
Available

CAV

Evaluation
Artifact

Reusable

CAV

Evaluation
Artifact

MoGym: Using Formal Models
for Training and Verifying
Decision-making Agents⋆

Timo P. Gros1 , Holger Hermanns1,2 , Jörg Hoffmann1 , Michaela
Klauck1 , Maximilian A. Köhl1 , and Verena Wolf 1

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2Institute of Intelligent Software, Guangzhou, China

{timopgros,hermanns,hoffmann,klauck,koehl,wolf}@cs.uni-saarland.de

Abstract. MoGym, is an integrated toolbox enabling the training and
verification of machine-learned decision-making agents based on formal
models, for the purpose of sound use in the real world. Given a formal rep-
resentation of a decision-making problem in the JANI format and a reach-
avoid objective, MoGym (a) enables training a decision-making agent
with respect to that objective directly on the model using reinforcement
learning (RL) techniques, and (b) it supports rigorous assessment of the
quality of the induced decision-making agent by means of deep statistical
model checking (DSMC). MoGym implements the standard interface for
training environments established by OpenAI Gym, thereby connecting
to the vast body of existing work in the RL community. In return, it
makes accessible the large set of existing JANI model checking bench-
marks to machine learning research. It thereby contributes an efficient
feedback mechanism for improving in particular reinforcement learning
algorithms. The connective part is implemented on top of Momba. For
the DSMC quality assurance of the learned decision-making agents, a
variant of the statistical model checker modes of the Modest Toolset
is leveraged, which has been extended by two new resolution strategies
for non-determinism when encountered during statistical evaluation.

Keywords: Formal Methods · Statistical Model Checking · Reinforce-
ment Learning

1 Introduction

Making optimal decisions in an uncertain environment is the crux of many prac-
tical problems. Reinforcement Learning (RL) is a popular method to compute
near-optimal policies for sequential decision-making problems [60]. In the last
years, RL algorithms that approximate optimal decision policies by training deep
⋆ Authors are listed alphabetically. This work was partially supported by the German

Research Foundation (DFG) under grant No. 389792660 as part of TRR 248, by the
European Regional Development Fund (ERDF), and by the Key-Area Research and
Development Program Grant 2018B010107004 of Guangdong Province.

https://doi.org/10.5281/zenodo.6510840
http://orcid.org/0000-0002-1100-1952
http://orcid.org/0000-0002-2766-9615
http://orcid.org/0000-0003-1590-5876
http://orcid.org/0000-0002-6353-227X
http://orcid.org/0000-0003-2551-2814
http://orcid.org/0000-0001-8460-6007

2 T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M.A. Köhl, V. Wolf

neural networks have exhibited unprecedented performance in various tasks [47].
However, the expressivity of these models makes them difficult to interpret or to
be checked for consistency for some desired properties. This is an impediment
to the use of such representations in safety-critical applications [61]. In addi-
tion, the environment of the decision-making agent executing the policy during
training is typically specified implicitly in the form of simulation code. In the
academic context, for instance the Arcade Learning Environment is widely used,
which provides game simulators for different ATARI 2006 benchmarks [6].

If one strives for a principled understanding of the power of RL algorithms
or of the properties of a specific learned agent in the (possibly uncertain) en-
vironment, a formal, mathematically precise and unambiguous description of
the training environment appears central. The formal methods community has
developed appropriate language concepts for the description of such environ-
ment models. Their advantage lies in their succinctness and modularity as well
as their underlying mathematically rigorous formal semantics based on stochas-
tic process models such as Markov Decision Processes (MDPs) [53], the main
semantic object of probabilistic model checking [40]. A widespread format to
describe MDP models of environments is the JANI format [14], providing a mod-
ular, automata-like syntax, supported by several model checkers, like Storm, the
Modest Toolset, ePMC [33,30,29], and via a translation also by PRISM [41].

This paper presents MoGym, a toolbox that bridges the gap between formal
methods and RL by enabling (a) formally specified training environments to be
used with machine-learned decision-making agents, and (b) the rigorous assess-
ment of the quality of learned agents. For (a), it implements and extends the
OpenAI Gym API [11], which is the widely used standard interface for deep rein-
forcement learning [55,26,16,35,50]. MoGym is based on Momba [39], a Python
toolbox for dealing with quantitative models from construction to analysis cen-
tered around JANI. MoGym can process JANI models for the description of a
training environment and, based on the induced formal MDP semantics, makes
it possible to train agents using popular RL algorithms.

