins For this node type, we perform an index-wise
logical OR: say ei is the outgoing edge again; for any
j with j < i, we set M j

i to 1 iff an incoming edge
ek exists, with M j

k = 1. This is necessary, because a
single incoming edge ek which can carry a token at the
same time as ej can pass its token to the outgoing edge
ei at any time. Note that in a sound process graph, no
two incoming edges of a XOR join may carry a token
at the same time.

The propagation ends when M has been determined for the
incoming edge of the end node; note that, by definition, this
is the edge with the highest number. We have:

Lemma 1 Assume a basic annotated process graph. Then
the time taken by M-propa-gation is polynomial in the size
of the graph. Assume M is its outcome. Then, for all pairs

6

of task nodes ni, nj with incoming edges ei, ej: ni and nj

are parallel iff M j
i = 1.

This is proved in our TR [19] along the lines of the argu-
ments above. Given the parallelism information, it is easy to
determine any precondition and effect conflict. The follow-
ing corollary is a consequence of Lemma 1, the definition
of precondition/effect conflicts, and the aforementioned fact
that reasoning over 2-clauses is polynomial (recall that eff
is the union of eff with its implications over T):

Corollary 1 Assume a basic annotated process graph; as-
sume M is the outcome of M-propagation. Then, for all
pairs of task nodes n, n′ with incoming edges ei, ej: n and
n′ have a precondition (effect) conflict iff M j

i = 1 and there
exists a literal l s.t. l ∈ effn and ¬l ∈ pren′ (¬l ∈ effn′).
With fixed predicate arity, all conflicts can be found in time
polynomial in the size of the graph.

3.2. Detecting Non-Executable Activities

Our algorithm for detecting non-executable activities,
which we call I-propagation, currently assumes that no ef-
fect conflicts are present in the process. This is not a crit-
ical assumption because effect conflicts are errors, and all
errors should be removed from the process prior to exe-
cution. Absence of effect conflicts can be established by
identifying effect conflicts as per Corollary 1, and pointing
them out to the process modeler for removal. In our exam-
ple process from Fig. 1, all effect conflicts can be removed
by re-scheduling Complete Price Calculation to come af-
ter Production, i.e., as a second last step just before Invoice
Processing.

In what follows, we explain I-propagation at a semi-
formal level; as mentioned before, details can be looked
up in [19]. I-propagation keeps track of sets I(e) of lit-
erals, which are maintained individually for every edge e.
The key insight is that, in order to detect non-executable
nodes, i.e., nodes n whose precondition is falsified in at
least one execution, it suffices to know a summary of all
possible worlds that may be encountered whenever n is ac-
tivated. Namely, all we need to know is the set of literals –
I(e) – that are necessarily true whenever n’s incoming edge
e carries a token. Intuitively, I(e) corresponds to the inter-
section of the worlds at e. The ability to check executability
based on such world-intersections is quite advantageous; it
gets us around enumerating all the possible worlds, which
would of course be exponentially costly.

Fig. 3 shows the outcome of I-propagation on part of our
example sales order process. Similarly to M-propagation,
I-propagation performs consecutive propagation steps over
nodes n of the process; in difference to M-propagation, the
modifications are “local”, i.e., as indicated every edge e has

4. Decide on
Shipper

5. Arrange
Logistics

2. Production
Scheduling

I = {orderReceived (o),
¬orderCompleted (o)}

1. Receive
Order

I = {orderReceived (o),
¬orderCompleted (o),
shipperDecided(o,s)}

I = {orderReceived(o),
¬orderCompleted (o),
productionScheduled (o,p),
¬productionCompleted (o,p)}

I = {orderReceived(o),
¬orderCompleted (o),
shipperDecided(o,s),
calculationUpdated (o,c),
calculationPrepared (o,c),
¬calculationDrafted (o,c),
¬calculationCompleted (o,c),
shipmentApproved(o,sh),
orderApproved(o)}

I = {orderReceived(o),
¬orderCompleted (o),
shipperDecided(o,s),
calculationUpdated (o,c),
calculationPrepared (o,c),
¬calculationDrafted (o,c),
¬calculationCompleted (o,c),
shipmentApproved(o,sh),
orderApproved(o),
productionScheduled (o,p),
¬productionCompleted (o,p)}

Figure 3. Outcome of I-propagation on a part
of the example process from Fig. 1.

its own I(e) set. Each propagation step updates the anno-
tated I(e) sets according to the type of n. Initially, I(e)
is set to effn0 for the start node n0, and to ⊥ for all other
nodes. A node is propagated only if all its incoming edges
have been considered, and all its outgoing edges have not
yet been considered. The propagation steps, over nodes n,
are (we start with the simple ones):

Splits: If n is a parallel split or an XOR split, the propaga-
tion simply copies I from the incoming edge to every
outgoing edge. This is because splits do not change the
state of the world. See the two parallel splits in Fig. 3
(behind Receive Order and behind Decide on Shipper)
for illustration.

