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Abstract. AI Planning is concerned with the selection of actions

towards achieving a goal. Research on cellular automata (CA) is con-

cerned with the question how global behaviours arise from local up-

dating rules relating a cell to its direct neighbours. While these two

areas are disparate at first glance, we herein identify a problem that is

interesting to both: How to reach a fixed point in an asynchronous CA

where cells are updated one-by-one? Considering a particular local

updating rule, we encode this problem into PDDL and show that the

resulting benchmark is an interesting challenge for AI Planning. For

example, our experiments determine that, very atypically, an optimal

SAT-based planner outperforms state-of-the-art satisficing heuristic

search planners. This points to a severe weakness of current heuris-

tics because, as we prove herein, plans for this problem can always

be constructed in time linear in the size of the automaton. Our proof

of this starts from a high-level argument and then relies on using a

planner for flexible case enumeration within localised parts of the ar-

gument. Besides the formal result itself, this establishes a new proof

technique for CAs and thus demonstrates that the potential benefit of

research crossing the two fields is mutual.

1 Introduction

Cellular automata (CA) are discrete dynamical systems which are

frequently used as a model of massively parallel computation [12,

20]. The CAs we consider consist of a collection of cells, arranged

on a two-dimensional L×L grid with toroidal boundary conditions,

i.e., the grid is the cartesian product of two cycles of length L. Each

cell may assume one of two possible contents, 0 or 1. The contents

evolve at discrete time steps according to a local transition rule. This

rule defines how a cell updates its content according to its current

content and the contents of its neighbours.

CAs are generally defined with synchronous updating, i.e., all cells

are updated simultaneously at each time step, assuming perfect syn-

chrony. That assumption can be relaxed in many ways, for example

by considering that the cells are updated in groups. Such models,

called asynchronous CA, are yet only poorly understood compara-

tively with their synchronous counterparts. Asynchronous updating

has two advantages: (a) a ”noise” in the ordering of the updates may

produce new interesting behaviours of the CA (e.g., phase transitions

[5]), (b) if the model has to be transposed to a real computing device,

this device does not necessarily need a central clock to perform the

computations. In the latter case, a simple way to encode the “end” of

a computation is to say that the system has converged, i.e., reached a

fixed point state in which all the cells are stable.
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Herein, we focus on the case where the updated groups are single-

tons, i.e., cells are updated one by one. First results on convergence

time for such CAs were obtained [7, 6]. In particular, it was noted

that, if the cells to update are chosen at random, there exist some

rules for which convergence time increases exponentially with size.

Now, consider an experiment with random updates that doesn’t con-

verge after a given time. What can be concluded? Nothing, because

convergence may just need more time. This is where AI Planning

comes into the play. For discriminating between convergence and

non-convergence, it is sufficient to consider the setting where cells

are updated in a controlled way. Hence the question becomes:

Is it possible to choose a sequence of updates that drives the system

to a fixed point?

Clearly, this question corresponds to a planning problem, hence con-

stituting an interesting new application of AI Planning. Specifically,

we propose to apply planners in two ways: (I) deliver information

about what kinds of fixed points may be reached using what kinds of

strategies; (II) enumerate local cases within human-designed high-

level proofs inspired by the outcome of (I). We will refer to (I) and

(II) as global vs. local use of planners. Note that this application

requires the flexibility of AI Planning, because many different tran-

sition rules are of interest. As a starting point, we focus on one par-

ticular rule, called the “binary totalistic CA rule T10”.

It has been hypothesised [6] that T10 converges. Our first technical

contribution lies in proving this. We prove that, from any given start

state, there is a linear-size converging sequence (and hence random

convergence is at most exponential). The proof is constructive and

shows how to find such a sequence in linear time, hence clarifying

also the domain-specific planning complexity of this problem. More

importantly, our proof establishes a new proof method for the inves-

tigation of reachability in CAs, and in particular a proof method that

crucially relies on AI planning systems. Our proof starts from a high-

level argument decomposing the proof into localised sub-problems.