For (b), the environment format itself is accessible to state-of-the-art model
checkers. This enables probabilistic model checking of a specific agent acting
in the environment specified by the model. This can be crucial to determin-
ing if further training improves the agent’s quality and, whenever synthesis of
the optimal agent is feasible, it allows a comparison of the agent’s behavior
to the optimal one. As such, the environment provides a stable and fully con-
trollable training and checking context to assert the safety risk induced by an
agent during and after training. More concrete, MoGym leverages deep statis-
tical model checking (DSMC) [20,21]. As shown in these works on DSMC, the
quality assessment of an agent during training is not trivial and can especially
not always be derived from the observed training returns. Hence, analyzing the
quality of the decision-making agents after training clearly is of interest [20,21],
especially for badly interpretable agent structures such as neural networks (NN).
In DSMC this is done by using the decision-making agent as an oracle resolving
the non-determinism in the MDP specifying the environment. When resolving

MoGym: Formal Models for Training & Verifying Decision-making Agents 3

algorithms
Momba Modest Toolset

Decision Agent Arbitrary Oracle

OpenAI Gym
API

Momba
Gym

DSMC
API

DSMC

MoGym

trained
with RL
on

verified
with

uses

implements
/extends

AI/Learning
Community

environments

users

Fig. 1: The architecture of MoGym and its components

the non-determinism, a Markov chain results on which the probability of sat-
isfying a given reach-avoid objective can be calculated. A prominent technique
for doing so with very low memory requirements is statistical model checking
(SMC) [5,34,44,64,67,7,32]. The satisfaction probability for the reach-avoid ob-
jective calculated using statistics based on a set of simulation runs of the resulting
Markov chain, can serve as an indicator of the quality of the decision-making
agent for solving the reach-avoid task it was originally trained on.
MoGym comprises the following components:

– Momba Gym, newly implemented on top of Momba [39]. It implements and
extends the OpenAI Gym API [11] for deep reinforcement learning. Momba
Gym can be used to load a specified formal model together with a reach-
avoid objective given by a JANI file [14] and then train a decision-making
agent on it, which interacts in the environment given by the formal model.

– The DSMC API, also newly implemented on top of Momba. It includes a
Python API to use the DSMC functionality [20,21] of the Modest Toolset
[30,13].

– DSMC implemented in the Modest Toolset. In prior work [20,21], we
implemented Deep Statistical Model Checking for specific networks and pur-
poses, only. With this work, we extend the statistical model checker modes
[13] of the Modest Toolset to be able to handle any formal MDP model
given in one of the input languages of the toolset, and any neural network
of arbitrary structure, as well as arbitrary oracles connected via a function.
With the DSMC functionality it is possible to statistically model check the
probability with which formal properties, i. e., reach-avoid objectives, are
fulfilled by the decision-making agent, respectively oracle.

Figure 1 shows how the different parts of MoGym are interconnected. First,
a decision-making agent can be trained on a formal model and a reach-avoid
property, defined in a JANI model, against the OpenAI Gym API by using
Momba Gym with different reinforcement learning techniques, which can be
implemented and defined by the user. Afterwards, the trained agent can be
verified w.r.t. reach-avoid objectives by invoking the DSMC API, which makes
use of the DSMC extension of the statistical model checker modes. Alternatively,

4 T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M.A. Köhl, V. Wolf

the training step can be skipped, or can be done in any other way, and an
arbitrary external oracle can be checked.

We are not aware of any other work that enables a direct connection of formal
verification models and reinforcement learning that directly allows the analysis
of different RL agents for a variety of verification benchmarks.

Outline of the paper. In Sect. 2 we describe the Momba Gym Python API
and explain how MoGym is used to train agents on existing JANI MDPs. Sect. 3
presents the DSMC API of Momba, and discusses its use to assess the quality
of decision-making agents or arbitrary oracles via DSMC, together with the new
DSMC functionality of modes. In Sect. 4 we provide empirical insight into the
full functionality of MoGym. Sect. 5 concludes the paper.