Parallel joins: Say e′ is n’s outgoing edge; we set I(e′) to
the union of the sets I(e) for all of n’s ingoing edges e.
This is justified per the assumed absence of effect con-
flicts. A parallel join can only fire if there is a token on
all of its incoming edges; for all such cases we know
that the literals I(e) of these edges hold; since there
are no effect conflicts, the sets I(e) do not contradict
each other; hence, for a literal l to be guaranteed to
hold after execution of n, it suffices if l is guaranteed
to hold on one of the incoming edges. (In the presence
of effect conflicts, the outcome of parallel branches de-
pends on the order of execution.) See the parallel join
in Fig. 3 (behind Production Scheduling and Arrange
Logistics) for illustration: the I sets of the 2 incoming
edges are combined.

XOR joins: We set I(e′) to the intersection of the sets I(e)
for all of n’s ingoing edges. This is adequate because a
literal l holds after an XOR join only if all paths lead-
ing to the join guarantee that l holds (any one of the
paths may be executed).

Task nodes: These are by far the most complicated prop-
agation steps. Say n has the incoming edge e and the
outgoing edge e′. Three different actions need to be
performed. (1) We write effn, i.e., n’s explicit and
implicit effects, into I(e′). (2) We copy every literal
l from I(e) to I(e′), unless ¬l is already present in

7

I(e′). (3) We go through the list of all edges e′′ that
are parallel to e (by M-propagation we know which
edges to consider), and remove from I(e′′) all literals
l where ¬l is contained in effn.
(1) and (2) are direct consequences of the semantics of
annotated task nodes, c.f. Section 2.2. (1) must be done
simply because any effect forces a direct change on the
world. (2) must be done since the world is required to
change minimally, i.e., if a property is true before and
is not affected, then it is still true.
It is important to note here that, actually, (1) and (2)
can be done in such a simple way only because T is re-
stricted to disjunctions of at most 2 literals. As pointed
out by Theorem 1, minimal change semantics get quite
intricate with more complex T . For example, consider
this situation: T contains a single disjunction, of the
three literals ¬p,¬q,¬r; p, q ∈ I(e); effn = {r}.
Then, after n, neither p nor q are guaranteed to hold
(although their opposites are not contained in effn).
The reason is that, with p and q being already true,
the effect r falsifies the disjunction. There are several
possible ways to “repair” this, namely by either falsify-
ing p or q; hence after n any of the literals p, q,¬p,¬q
may be true. At an intuitive level, situations like this
(and other more complicated situations) cannot appear
when T consists of 2-clauses only; hence for basic pro-
cess graphs actions (1) and (2) are suffice.

2. Production
Scheduling

1. Receive
Order

I = {orderReceived(o),
¬orderCompleted (o),
productionScheduled (o,p),
¬productionCompleted (o,p)}

I = {orderReceived(o),
¬orderCompleted (o)}

3. Production

I = {orderReceived(o),
¬orderCompleted (o),
¬productionScheduled (o,p),
productionCompleted (o,p),
calculationUpdated (o,c),
calculationPrepared (o,c),
¬calculationDrafted (o,c),
¬calculationCompleted (o,c)}

I = {orderReceived(o),
¬orderCompleted (o)}

Figure 4. An illustration of action (3) for task
nodes, using a variant of Fig. 3.