Addressing each of these sub-problems comes down to an enumer-

ation of cases. The number of cases (up to 220 in our proof) makes

manual exploration exceedingly difficult. Our key observation is that

we can formulate this enumeration as a kind of planning problem,

corresponding to application (II) outlined above. In our current proof,

we simply wrap FF [11] calls into an explicit enumerator. More gen-

erally, this use of planners poses novel requirements, that we will

discuss along with the proof.

Our second contribution is the encoding of, and experimentation

with, application (I) under T10 in PDDL. The PDDL and a problem

generator are publicly available, as a new benchmark for planning.4

The basic part of the encoding is straightforward: the cell contents are

the state variables, and the transition rule yields the action set. The

4 http://www.loria.fr/˜hoffmanj/CA-Planning.zip



more subtle question is how to encode the goal of reaching a fixed

point. We devise two alternative encodings, CApddl using only the

STRIPS fragment of PDDL, and CApddl-dp using derived predi-

cates [19, 9]. The latter is more concise, but also less accessible as a

benchmark because many planners do not handle derived predicates.

Regardless of the encoding, the CA benchmark is interesting be-

cause it has a puzzle-like structure where changes made to one part

of the puzzle may have detrimental side effects on other parts –

changing the content of a cell also changes the neighbourhood of

the surrounding cells. In this puzzle-like nature, the new benchmark

is similar to well-established benchmarks like Rubic’s Cube and the

15-puzzle. In difference to these benchmarks, the CA benchmark en-

compasses not one but a whole family of problems (one for each dif-

ferent transition rule), and its solution is actually of interest to some-

body (the CA community). For the particular rule T10 we consider

here, there exists a linear-time domain-specific algorithm (cf. above).

As argued in [10], existence of a polynomial-time domain-specific

algorithm is a desirable property for a planning benchmark, provided

that algorithm is non-trivial: the benchmark then tests whether the

planner is clever enough to uncover the relevant structure.

Another interesting aspect of the CA benchmark is that it is suit-

able alike to challenge: (1) classical planning, where the start config-

uration of the automaton is known; (2) conformant/contingent plan-

ning, where the planner needs to generalise over several possible start

configurations; (3) generalised planning parametrised by L, where

the ultimate research goal is to automatically construct a domain-

specific updating strategy that guarantees to reach a fixed point.

We run large-scale experiments with SATPLAN [13], FF [11],

LAMA [17], and T0 [15]. We make a number of interesting obser-

vations, in particular that SATPLAN outperforms FF and LAMA by

many orders of magnitude. We provide insights into how planner per-

formance depends on the number of update operations required, etc.

Section 2 describes the particular form of cellular automata we

consider. Section 3 contains our proof of linear-time convergence.

Section 4 explains our PDDL encodings. Section 5 presents our ex-

periments in classical planning. Section 6 summarises them for plan-

ning under uncertainty. Section 7 concludes with a brief discussion.

2 Asynchronous Cellular Automata

Let Λ be the two-dimensional square grid of size L2, with toroidal

boundary conditions. That is, we identify Λ with (Z/L.Z) ×
(Z/L.Z), where Z/L.Z denotes the quotient group of L, i.e., the

set {0, . . . , L− 1} with addition modulo L. Each cell may be in one

of two cell states, 0 or 1. Hence a state of the overall automaton is a

tuple s ∈ {0, 1}Λ. Figure 1 depicts three states of a grid of size 6,

taken by screenshot from a CA simulation tool.5

(a) (b) (c)

Figure 1. 3 states for L = 6; white 0, blue 1; unstable cells have circles.

In what follows, let s be a state. We denote by sc the cell state of

a cell c ∈ Λ in s. Starting from s, and choosing one cell c to update,

the system evolves to the state s′ = F (s, c) where s′ is identical to

5 FiatLux http://webloria.loria.fr/˜fates/fiatlux.html

s except for s′c. The latter is defined as follows. Let n = (0, 1) and

e = (1, 0) denote the north and east vectors, so that c+n denotes c’s

neighbour to the north, etc. Further, denote Σc := sc+sc+n+sc+e+
sc−n + sc−e. Then s′c := f(Σc), where the function f expresses the

local transition rule given by:6

s 0 1 2 3 4 5

f(s) 0 1 0 1 0 0

For example, by updating cell (3, 3) in Figure 1 (b), we evolve to

the state shown in Figure 1 (c) because the four neighbours of (3, 3)
are all set to 1 so Σ(3,3) = 5 and f(Σ(3,3)) = 0.