A preview of the Jupyter Notebook demonstrating the code we used to ex-
ecute the experiments shown in the paper can be found online. It will later be
part of the full artifact for the tool paper.

2 Formal Models as Training Environments

At the heart of MoGym is an implementation of the OpenAI Gym API in
Momba Gym, which now enables the usage of JANI models as training environ-
ments. OpenAI Gym [11] constitutes the standard API for interfacing environ-
ments with different reinforcement learning algorithms enabling their comparison
and fostering development of new techniques. It is widely used by both, algo-
rithms that interact with the interface [55,26,16,35,50], as well as various bench-
marks that implement (and sometimes extend) the interface [63,66,62,3,18,15].
With Momba Gym, MoGym provides an extension of this API for general JANI
MDP models equipped with reach-avoid properties. JANI is a JSON-based for-
mat for exchanging formal models between tools [14]. It is the standard format in
the quantitative verification community and directly supported by state-of-the-
art tools, like Storm [33], the Modest Toolset [30], and ePMC [29]. Transla-
tions from and to other languages such as the PRISM language [41,42], Modest
[28] and even the planning language PPDDL [37,36] exist.

A JANI model is a network of interacting automata with variables. Each
automaton consists of a set of locations and a set of probabilistic edges from
a source location to possibly multiple destination locations. Edges can be la-
beled with edge labels and annotated, depending on the destination, with as-
signments to variables. The transitions of the network are then obtained by
synchronizing the automata, i. e., in every transition, potentially multiple au-
tomata participate with one edge, respectively. For our purposes, we assume
that a decision-making agent controls a single automaton in the network, i. e.,
resolves the non-determinism of this automaton. Fig. 2 exemplifies the construc-
tion of an automata network from two automata: a controlled automaton (a) and
a non-controlled automaton (b). Depending on which of the edges of automaton
(b) is taken, the probability of ending up in state b is either 1.0 (action α) or 0.2
(action β). The final composition (c) is then the product of both automata syn-
chronizing over the shared edge labels α and β. Controlling automaton (a) here

https://github.com/udsdepend/cav22-mogym-artifact/blob/main/mogym/Experiments.ipynb

MoGym: Formal Models for Training & Verifying Decision-making Agents 5

x y

α 1

β 1

(a) Controlled
automaton.

a

b

cβ

α 1

0.2

0.8

(b) A non-controlled
automaton.

⟨x, a⟩

⟨y, b⟩

⟨y, c⟩⟨β, β⟩

⟨α, α⟩ 1

0.2

0.8

(c) Composition of both
automata.

Fig. 2: Networks of interacting automata.

implies selecting which of the transitions in the final compositional does happen.
By choosing the edge labeled with α, the transition ⟨α, α⟩ in the composition
is selected and analogously for β. The choice of α in the controlled automaton
obviously is the one maximizing the probability of reaching the green state ⟨y, b⟩
in the composition (c). In fact, the state is reached with certainty. Technically,
this approach would extend to a multi-agent setting where different agents re-
solve the non-determinism in different parts of the model. We plan to provide
a multi-agent setting in future work and assume here that all non-determinism
not resolved by the controlled automaton is resolved uniformly.1

For training an agent in an environment, the OpenAI Gym API requires the
definition of an action space and an observation space. In response to receiving
observations from the observation space, the trained agent makes a decision
from the action space. To enable the usage of general JANI MDP models as
environments, an action space and observation space have to be extracted from
the model. Depending on the model, there are multiple ways to do so. Momba
Gym implements different strategies for this extraction. For the action space,
edges of the controlled automaton can be selected by index or by label. For
the observation space, (i) only global variables, (ii) global variables and local
variables of the controlled automaton, or (iii) all variables can be declared as
observable.2 Other strategies can easily be added to Momba Gym.

Whenever the agent makes a decision in response to an observation, the de-
cision is mapped to an edge of the controlled automaton and then to a transition
of the network. If present, other non-deterministic influences are resolved uni-
formly at random, as mentioned above. In this case, the user receives a warning
message so that this is taken into account when inspecting the results. After
taking the respective transition, the environment continues the trace through
the model until a state is reached where the agent can make a decision again.