Let us finally consider action (3), dealing with the case
where an edge e′′ parallel to e′ inherited a literal l
which is in conflict with effn (l cannot be established
by the effect of a task node connected to e′′ since that
would be an effect conflict). In this situation, l is not
guaranteed to hold whenever e′′ carries a token: n may
be fired, leading to ¬l. This is best understood using
an example. Consider Fig. 4. The task node n we
consider is Production. The preceding parallel split,
let’s denote it by n′, has two outgoing edges. One
of those leads to n; the other one, which we denote
with e′′, leads elsewhere. Say n′ fires, putting a token
on both of the edges. In this situation, due to the ef-
fect of Production Scheduling which must have been
executed beforehand, we know that productionSched-
uled(o,p) and ¬productionCompleted(o,p) are certain

to hold. Accordingly, I-propagation over n′ (as ex-
plained above) puts these literals into I(e′′). How-
ever, say n fires next. Then e′′ still carries a to-
ken, but both literals have been inverted. Hence,
when e′′ carries a token, productionScheduled(o,p) and
¬productionCompleted(o,p) are not always true. They
should be removed from I(e′′), which is exactly what
action (3) does; the annotation of e′′ in Fig. 4 shows
the outcome.

The propagation ends when I has been determined for the
incoming edge of the end node; note that, by definition, this
is the last propagation step possible. We have:

Theorem 3 Assume a basic annotated process graph with-
out effect conflicts. With fixed predicate arity, the time taken
by I-propagation is polynomial in the size of the graph. As-
sume I is its outcome. Then the process is executable iff, for
all task nodes n with incoming edge e, pren ⊆ I(e).

Recall here that a process is executable iff all its tasks
are (c.f. Section 2.2). The theorem is proved in three steps.
First, Lemma 1 shows that the M information exploited in
task node propagations is correct. Second, denote by

⋂
e

the set of literals that will always be true when e carries a
token. The arguments made above regarding the propaga-
tion steps show that I(e) =

⋂
e for all e – i.e. they show

that the I(e) sets are correct – when assuming that all task
nodes are executable (note that I-propagation ignores pre-
conditions). Third, Theorem 3 now follows with the fol-
lowing trick. If all nodes are executable (as assumed), then,
since

⋂
(e) = I(e) for all e, we have pren ⊆ I(e) for all

task nodes n with incoming edge e. Conversely, say n is
a task node where pren 6⊆ I(e), but pren ⊆ I(e) for all
of n’s predecessors in the graph. Then all predecessors are
executable and we know, with the same arguments as be-
fore, that I(e) =

⋂
e. Hence n cannot be executable. This

concludes the argument. See the full proof in [19].
Theorem 3 can be used for executability checking in the

obvious way. If pren ⊆ I(e) for all task nodes n, we know
that the process is correct and we can stop. Else, we can
indicate to the user all task nodes n where pren 6⊆ I(e) but
where all predecessors n′ have pren′ ⊆ I(e). These nodes
are not executable. Fixing these flaws, the modeler can run
I-propagation again and obtain the next “frontier” of non-
executable nodes, and so on until all flaws are removed.

Our analysis methods are implemented in Java. The im-
plementation as yet lacks the connection to an interface for
specifying the process to be analyzed (i.e., the process is
inserted directly into the internal data structures); hence a
broad empirical evaluation has not yet been performed. In
our running example, the analysis successfully completes
within less than a second. Note that, given the low-order
polynomial complexity of our algorithms, runtime perfor-
mance is very likely never going to be an issue.

8

4. Related Work

Verification of process models has been studied for quite
a while, mostly from a control flow perspective. In this con-
text, different notions of soundness have been proposed; for
an overview see [13]. There are some contributions beyond
pure control-flow verification. In particular, they can be re-
lated to semantic checks and data flow analysis.

The approach of [22] checks a notion of semantic cor-
rectness that builds on annotations to tasks as being mutu-
ally exclusive or dependent. In the first case they cannot
co-occur in a trace, in the second case they must appear in
a certain order. For semantic correctness the process must
comply with the annotations. This approach provides some-
what similar features as linear temporal logic [23]. Our ap-
proach uses not only annotations in terms of preconditions
and effects but also an ontology. In that sense, [22] might
be regarded as a special case of our framework. In the area
of access control the approach of [24] extends process mod-
els with predicates, constants, and variables. However, the
meaning of these constructs relates to constraints on role
assignments, while in our model they directly affect the ex-
ecutability of tasks. The work of [25] describes methods
to check compliance of a process against rules for role as-
signment. This is related to our approach in that a theory
could (to some extent) be defined to model such rules; but
not vice versa since we build on general logics while [25]
covers some practical special cases. The paper by [26] ad-
dresses a.o. life cycle compliance. This can be partly refor-
mulated in terms of preconditions, effects, and ontological
axioms. Our running example illustrates some constraints
related to the life cycle of business objects.