A cell c ∈ Λ is stable if F (s, c) = s. A state s is a fixed point if

all c ∈ Λ are stable. Figure 1 (c) is an example of such a state. We

consider the problem of finding a sequence of updates that reaches a

fixed point (from a single start state for classical planning, and from

several start states for planning under uncertainty). Note that chang-

ing the value of a cell c changes the value of Σc′ for all neighbours c′

of c. Hence this problem is a kind of “puzzle” where implementing

a desired effect may have undesired side-effects. We next show that

this puzzle can be solved efficiently.

3 Solving the Puzzle

We prove that a classical plan can always be constructed in time

O(L2), i.e., linear in the size of the automaton. The proof is con-

structive, defining an algorithm that works for all states. Hence, the

classical planning problem has an efficient domain-specific solver,

and planning under uncertainty can, provided it allows the required

constructs (observations and loops), in principle also be effective.

More important perhaps than this result itself is that we obtain it

with a novel proof method. We employ a planning system for enu-

meration of cases within a high-level proof argument. While such

computer-aided proof design is of course not new in general, to our

knowledge it has never yet been applied in the CA area, and cer-

tainly it has never yet been done using an AI Planning system as the

case enumerator. Our proof works by tackling all 2x2 sub-squares

iteratively, bringing them into a desired fixed point pattern by local

actions only. The “local” part here, i.e., the moves inside a 2x2 sub-

square, is done by a planner – application (II) from the introduction.

This technical trick was instrumental for being able to obtain the re-

sult. In the proofs for the 2x2 sub-squares, it does not suffice to con-

sider only the 4 cells directly involved. We must also reason about

all possible values of their direct neighbours, pushing the number up

to 12 cells and hence 212 = 4096 possible configurations. In fact,

for a number of particularly intricate cases, this did not suffice and

we had to reason also about the possible configurations of a neigh-

bouring 2x2 sub-square, along with that square’s direct neighbour

cells, yielding 20 cells in total. Playing through all these combina-

tions by hand, without ever making a mistake, is impossible or at

least requires an excessive amount of time and patience. Our proof

shows how one can very conveniently leave this task up to a planner

instead. We now explain this in detail.

Theorem 1 Assume the local transition rule T10. There exists an al-

gorithm fix[T10] so that, for any grid Λ of size L2, and for any state

s ∈ {0, 1}Λ, fix[T10] run on Λ and s terminates in time O(L2), and

returns a sequence of O(L2) updates reaching a fixed point.

6 This rule is called “totalistic” because it depends only on the sum of the cell
states of the cell’s neighbours. It corresponds, in the notation of Wolfram
[20], to the totalistic rule T10; see [6] for more details.
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We prove the theorem by defining a suitable algorithm fix[T10].

The full proof details, including the entire machinery for case

enumeration, are available in the zip file specified in Footnote 4.

In what follows we provide a high-level description for even L > 2.

For L = 2, 3 the theorem is trivial. For odd L > 3, fix[T10] can be

suitably extended; we will outline that extension.

As indicated, fix[T10] works iteratively on 2x2 sub-squares. This

is done in rows bottom-to-top, left-to-right within each row. Accord-

ingly, denote in what follows by Q0, . . . , Qn−1, where n = (L/2)2,

the 2x2 sub-squares in that order. We will also use the notation

Qi = Qy∗L/2+x where 0 ≤ x, y < L/2. E.g., Q4 = Q1∗L/2+1 is

the middle square in Figures 1 (a–c), and Q8 = Q2∗L/2+2 is the top

right square. fix[T10] selects updates to achieve the particular fixed

point where in each Qi the top left and bottom right cells are set to

1 whereas the other cells are set to 0 – the kind of fixed point as in

Figure 1 (c).7 We will refer to this setting of Qi as the checkerboard

pattern. The high-level structure of fix[T10] is given in Figure 2.