Momba Gym supports reach-avoid properties of the form ϕUψ where ϕ and
ψ are propositional logic formulas over the model’s states. ϕ U ψ encodes the
property that a state satisfying ψ is reached eventually and that ϕ holds on all
states prior to reaching ψ. In a bad state, which should be avoided, ψ is not

1 That is, each of the remaining non-deterministic options is considered equiprobable.
MoGym can easily be extended with other mechanisms to resolve non-determinism.

2 For more details about those strategies see https://momba.dev/gym/.

https://momba.dev/gym/

6 T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M.A. Köhl, V. Wolf

satisfied and (i) there are no remaining transitions or (ii) ϕ is violated. In a goal
state ψ is satisfied. To apply RL techniques, Momba Gym supports providing a
reward structure specifying the reward for reaching a goal, the (usually negative)
reward for reaching a bad state, the reward for taking a decision neither leading
to a goal nor to a bad state (usually zero), and the reward for taking a non-
applicable decision. Using the Momba Gym API integrated in Momba, one can
create a training environment from an arbitrary JANI MDP model as follows:

from momba import jani, gym
model = jani.load_model(JANI_SOURCE)
...
env = gym.create_generic_env(model, automaton)

In this command, automaton is the automaton the agent controls. The function
create_generic_env takes additional optional parameters specifying the strat-
egy for the extraction of the action and observation space (i. e., by index or by
label, see above) as well as the reward structure (by defining the four reward
values indicated above) and parameters of the JANI model. The resulting env
implements the OpenAI Gym API such that it can be directly used to train an
agent for the given property using arbitrary RL algorithms based on the OpenAI
Gym API. Thereby, Momba Gym makes JANI MDP models accessible to the
RL community to train and evaluate their algorithms on. The implementation
of the Momba Gym environment uses the explicit state space exploration engine
of Momba which is written in Rust. It is sufficiently performant such that it can
be used to train different agents using state-of-the-art RL algorithms.

Momba Gym extends the OpenAI Gym API with the ability to fork the
environment and query the applicable actions. The former is useful for algo-
rithms based on Monte-Carlo Tree Search (MTS) [12], known to act favorably
on prominent benchmarks, like Atari Games [24]. Further, MTS forms the basis
of DeepMind’s famous algorithms around AlphaGo and AlphaZero [57].

In addition to the general Momba Gym API, we provide exemplary code to
train an agent for an arbitrary formal model. While we ourselves implemented
deep Q-learning [47], MoGym is open to any (deep) reinforcement learning al-
gorithm. Using our implementation of deep Q-learning, enables training of a
decision-making agent for an arbitrary JANI MDP model.3 We note however
that deep RL is known to be hyperparameter sensitive [45], so intensive tweak-
ing of hyperparameters might be needed for the learning to work. In this regard
our deep Q-learning implementation is no exception.

3 Verifying Agents Using Statistical Model Checking

If given a formal model and a decision-making agent trained on it, MoGym
supports verification by deep statistical model checking. To this end, the DSMC
API of MoGym implements two functions, one for verifying arbitrary agents in
the form of Python functions and one for verifying PyTorch neural networks.
3 Details will be included in the artifact of the paper.

MoGym: Formal Models for Training & Verifying Decision-making Agents 7

Both functions rely on our DSMC extension of the statistical model checker
modes [13] of the Modest Toolset [30], which accepts both forms of decision
entities, and returns the reach-avoid probability calculated by the model checker.

Statistical model checking is based on Monte-Carlo simulation [56,65]. Using
statistics, a probability estimate is derived from a set of simulation runs, regard-
ing the satisfaction of a reach-avoid property, the error of which is bounded by a
confidence interval. This is determined by the probability of the error in the com-
putation being larger than ϵ is smaller than δ: P (error > ϵ) < δ. For SMC to be
applicable, the non-determinism of the model needs to be resolved [8,13]. In our
DSMC setting this is done by the agent and otherwise resolved uniformly, i. e.,
equiprobable across all options (see Sect. 2). The computed reach-avoid proba-
bility can serve as an indicator of the overall quality of the decisions made by the
agent [20]. The DSMC implementation in modes provides the same functionality
regarding the observation space (global and/or local variables) and action space
(select by index or label) as the Momba Gym training infrastructure described
in Sect. 2.