In [27], the preconditions and effects of service composi-
tions are calculated on the basis of atomic services of which
the compositions consist. Similar to our approach, the pre-
conditions and effects of the atomic services are formulas
over constants, and the processes are assumed to be sound,
acyclic, have a single start and end node, respectively, and
the routing constructs are and/xor join/split. However, [27]
neither deals with ontological axiomatizations nor with ini-
tial state uncertainty. There is no formal discussion of the
algorithms or their properties. In particular, there is no
proof of correctness and no consideration of complexity.
The algorithm is based on computing the reachability graph
of the composition’s workflow, which is exponential in size
of the workflow. This is in stark contrast to our algorithm
which takes polynomial time.

Another exponential-time check is discussed in [28]
where semantic web service compositions are completely
encoded in Petri Nets, i.e., both the control flow and the pre-
conditions and effects are mapped to states, transitions, and
arcs. However, since literals may be used at multiple points
in a process, the resulting nets are not free-choice. Fur-

ther, the choice of annotation restricts the relation between
preconditions and effects since precondition tokens are al-
ways consumed. The verification properties are then for-
mulated as standard Petri Net properties: reachability, live-
ness, deadlock-freeness. There is an overlap between these
properties and ours, e.g., liveness requires that, for each ser-
vice, there is an execution sequence in which its precondi-
tion is fulfilled whereas our executability requires all token-
executions to fulfill the preconditions encountered. Also
[28] does not consider ontologies.

The most closely related work to our approach is [29].
Based on annotations of task nodes with logical effects, the
authors use a propagation algorithm somewhat reminiscent
of our I-propagation. There are, however, a number of im-
portant differences between the two approaches. [29] allow
CNF effects which are considerably more expressive than
our purely conjunctive effects; on the other hand, their prop-
agation algorithm is exponential in the size of the process
(the size of the propagated constructs multiplies at every
XOR join) which is in stark difference to our polynomial
time methods. Further, [29] do not consider preconditions,
and they do not consider logical theories constraining the
domain behavior. Finally, while we provide a formal execu-
tion semantics and prove our methods correct, the work of
[29] proceeds at a rather informal level.

Another related line of work is data flow analysis, where
dependencies are examined between the points where data
is generated, and where it is consumed; some ideas re-
lated to this are implemented in the ADEPT system [30].
Data flow analysis builds on compiler theory [31] where
data flows are typically examined for sequential programs
mostly; it does neither consider theories T nor logical con-
flicts, and hence explores a direction complementary to
ours. Our concepts can be applied in this area by expressing
data dependencies as preconditions, effects, and ontological
axioms.

5. Conclusion

We introduced a formalism for checking certain correct-
ness properties of semantically annotated process models.
It is unique in that it combines notions from the workflow
community and from the AI literature resulting in an inte-
grated execution semantics. We showed that this formalism
can detect execution problems in annotated process graphs
with sound control flow. This is an important contribution
with practical implications for the verification of executable
process models. Our work identifies a special class of anno-
tated process graphs for which correctness can be checked
efficiently, and we provide the algorithms for doing so. We
show that the annotations cannot get more complex without
introducing computationally hard problems. The contribu-
tions of this work aim at the verification beyond soundness

9

for executable process models, e.g., in the form of Web ser-
vice orchestrations. We assume that this additional verifi-
cation will lead to fewer errors and a shorter time span for
design and deployment of executable process models.

In our next steps we aim to enhance our analysis tech-
niques to deal with loops and to check executability with-
out prior removal of effect conflicts. Yet, it is not clear
whether this is possible in polynomial time. In the long
term, also computationally hard cases should be addressed.
Such analysis techniques will require some form of combi-
natorial search, and will be of a different nature.

References

[1] Aalst, W.: Verification of Workflow Nets. In: Appli-
cation and Theory of Petri Nets. (1997)

[2] Dehnert, J., Aalst, W.: Bridging The Gap Between
Business Models And Workflow Specifications. Int. J.
Coop. Inf. Syst. 13 (2004) 289–332

[3] Puhlmann, F., Weske, M.: Investigations on sound-
ness regarding lazy activities. In: Business Process
Management (BPM). LNCS 4102 (2006) 145–160

[4] Mendling, J., Aalst, W.: Formalization and Verifica-
tion of EPCs with OR-Joins Based on State and Con-
text. In: Conf. Adv. Inf. Sys. Engineering (CAiSE).
(2007) LNCS 4495.