Input: Grid Λ of even size L > 2, state s
Output: Sequence of cell updates reaching a fixed point

(1) if s is a fixed point then stop endif

for 0 ≤ i < n − 1 do

(2) In case Qi is stable, propagate instability into Qi

without affecting any Qk, k < i
(3) Acting only on Qi and a neighbouring square Qj , j > i,

bring Qi into the checkerboard pattern

endfor

(4) Acting only on Qn−1 and its direct neighbour cells,

bring Qn−1 into the checkerboard pattern,

and undo any changes to the affected neighbours

Figure 2. High-level structure of fix[T10] algorithm for even L > 2.

First, two trivial but necessary observations: (a) we can act only

on unstable cells, since updating stable cells has no effect; (b) any

updating action changes only the content of the updated cell. Due to

(a), we need the sanity test (1) as well as step (2). Due to (b), we

can make our changes locally. If we act on a square Qi then all other

squares retain their content (although their stability may be affected).

Step (2) is trivial based on the observation that, if any cell c is

currently stable but a neighbour cell c′ is not, then updating c′ leads

to a state in which c is unstable. Hence, to propagate instability into

Qi, we can simply start at an unstable cell c′ to the top and/or right of

Qi, and connect c′ to Qi by moving horizontally to Qi’s x position,

then down to Qi’s y position. This does not affect any Qk, k < i.
Step (3) is much more intricate. How to bring Qi into the checker-

board pattern without affecting any Qk, k < i? We need to determine

appropriate updating sequences for every possible state of Qi and its

neighbour cells. Figure 3 (a) depicts this localised sub-problem.
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Figure 3. Local sub-problems tackled in the proof of Theorem 1.

The “*” in the cells of Figure 3 (a) mean that each of the two cell

7 There are many other possible fixed points, e.g. the one where all cells are
empty. Our choice of the checkerboard is an informed one, based on manual
experimentation including runs of FF along the lines of application (I).

states 0 and 1 is possible. The area enclosed by the (red) boldface

rectangle is the one we may act on, i.e., these are cells for which we

may apply updates. The cells marked with “G” are the goal cells,

i.e., we wish to reach a state where these have the values indicated

by their colour (white 0 vs. grey 1).

To design a proof that we can tackle the localised sub-problem of

Figure 3 (a), we need to distinguish 212 = 4096 cases. Our initial

attempts to do this by hand were not fruitful. However, note that Fig-

ure 3 (a) is essentially a planning problem. For any of the possible

initial states of the cells, can we reach the depicted goal state by act-

ing only on the cells within the boldface rectangle? This is a planning

problem with deterministic operators, uncertain initial state, and full

observability. This profile is not a match for many planners, but it is

e.g. for MBP [4]. However, there is another feature we require:

(*) We want to obtain results also for tasks with unsolvable initial

states, and we want those states to be listed in the planner output.

It will become clear shortly why this is important. For the following

proof, we simply implemented a generator that enumerates all initial

states and, for each, creates a classical planning task (based on the

PDDL encoding described in Section 4). We run FF on these tasks;

any other complete and terminating classical planner would do.

Running FF in the described way on the Figure 3 (a) sub-problem,

we determined that 659 of the initial states are actually not solvable

in this way. It does not suffice to act only on the cells of the 2x2

square Qi in question. We hence consider the extended sub-problem

of Figure 3 (b). This sub-problem allows to act also on the left half

of Qj with j = i + 1, c.f. step (3) in Figure 2. This is admissible

because fix[T10] tackles the Qi by increasing i, so i + 1 is still un-

addressed and can be modified without destroying prior work. Now,

denoting Qi = Qy∗L/2+x as explained above, if x = L/2 − 1, then

x + 1 = L/2 so Qi+1 = Q(y+1)∗L/2+0 is in the row above Qi;

this case will be handled below. For now, we consider x < L/2− 1:

then, Qi+1 is the square directly to the right of Qi.