As mentioned above, modes can deal with two variants of decision-making
agents. An arbitrary Python function mapping observations to decisions can be
checked with the DSMC API of MoGym by executing:

gym.checker.check_oracle(oracle, model, automaton)

Here, oracle is the Python function implementing the decision-making agent.
Notably, this is not limited to trained agents in any way. Any arbitrary Python
function with an appropriate signature can be used. The other parameters are
analogous to create_generic_env. In particular, check_oracle also allows op-
tionally specifying a strategy for extracting the action and observation spaces
(see above).

While check_oracle involves executing Python code, a more efficient ap-
proach is available when the decision-making agent is a PyTorch neural network.
In this case, the network can directly be verified with check_nn:

gym.checker.check_nn(nn, model, automaton)

To this end, we assume that the network is a sequence of layers. The function
check_nn extracts these layers from the provided neural network nn and exports
them in a JSON-based format. The neural network is then loaded by modes
and used for model checking without calling back into the Python runtime.
With the help of TorchSharp [25] (a .NET library providing access to the library
that powers PyTorch) our extension of modes supports networks with arbitrary
dimensions and activation functions.

Alternatively to the DSMC API provided by MoGym, it is also possible to
invoke modes on the command line to check a NN or to connect it to an arbitrary
decision-making agent via a socket connection. The agent could be any program
taking the information of the observation space as input and sending an action
decision back.

8 T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M.A. Köhl, V. Wolf

4 Experimental Insights

With MoGym it is now possible to train agents and assess their quality for
arbitrary JANI MDP models by evaluating them using the DSMC extension of
the statistical model checker modes. In the following, we demonstrate all parts
of the workflow when MoGym is used from training to evaluation. For our case
studies, the training was performed by using a well-established standard RL
algorithm, the deep Q-learning algorithm [47].

Benchmarks. Working with MoGym starts with devising a formal model to train
a decision-making agent on. For example, the Quantitative Verification Bench-
mark Set (QVBS) [31] contains JANI models originally collected for competitions
among quantitative verification tools. With the help of MoGym they are now
accessible for use in the learning community. For our case studies, we selected
three MDP benchmarks from the QVBS: cdrive.2, elevators and firewire_dl.
With respect to the observation spaces, we use the Momba Gym API default
setting, in which only global variables are observable.

In cdrive.2 a car drives in a city modeled using locations connected by roads
with traffic lights. The car should reach a destination without an accident [10]. In
the elevators case, a certain number of elevators is available to transport coins
to a predefined level. An elevator can fall down on a lower level [38,10]. The
firewire_dl benchmark models the leader election protocol in the Tree Identify
Protocol of the IEEE 1394 High Performance Serial Bus [59,43].

Another popular benchmark is Racetrack, which has been adopted for deci-
sion making under uncertainty in many works [2,19,4,9,46,51,52]. In Racetrack,
a vehicle needs to be driven on a discretized grid track towards a goal as fast as
possible without crashing. A preview of the Jupyter Notebook showing the code
we used for the experiments, which will later be part of the tool paper’s artifact,
is available online.

Training. We trained agents for all of the considered benchmarks by using the
calls to the Momba Gym API as introduced in Sect. 2, which can be inspected
in Sect. 2.1 and 2.2 of the Jupyter notebook.

Fig. 3 (a) and (b) shows the training progress of cdrive.2 and Racetrack,
respectively, depicted in blue. The training for cdrive.2 took around 1 min, and
for Racetrack about 22 min, on a standard laptop. In contrast to these two
benchmarks, learning for elevators and firewire_dl failed. During training, the
agent was able to reach the goal, but the NN was not able to generalize.

Verification. For cdrive.2 and Racetrack, the training return increases over the
number of training episodes and is quite stable at the end. The training return
is commonly regarded as an estimator of the training progress [48,47]. Here it
appears to indicate that the quality of the trained neural networks does neither
increase nor decrease from a certain episode on.

