
Supporting Execution-Level Business Process
Modeling with Semantic Technologies

Matthias Born1, Jörg Hoffmann1, Tomasz Kaczmarek3, Marek Kowalkiewicz1,
Ivan Markovic1, James Scicluna2, Ingo Weber1, and Xuan Zhou1

1 SAP Research, Karlsruhe, Germany, {mat.born | joe.hoffmann |
marek.kowalkiewicz | ivan.markovic | ingo.weber | xuan.zhou}@sap.com

2 STI Innsbruck, Austria, james.scicluna@sti2.at
3 Poznan University of Economics, Poland, t.kaczmarek@kie.ae.poznan.pl

Abstract. When creating execution-level process models from concep-
tual to-be process models, challenges are to find implementations for pro-
cess activities and to use these implementations correctly. Carrying out
these activities manually can be time consuming, since it involves search-
ing in large service repositories and cycles of testing and re-designing.
We present Maestro for BPMN, a tool that allows to annotate and auto-
matically compose activities within business processes, and to verify the
consistency of an annotated process.

1 Introduction

One of the big promises of Semantic Business Process Managament is to help
bridge the gap between the business level, where the processes are modeled,
and the IT level, where they are implemented. This is one of the key issues
addressed in the SUPER project,1 based on Service-Oriented Architectures, and
on semantic annotations. For that purpose, we have made extensions to Maestro
for BPMN, a modeling tool developed at SAP Research.

In our framework, business processes are modeled as a set of tasks together
with their control flow. In order to make a process executable, a user has to as-
sociate every task in the process with an implementation in terms of services. To
support this implementation activity, we propose a combination of the following
steps: (1) semantically annotate the individual tasks; (2) check if the annotation
and the control flow are consistent; (3) discover and compose services which
implement the functionality required for each task. In our work, we developed
techniques supporting the user in step (1) (published in [2]); we developed fully
automated techniques for step (2) (published in [5]) and step (3) (published in
[8]). The demonstration will show the Maestro tool, which implements all these
techniques in a convenient GUI. Figure 1 shows a screenshot.

Within SUPER, business process models are represented in terms of the
sBPMN ontology [1],2 serving as a meta model for BPMN process models. The
ontology features the concepts, relations and attributes for standard BPMN. We

1 http://www.ip-super.org
2 sBPMN is written in WSML (http://www.wsmo.org/TR/d16/d16.1/v0.21/)

Fig. 1. A fragment of a process model represented in Maestro for BPMN.

extended it with the ability to define a state of the process before and after
execution of successive tasks. With these extensions we can derive semantic
goal descriptions for tasks. This is in line with most popular approaches to
Semantic Web Service description,3 where Web services can be annotated with
preconditions and postconditions.

As indicated, we developed support for the convenient creation of semantic
annotations. That support is based on business object life cycles. Further, we ex-
tended Maestro with automatic consistency checking – verifying the interaction
of annotations and control flow – as well as automatic discovery and composition
– finding service-based implementations for individual tasks.

We define a formal framework for service composition, following A.I. method-
ologies [9]. We consider plug-in matches, where services do not have to match
exactly, but must be able to connect in all possible situations. In particular, we
take the background ontology, i.e. the domain axioms it specifies, into account.
This is in contrast to many existing works that assume exact matches (of concept
names). We explore restricted classes of axioms, to find solutions efficiently.

The consistency checking also deals with ontological domain axiomatizations,
and it also exploits restricted classes of axioms for the sake of computational
efficiency. The check determines whether any preconditions may be violated,
and whether any parallel tasks are in a logical conflict.

Section 2 explains how we support semantic annotations. Sections 3 and 4
cover consistency checking and discovery/composition. Section 5 concludes.

2 Process Modeling and Semantic Annotation

From the graphical point of view, Maestro for BPMN implements BPMN 1.1.
However, it makes use of the sBPMN ontology, by creating on-the-fly a set of
instances for sBPMN classes. If a new BPMN task is created on the drawing

3 Followed for example in WSMO (http://www.wsmo.org).

pane, an instance of the concept Task is created in the in-memory working
ontology. This enables supportive reasoning over the working ontology.

The tool allows a user-friendly semantic annotation of process models. The
annotations link process tasks to a domain ontology. We focus on how process
activities manipulate business objects in terms of their life cycles. E.g., a task
“Send quote” sets the status of the object “Quote” to the state “sent”. For this
purpose, the domain ontology needs to specify the business objects of interest
together with their life cycles. The textual descriptions of tasks (or other ele-
ments) are matched against the entities of interest in the domain ontology using
linguistic methods for term similarity, synonyms, etc. Another way to restrict
the matches is by employing the process structure, e.g., not suggesting the same
activity twice, or comparing the process control flow to the object life cycle.