The Figure 3 (b) sub-problem has 16 cells and thus close to 65536
initial states (remember that we exclude stable ones). Running FF on

those determines that all but 48 of them are solvable. The remaining

48 unsolved cases lead to the sub-problem of Figure 3 (c). Here, we

allow to act on all cells of Qi+1. We generate the initial states by

starting from the 48 cases left unsolved in Figure 3 (b) – illustrated

by “b” in the cells in Figure 3 (c) – and extending those with all

possible settings of the remaining 4 cells, yielding 768 cases. Note

that this is the point where we exploit feature (*), or else we would

need to consider 220 cases.8 Running FF on the Figure 3 (c) tasks

determines that they are all solvable, which concludes the argument

for x < L/2 − 1. For x = L/2 − 1, we proceed in exactly the same

way, except that now the square Qj is the one directly above Qi, i.e.,

j = (y +1)L/2+x. Modifying the planning tasks accordingly, like

before we obtain 48 unsolved cases for the case corresponding to (b),

and only solved cases for the case corresponding to (c).

Step (4) of fix[T10] addresses Qi = Qn−1. There, we cannot

act on any other square Qj because all those squares have already

been dealt with. The latter, however, is also an advantage: we know

exactly what the surroundings of Qn−1 will be. Designing according

planning tasks determines that all cases are solvable, except 2 cases

where Qn−1 is already stable. For those cases, we designed tasks that

allow to act also on the surrounding cells, provided those are brought

back to their initial value. Both these tasks are solvable.

8 We could of course have done a similar reduction already in the step from
(a) to (b). This did not occur to us at this point when we first lead the proof,
and we have left it that way here since we think it provides a nice step-by-
step presentation of the proof method.
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For odd L, fix[T10] needs to consider an additional 3x2 pattern

(one per horizontal pass over the grid). Acting only on the pattern

itself yields 9195 unsolved cases; extending those to the next 2 cells

on the right yields 1056 unsolved cases; extending those to a further

2 cells on the right yields only solved cases. Extending the 9195 un-

solved cases of the basic pattern with the 3 cells above immediately

yields only solved cases. Finally, the last pattern will be a 3x2 one for

which we know exactly the surroundings, and which is solvable in all

possible 64 configurations. This concludes the proof of Theorem 1.

Clearly, the proof we have just conducted points out a general

proof method for analysing reachability in cellular automata. The

method applies whenever the target state can be expressed as a com-

bination of fixed-size local patterns. The human conducting the proof

uses planners, as we did, to examine the solvability of each pattern.

Assembling the overall proof from this is perhaps not easy in gen-

eral (although it has been in our case), but certainly much less cum-

bersome than doing the entire proof by hand. We are currently de-

veloping a proof environment for this purpose, allowing the user to

conveniently specify the local sub-problems in a manner similar to

the notations in Figure 3. Note that the flexibility of AI Planning

is instrumental for this proof method and environment, because CA

reachability is interesting for many classes of updating rules and tar-

get patterns. AI planners allow to exchange those effortlessly.

In our proof here, none of the sub-problems had a prohibitive num-

ber of initial states so we were able to enumerate those. Of course,

this may not be the case in general, so more clever techniques, such

as MBP [4], may pay off. Note however that feature (*) may be in-

strumental for scalability. It is very natural to consecutively filter out

solvable cases, as we did in the step from Figure 3 (b) to Figure 3 (c).

Recall that this reduced the number of cases for (c) from 220 to 768.

Detecting solvable/unsolvable initial states is not a match for MBP

off-the-shelf but could be accomplished by easy modifications (sym-

bolic backward chaining with BDDs). For planners returning poli-

cies, provided the planner can handle dead-ends, one could poten-

tially extract the solved states from the policy.9

4 PDDL Encoding

In the rest of the paper, we focus on CA fixed point reachability at

the global level, corresponding to application (I) from the introduc-

tion. As outlined, this question is interesting to the CA community

because, run in this way, planners provide information about what

fixed points are reachable and how to reach them. This is convenient

for manual understanding, and gives valuable input for setting up a

proof like the one we just lead (e.g. for choosing the goal pattern).