However, we now can use DSMC to check the actual quality of the trained
agents, i. e., we can determine how high the probability is that they indeed

https://github.com/udsdepend/cav22-mogym-artifact/blob/main/mogym/Experiments.ipynb
https://github.com/udsdepend/cav22-mogym-artifact/blob/main/mogym/Experiments.ipynb

MoGym: Formal Models for Training & Verifying Decision-making Agents 9

(a) (b)

Fig. 3: Blue: Training curve showing sliding mean of the training return, i. e., the
accumulated discounted reward over the last 500 training episodes, on the left
y-axis. Note the different scale for (a) and (b). Red: Goal reachability probability
on the right y-axis. Both are plotted over the number of training episodes on the
x-axis. (a) Shows results for cdrive.2 and (b) for Racetrack.

reach the goal in their respective environments defined by the MDP model.
We do so by making use of the DSMC API of MoGym, introduced in Sect. 3
using modes as backend. We check the goal reachability probability of the NN
policies extracted every 1000 training episodes as shown in Sect. 2.1 and 2.2 of
the Jupyter notebook.

As depicted by Fig. 3, the return during training is not as expressive as
expected. While the training return is relatively consistent for both cdrive.2 and
Racetrack, the goal reachability probability (depicted in the red points) over
training is not. In contrast, it both increases and decreases over the training
episodes. So, the training return alone turns out not to be a good indicator
for deciding which of the extracted policies actually is the best one. For cdrive.2
(Fig. 3 (a)), this can be considered as fine tuning, as most of the policies perform
near-optimal. In contrast, for Racetrack (Fig. 3 (b)), we observe a huge difference
between the policies, including near-optimal policies as well as policies with a
goal reachability probability of only about 20%. These deeper insights regarding
the neural networks’ quality are only possible by using DSMC.

Having selected the best policy for each benchmark, the analysis yields a goal
reachability probability of 86.57% for cdrive.2, where a policy acting optimally
would reach the goal with a probability of 86.45%.4 The optimal value has been
calculated with the exhaustiv probabilistic model checking engine mcsta [27] of
the Modest Toolset. The goal reachability probability of the best NN policy
4 Note that the goal reachability probability of the NN policies is estimated by sta-

tistical model checking. Thus, even though it might seem surprising at first sight,
it is of course possible that the analysis of our policy yields a slightly higher goal
reachability probability than optimally possible as long as this is within the given
confidence interval. We use P (error > ϵ) < δ, where ϵ = 0.01 and δ = 0.05, i. e., a
confidence of 95%.

https://github.com/udsdepend/cav22-mogym-artifact/blob/main/mogym/Experiments.ipynb

10 T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M.A. Köhl, V. Wolf

of the trained agent for Racetrack is 97.30% where the optimal policy reaches
the goal with a probability of 99.99%.

5 Conclusion and Future Work

We presented MoGym, an integrated toolbox to train, analyze and verify decision-
making agents on formal models. These formal models are made available through
Momba Gym, which implements and extends the well-established OpenAI Gym
API for arbitrary reinforcement learning techniques. Using these techniques to
obtain NNs or, alternatively, some general decision-making agents, they can then
be rigorously verified with DSMC using the new extension of modes. The ap-
proach is open to all JANI MDPs and modes can in principle handle arbitrary
fully connected and even convolutional networks.

On the basis of the QVBS and Racetrack, we showed how the toolchain of
MoGym works. As presented, our formal-model-based approach enables deeper
insights for specified properties than non-formal, implicitly defined simulation-
based environments.

In the future, we want to address the problem which caused the training for
elevators and firewire_dl to fail. Given the successes of deep RL across many di-
verse environments [58,57,54,23,49,1,47], one is tempted to expect it to work well
on the considered environments [31,22], too. Still, deep reinforcement learning is
known to perform badly in domains with large action spaces [17], and we suspect
this to be the root of the problem we observe. The action structures arising in
networks of automata are of a specific kind. Rooted in process algebra, their
main role is to enable and orchestrate synchronization across automata, and
this is indeed the case for the JANI models elevators and firewire_dl. A more
meaningful construction of an action space of compositional models suitable for
learning appears needed.

Furthermore, the extension of our tool to other model types and an extension
to control all of the modeled automata, making the learning task a multi-agent
one, would clearly be of interest. Apart from that, we plan to build upon MoGym
to develop DSMC techniques further. With DSMC Evaluation Stages [21] it has
already been shown that DSMC can be applied during deep RL to determine
state space regions with weak performance to concentrate on them during the
learning process. With the help of MoGym this technique can now be done
much more integrated and there is room for further implementations into this
direction in our tool chain.