3 Consistency Checking

The consistency checking is an extended form of process verification: it deals
with inconsistencies between control flow and semantic annotations. Specifically,
we check two properties: Are the semantic preconditions guaranteed to be true
whenever a task is activated? Are there conflicting tasks that may be executed in
parallel? The basic steps taken for answering these questions are the following:
– Compute the parallelism relation. For every task, determine the set of

tasks that are potentially executed in parallel. This is done by propagating a
matrix through the process graph, where matrix entry (i, j) is true iff tasks
(Ti, Tj) may be executed in parallel.

– Detect conflicting parallel tasks. Two parallel tasks Ti and Tj are in
precondition conflict if prei (the precondition of task Ti) contradicts postj ,
and they are in effect conflict if posti contradicts postj .

– Detect non-supported preconditions. We designed a propagation algo-
rithm that associates every edge e with the intersection, I(e), of all logical
states that may arise while e is activated (carries a token). In other words,
I(e) contains exactly those literals which are always true when e is activated.
Hence, if task Ti has e as its incoming edge, then we can test Ti’s precondi-
tion for inclusion in I(e). If the precondition is not included, then we know
that there exists a process execution in which Ti is activated from a workflow
point of view, but is not executable according to its semantic annotation.

4 Task Discovery and Composition

Our first step in finding process task implementations is to discover a single se-
mantic Web service for each annotated task. For each task, we check whether the
domain ontology concept annotating the service matches the concept annotating
the task. We follow a matching technique proposed in [7], analysing intersection
of ontological elements in service descriptions and rating two descriptions as rel-
evant whenever they overlap. For that, we use the standard reasoning task of
concept satisfiability of conjunctions of concepts.

If a Web service cannot be found for a task, composition is performed. In
the spirit of [6], we formalize the semantics of composed services based on the

notion of ”belief updates” from A.I. [9]. Composition is computationally hard
and has two main sources of complexity: (i) combinatorial explosion of possi-
ble compositions, and (ii) worst-case exponential reasoning. We tackle (i) using
heuristic search, a well known technique for dealing with combinatorial search
spaces. We adapt techniques originating in A.I. Planning [4]; ours is the first
heuristic of this kind that deals with ontological axiomatizations. We address
(ii) by trading off expressivity of the background ontology against efficiency: we
investigate tractable classes of ontologies, i.e., classes where the required rea-
soning can be performed in polynomial time. We show that a combination of
binary clauses (such as subsumption relations and attribute domain/image typ-
ing) and attribute cardinality bounds is tractable. It follows from [3] that Horn
clauses (corresponding to Logic Programming rules) are not tractable; we design
tractable approximate update-reasoning techniques that preserve either sound-
ness or completeness. Other features (such as QoS) are part of our ongoing work.
Our experiments show that the tool can create non-trivial composed services,
from repositories containing hundreds of services, within a few seconds.

5 Conclusion

We present extensions to Maestro for BPMN. The demo shows how business an-
alysts can easily annotate process elements (in particular tasks). Maestro checks
whether the annotated process model is consistent in terms of its workflow and
the semantics of its tasks. Maestro automatically finds and composes Web ser-
vices that can realize individual tasks. Overall, this provides significant support
for the service-based implementation of process models.

References

1. W. Abramowicz, A. Filipowska, M. Kaczmarek, and T. Kaczmarek. Semantically
enhanced business process modelling notation. In SBPM Workshop, 2007.

2. M. Born, F. Dörr, and I. Weber. User-friendly semantic annotation in business
process modeling. In Hf-SDDM Workshop, December 2007.

3. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revi-
sion, updates, and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

4. J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. J. AI Research, 14:253–302, 2001.

5. Jörg Hoffmann, Ingo Weber, James Scicluna, Tomasz Kacmarek, and Anupriya
Ankolekar. Combining scalability and expressivity in the automatic composition of
semantic web services. In ICWE, 2008.

6. C. Lutz and U. Sattler. A proposal for describing services with DLs. In DL, 2002.
7. D. Trastour, C. Bartolini, and C. Preist. Semantic web support for the business-to-

business e-commerce lifecycle. In WWW, pages 89–98, 2002.
8. Ingo Weber, Jörg Hoffmann, and Jan Mendling. On the semantic consistency of

executable process models. In ECOWS, 2008.
9. Marianne Winslett. Reasoning about action using a possible models approach. In

AAAI, pages 89–93, 1988.