We encode the transition rule T10 into PDDL. This yields a new

benchmark for AI Planning, with a puzzle-like nature that can be

solved effectively in principle (Theorem 1), but that is not captured

by existing heuristics. In the PDDL, a predicate on(c) encodes

whether cell c contains a “1”. The transition rule yields update

actions that change the value of a cell, depending on the cell’s neigh-

bours. For classical planning, this dependency is expressed by pre-

conditions, for planning under uncertainty we use effect conditions

so that updates can be done without full knowledge of the state.

How to encode the goal of reaching a fixed point? PDDL allows

us to formulate this using a quantified goal formula (“all cells are in

a stable state”). However, that formula is rather complex. Grounding

and transformation to DNF entails enumerating all fixed point states.

9 Note here that a weaker version of (*), where the planner only guarantees
to deliver a superset of the unsolvable initial states (i.e., states marked as
“solved” are indeed solvable), would suffice for the filtering to be valid.

This is not a good idea in theory, because the number of such states

may be large. It is an even worse idea in practice, because planner

implementations tend to not be effective for this kind of enumeration.

FF’s pre-process runs out of memory already for L = 3.

We herein devise two alternative encodings, CApddl and

CApddl-dp. CApddl uses only the STRIPS fragment of PDDL and

is hence accessible to the widest possible class of planners. It sepa-

rates an “updating” and a “fixing” phase, of which the former allows

only cell updates, and the latter allows only to prove cells to be stable.

The goal is to have stable(c) for all cells c. The task is initially in

the updating phase, and an explicit switch action is used to move

to the fixing phase; once that is done, there is no way back. While

this may at first appear unnecessarily strict, it is of great advantage

for planners whose heuristics are based on ignoring delete lists:

Proposition 1 For CApddl, if s is a state in the fixing phase, then

h+(s) = hadd(s) = hFF(s) is the real goal distance of s.

Here, as usual, h+ denotes the length of the optimal solution to the

relaxed problem (no deletes); hadd is HSP’s [2] additive approxima-

tion of h+; hFF is FF’s [11] relaxed plan based approximation of h+.

Proposition 1 follows from the particular form of the actions applica-

ble in the fixing phase. We have one action for each cell c, whose only

effect is stable(c). The precondition refers only to the value of

the on(c) predicate for c and its neighbours. Hence the actions have

only positive effects, and do not influence each other’s preconditions;

each goal fact corresponds to exactly one of them. This implies that

either h+(s) = hadd(s) = hFF(s) = ∞ (in case there exists a cell

that is not stable) or h+(s) = hadd(s) = hFF(s) = the number of

cells whose action has not yet been applied.

The most important aspect of Proposition 1 is that, if the state

is not a fixed point, then applying switch leads to a state whose

relaxed plan heuristic is ∞. This would not be the case for a more

liberal encoding allowing update and fixing actions to be mixed. For

other kinds of planners, it is less clear whether this encoding is the

most favourable one. Note, however, that all fixing actions can be

applied within a single parallel time step.

CApddl-dp differs from CApddl in that stable(c) is encoded

as a derived predicate [19, 9]. In a nutshell, derived predicates al-

low to extend STRIPS-style descriptions with predicates that are not

affected by the operators, and whose value in each state is instead de-

fined via evaluating a stratified set of logic programming derivation

rules. In our case, this simply means to turn the fixing actions into

such rules. The stable(c) predicate is then evaluated directly in

every state, and the fixing phase can be dropped completely. On the

downside, many planners do not handle derived predicates.

Regardless whether CApddl or CApddl-dp is used, the puzzle-

like nature of the problem implies that ignoring delete lists is a rather

harmful relaxation. Assume that, in the definition of h+, the values

of derived predicates are derived per-state (per relaxed state, that is)

from the derivation rules, exactly as in the original problem – an

idealised definition more accurate than known approximations of h+

in the presence of derived predicates.10 Even then, we have:

Proposition 2 For both CApddl and CApddl-dp, the exit distance

from local minima under h+ is unbounded.