[5] Verbeek, H., Basten, T., Aalst, W.: Diagnosing
Workflow Processes using Woflan. Comp. Journal 44
(2001) 246–279

[6] Hepp, M., Leymann, F., Domingue, J., Wahler, A.,
Fensel, D.: Semantic business process management:
A vision towards using semantic web services for
business process management. In: Proceedings of
ICEBE (2005) 535–540

[7] Weber, I., Hoffmann, J., Mendling, J., Nitzsche, J.:
Towards a methodology for semantic business process
modeling and configuration. In: ICSOC’07 Work-
shops. LNCS (2008)

[8] A. Ankolekar et al: DAML-S: Web service description
for the semantic web. In: ISWC. (2002)

[9] The OWL Services Coalition: OWL-S: Semantic
Markup for Web Services (2003)

[10] D. Roman et al.: Web Service Modeling Ontology.
Applied Ontology 1 (2005) 77–106

[11] D. Fensel et al: Enabling Semantic Web Services: The
Web Service Modeling Ontology. (2006)

[12] Andersson, B., Bergholtz, M., Edirisuriya, A., Ilaype-
ruma, T., Johannesson, P.: A declarative foundation of
process models. In: CAiSE. (2005) 233–247

[13] Aalst, W., Hee, K.: Workflow Management. (2002)

[14] Vanhatalo, J., Völzer, H., Leymann, F.: Faster and
more focused control-flow analysis for business pro-
cess models though sese decomposition. In: ICSOC.
(2007)

[15] Winslett, M.: Reasoning about actions using a possi-
ble models approach. In: AAAI. (1988)

[16] Eiter, T., Gottlob, G.: On the complexity of proposi-
tional knowledge base revision, updates, and counter-
factuals. Artificial Intelligence 57 (1992) 227–270

[17] Herzig, A., Rifi, O.: Propositional belief base update
and minimal change. AI 115 (1999)

[18] Valmari, A.: The state explosion problem. In Reisig,
W., Rozenberg, G., eds.: Lectures on Petri Nets I.
LNCS 1491 (1998) 429–528

[19] Anonymized: Beyond soundness: On the correctness
of executable process models. Technical report (2008)
TR for this paper, available to reviewers on request -
will be made available on-line after publication.

[20] T. Andrews and et al.: Business Process Execution
Language for Web Services (version 1.1) (2003)

[21] Aspvall, B., Plass, M., Tarjan, R.: A linear-time algo-
rithm for testing the truth of certain quantified boolean
formulas. Inf. Proc. Letters 8 (1979) 121–123

[22] Ly, L.T., Rinderle, S., Dadam, P.: Semantic correct-
ness in adaptive process management systems. In:
BPM. (2006)

[23] Aalst, W., Beer, H., Dongen, B.: Process mining and
verification of properties: An approach based on tem-
poral logic. In: OTM Conferences. (2005)

[24] Bertino, E., Ferrari, E., Atluri, V.: The specification
and enforcement of authorization constraints in work-
flow management systems. ACM TISSEC 2 (1999)

[25] Namiri, K., Stojanovic, N.: A model-driven approach
for internal controls compliance in business processes.
In: SBPM. (2007)

[26] Ryndina, K., Küster, J.M., Gall, H.: Consistency of
business process models and object life cycles. In:
MoDELS Workshops. (2006) 80–90 LNCS 4364.

[27] Meyer, H.: On the semantics of service compositions.
In: Web Reasoning and Rule Systems (2007) 31–42

[28] Narayanan, S., McIlraith, S.: Simulation, verifica-
tion and automated composition of web services. In:
World Wide Web Conference. (2002) 77–88

[29] Koliadis, G., Ghose, A.: Verifying semantic business
process models in inter-operation. In: SCC. (2007)

[30] Reichert, M., Rinderle, S., Dadam, P.: ADEPT
workflow management system: Flexible support for
enterprise-wide business processes. In: BPM. (2003)

[31] Aho, A., Sethi, R., Ullman, J.: Compilers: principles,
techniques, and tools. Addison-Wesley (1986)

10

	. Introduction
	. Preliminaries
	. Motivating Example
	. Formalization of Process Behavior

	. Polynomial-Time Analysis
	. Precondition and Effect Conflicts
	. Detecting Non-Executable Activities

	. Related Work
	. Conclusion