This exit distance [8] measures the maximal number of actions re-

quired to escape a local minimum, and thus gives a measure of how

10 FF’s heuristic [19] assumes that all derived predicates are already true
when relaxed planning begins, so on CApddl-dp the heuristic is constant
0. In LAMA [17], the relaxed plan heuristic treats derivation rules like
actions with 0 cost. Thus (if arbitrary choices are the same) it is identical
to CApddl in the updating phase, minus the constant summand L2 + 1.
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Figure 4. Experiment results in classical planning. (a) Coverage over L, (b) number of updating actions over L, (c) SATPLAN mean runtime over parallel
plan layers, (d) LAMA-DP mean number of generated states over U∗ := (number-of-update-actions)/L2. Ordering of keys corresponds (roughly) to relative

height of curves. In (c) and (d), for readability, some curves are not shown.

hard it is to “correct” the heuristic estimation error by search.11 Con-

sider, e.g., a state where only a single cell is on. Without delete lists,

one only needs to turn the 4 neighbours of that cell on as well. How-

ever, in the real problem, doing so makes many other cells unstable,

and reaching a fixed point requires Ω(L2) updates.

5 Experiments in Classical Planning

In the classical setting, for any given L, there are 2L∗L possible start

states, i.e., possible instances. We consider all these instances for

L = 2, 3, 4; for L > 4 that is not feasible. We consider 10000
instances for each L > 4. We run FF [11] as a baseline, LAMA

[17] since it performed best in IPC 2008, and SATPLAN [13] since

(in this domain) STAPLAN is actually more effective than FF and

LAMA. All experiments were run on a CPU running at 2.66 GHz,

with a 30 minute runtime cut-off, and with 1 GB memory limit.

SATPLAN does not handle derived predicates so we run it only on

CApddl. FF does handle derived predicates but its pre-processor

takes > 30 minutes already for L = 4 so we also run it only on

CApddl. LAMA is run on both CApddl and CApddl-dp, and we

will denote the different versions by LAMA and LAMA-DP respec-

tively. Due to performance differences, we run the planners up to dif-

ferent maximal L: 9 for FF, 11 for LAMA, 14 for LAMA-DP, 15 for

SATPLAN. This results in a total number of > 550000 test runs. We

11 FF’s “enforced hill-climbing” search method, e.g., attempts to escape local
minima by breadth-first search, which is exponential in exit distance.

measured the usual plan length and runtime/search space parameters,

as output by the planners. An overview of the results is in Figure 4.

Consider first Figure 4 (a), which shows coverage data – percent-

age of solved instances – over L. FF exhibits a dramatic performance

decline as we reach L = 6. LAMA does better, but also fails to scale

beyond L = 12 with derived predicates, and L = 10 without.12

SATPLAN, on the other hand, scales to L = 15 quite comfortably.

If not anything else, this certainly shows that FF and LAMA are very

bad indeed at uncovering the relevant structure of this domain. Im-

portantly, SATPLAN is far away from a “definite answer” to the do-

main. For L = 16, SATPLAN does not solve a single instance: the

formulas become too big to fit into (even 2GB) memory.

The difference between FF and LAMA appears to be mostly due to

their respective search procedures. LAMA profits enormously from

deferred evaluation [16]: the number of generated states is typically

around 2 (and sometimes even 3) orders of magnitude higher than

the number of expanded ones. On the other hand, as can be seen

in Figure 4 (b), it seems that LAMA’s search efficiency comes at

the price of overlong plans. (For readability, we show only LAMA-

DP here; the behaviour without derived predicates is similar.) Note

that even the mean length of LAMA-DP’s solutions is larger than the

maximum lengths for SATPLAN.

Figure 4 (c) offers a partial explanation of SATPLAN’s efficiency.

As one would expect, SATPLAN’s runtime grows steeply with the

number of parallel plan layers. However, the maximum number of

12 Note the zig-zag pattern: even L is easier for LAMA than odd L.
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such layers is nearly constant over L – the little variance in our data

likely arises due to the (incomplete) sampling of start states.

We remark that short plans alone are not the “key” to SATPLAN’s

performance. We ran IPP [14] to double-check whether the use of

planning graphs and parallel plans suffices, or whether the power of

modern SAT solvers is required. The result is very affirmative of the

latter: IPP solves less than 1% of the instances even for L = 5.

In Figure 4 (d), each data point arises from considering the set

of instances identified by U∗ and the respective L; the y value then

is the mean number of generated states, over these instances. U∗ is

defined, for each individual plan, as the number of updates in the plan

divided by L2, i.e., the number of updates normalised against the grid

size. Intuitively, U∗ is a measure of how “dense” the puzzle is. For

U∗ > 1, there are more updates than grid cells, which can only

be due to harmful interactions within the puzzle (unless the planner

includes actions that are completely superfluous). We can see that,

with some exceptions, LAMA-TD tends to find instances with larger

U∗ more difficult.13 LAMA and FF behave similarly.

6 Planning under Uncertainty

The CA benchmark is also suitable to challenge planning under

uncertainty (several possible start states), and generalised planning

(value of L not fixed). Consider first the conformant planning prob-

lem of obtaining a sequence of actions that achieves a fixed point

for any possible valuation of the on(c) predicate. We do not know

whether there exists a polynomial-time domain-specific conformant

planner (our algorithm fix[T10] involves observations). Note that, for

this problem, each value of L yields a single planning instance only.

We performed experiments using the planner T0 [15], that trans-

lates a conformant planning problem into classical one. A key prob-

lem is that T0’s clever encoding techniques do not help in this domain

(conformant width is equal to the number of cells). The generated

PDDL tasks are huge. FF solves the classical problem corresponding

to instance 2 × 2 in 0.07 seconds, obtaining a plan with 33 steps.

FF runs out of 14 GB memory while trying to solve the 3 × 3 in-

stance. LAMA finds a solution to that instance, a conformant plan of

984 steps. The conversion from PDDL to SAS takes 63 minutes, the

search pre-processing takes 152 minutes, and the search itself takes

8.26 minutes. We remark that the sum of the updating actions in all

of LAMA’s classical plans for L = 3 is 2786, hence the conformant

plan returned by LAMA contains significant generalisations.

One can extend the conformant problem by allowing to observe

whether a cell is on or not, obtaining a contingent planning problem.

We tried the contingent planner CLG [1], an extension of T0, on this

encoding. We were not able to obtain any result.

Finally, the “grand challenge” is to generalise over different val-

ues of L. The ultimate goal would be to automatically construct an

algorithm with properties like fix[T10]. Note that this requires, apart

from constructing loops and branches, a generalisation over the con-

crete objects (the cells) available in any given instance. This goes

well beyond the capabilities of, e.g., recent work on the automatic

construction of finite-state controllers [3].

7 Discussion

We identified an interesting new application of AI Planning, in the

investigation of fixed point behaviour of cellular automata. The ap-

13 For large L, both the higher variance in the curves and their starting at
larger U∗ likely arise because we sample smaller fractions of the set of
possible instances. We do not show curves for L = 13, 14 because, there,
the number of instances solved is too small for this plot to be meaningful.

plication is performed at two levels: (I) global in order to provide

insights about which fixed points can be reached and how, (II) local

in order to enumerate cases within human-made high-level proofs of

convergence. The CA community gains a new tool for performing

research. The AI Planning community gains a new application, and

a new family of benchmarks exhibiting interesting structure.

In planning under uncertainty, our results indicate a profound lack

of performance. Possibly, methods more targeted at learning from

experience, e.g. [18], could work better than the purely search-based

methods we tested so far. We remark that, in classical planning, we

have observed much improved performance when asking the planner

to achieve a specific state, rather than any fixed point. This variant

is not relevant in our application (where planners are supposed to

provide information about possible fixed points in the first place),

but it may form a more feasible, and hence possibly more suitable,

benchmark for planning under uncertainty.

Our main line of current work is the integration of our planning

techniques into a CA simulation tool, which we will make available

to both communities. We hope that this new connection will inspire

other researchers as well.
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