References

1. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the Rubiks Cube with
Deep Reinforcement Learning and Search. Nature M. Intel. pp. 356–363 (2019)

2. Baier, C., Christakis, M., Gros, T.P., Groß, D., Gumhold, S., Hermanns, H., Hoff-
mann, J., Klauck, M.: Lab conditions for research on explainable automated deci-
sions. In: TAILOR 2020. pp. 83–90 (2020)

MoGym: Formal Models for Training & Verifying Decision-making Agents 11

3. Bard, N., et al.: The hanabi challenge: A new frontier for ai research. Artificial
Intelligence 280, 103216 (2020)

4. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artificial Intelligence 72(1), 81 – 138 (1995)

5. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
Abstraction and Model-Checking of Large Heterogeneous Systems. In: FORTE
2010. vol. 6117, pp. 32–46. Springer (2010)

6. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning envi-
ronment: An evaluation platform for general agents. JAIR 47, 253–279 (2013)

7. Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial order methods
for statistical model checking and simulation. In: FORTE 2011. vol. 6722, pp. 59–
74. Springer (2011)

8. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model
Checking for Modestly Nondeterministic Models. In: GI/ITG Conf. Measurement,
Modelling, and Eval. Comp. Sys. Depend. Fault Tol. pp. 249–252. Springer (2012)

9. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: ICAPS. pp. 12–21 (2003)

10. Bonet, B., Givan, B.: Non-Deterministic Planning Track of the 2006 IPC.
http://idm-lab.org/wiki/icaps/ipc2006/probabilistic/ (2006), acc. Oct., 13, 2021

11. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. CoRR abs/1606.01540 (2016)

12. Browne, C.B., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comp. Intel. and AI in Games 4(1), 1–43 (2012)

13. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: TACAS. pp. 340–358 (2018)

14. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: TACAS. pp. 151–168 (2017)

15. Côté, M.A., et al.: Textworld: A learning environment for text-based games. In:
Workshop on Computer Games. pp. 41–75. Springer (2018)

16. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

17. Dulac-Arnold, G., et al.: Deep reinforcement learning in large discrete action
spaces. arXiv preprint arXiv:1512.07679 (2015)

18. Fan, L., Zhu, Y., Zhu, J., Liu, Z., Zeng, O., Gupta, A., Creus-Costa, J., Savarese,
S., Fei-Fei, L.: Surreal: Open-source reinforcement learning framework and robot
manipulation benchmark. In: Conf. Robot Learning. pp. 767–782. PMLR (2018)

19. Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.: Trace-
Vis: Towards Visualization for Deep Statistical Model Checking. In: Int. Symp.
Leveraging Applications of Formal Methods, Verification and Validation (2020)

20. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: FORTE 2020. pp. 96–114 (2020)

21. Gros, T.P., Höller, D., Hoffmann, J., Klauck, M., Meerkamp, H., Wolf, V.: DSMC
evaluation stages: Fostering robust and safe behavior in deep reinforcement learn-
ing. In: QEST. pp. 197–216 (2021)

22. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning. In: QEST 2020. vol. 12289, pp. 11–
17. Springer (2020)

23. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep Reinforcement Learning for Robotic
Manipulation with Asynchronous Off-policy Updates. In: 2017 IEEE Int. Conf.
robotics and automation (ICRA). pp. 3389–3396. IEEE (2017)

12 T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M.A. Köhl, V. Wolf

24. Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time
atari game play using offline monte-carlo tree search planning. In: Advances in
neural information processing systems. pp. 3338–3346 (2014)

25. Gustafsson, N., et al.: TorchSharp. https://github.com/dotnet/TorchSharp (2021),
accessed on Sept., 22, 2021

26. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Int. conf.
ML. pp. 1861–1870. PMLR (2018)

27. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded proba-
bilistic model checking techniques. In: SETTA 2016. pp. 85–100 (2016)

28. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des.
43(2), 191–232 (2013)

29. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasmc: A web-based
probabilistic model checker. In: FM 2014. pp. 312–317 (2014)

30. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: TACAS 2014. pp. 593–598 (2014)

31. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quanti-
tative Verification Benchmark Set. In: TACAS 2019. pp. 344–350 (2019)

32. Hartmanns, A., Timmer, M.: On-the-Fly Confluence Detection for Statistical
Model Checking. In: NFM 2013

33. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. Jour. on Software Tools for Technology Transfer (2021)

34. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: VMCAI 2004. vol. 2937, pp. 73–84. Springer (2004)

35. Ho, J., Ermon, S.: Generative adversarial imitation learning. Advances in neural
information processing systems 29, 4565–4573 (2016)

36. Hoffmann, J., Hermanns, H., Klauck, M., Steinmetz, M., Karpas, E., Magazzeni,
D.: Let’s learn their language? A case for planning with automata-network lan-
guages from model checking. In: AAAI 2020. pp. 13569–13575 (2020)

37. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap between
probabilistic model checking and probabilistic planning: Survey, compilations, and
empirical comparison. J. Artif. Intell. Res. 68, 247–310 (2020)

38. Koehler, J., Schuster, K.: Elevator control as a planning problem. In: 5. Int. Conf.
Art. Intel. Planning Sys. pp. 331–338. AAAI (2000)

39. Köhl, M.A., Klauck, M., Hermanns, H.: Momba: JANI meets python. In: TACAS.
pp. 389–398 (2021)

40. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: SFM
2007, Advanced Lectures. pp. 220–270. LNCS 4486 (2007)

41. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: 23. CAV 2011. pp. 585–591 (2011)

42. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: 9.
QEST 2012. pp. 203–204 (2012)

43. Kwiatkowska, M.Z., Norman, G., Sproston, J.: Probabilistic model checking of
deadline properties in the IEEE 1394 firewire root contention protocol. Formal
Aspects Comput. 14(3), 295–318 (2003)

44. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview.
In: Runtime Verification - 1. RV 2010. vol. 6418, pp. 122–135. Springer (2010)

45. Liessner, R., Schmitt, J., Dietermann, A., Bäker, B.: Hyperparameter optimization
for deep reinforcement learning in vehicle energy management. In: ICAART (2).
pp. 134–144 (2019)

MoGym: Formal Models for Training & Verifying Decision-making Agents 13

46. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS. pp. 151–160 (2005)

47. Mnih, V., et al.: Human-level Control through Deep Reinforcement Learning. Na-
ture 518, 529–533 (2015)

48. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Int.
conf. machine learning. pp. 1928–1937. PMLR (2016)

49. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Advances in Neural Inf. Proc. Sys. 31, pp.
9839–9849. Curran Associates, Inc. (2018)

50. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by
self-supervised prediction. In: Int. conf. ML. pp. 2778–2787. PMLR (2017)

51. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAI. pp. 2350–2356 (2013)

52. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
Revisiting determinization. In: ICAPS 2014 (2014)

53. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (1994)

54. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep Reinforcement Learning
Framework for Autonomous Driving. Electronic Imaging 2017(19), 70–76 (2017)

55. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

56. Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic
Systems. In: CAV. pp. 266–280 (2005)

57. Silver, D., et al.: Mastering the Game of Go Without Human Knowledge. Nature
550(7676), 354–359 (2017)

58. Silver, D., et al.: A General Reinforcement Learning Algorithm That Masters
Chess, Shogi, and Go Through Self-play. Science 362(6419), 1140–1144 (2018)

59. Stoelinga, M., Vaandrager, F.W.: Root contention in IEEE 1394. In: 5. AMAST
Workshop, ARTS’99. vol. 1601, pp. 53–74. Springer (1999)

60. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive
computation and machine learning, The MIT Press, second edn. (2018)

61. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically in-
terpretable reinforcement learning. In: Int. Conf. on ML. PMLR (2018)

62. Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T.,
Knapp, A., Kyek, A.: Optimization of global production scheduling with deep
reinforcement learning. Procedia Cirp 72, 1264–1269 (2018)

63. Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson env: Real-world
perception for embodied agents. In: IEEE Conf. Computer Vision and Pattern
Recognition. pp. 9068–9079 (2018)

64. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV 2002. vol. 2404, pp. 223–235. Springer (2002)

65. Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. Statis-
tical Probabilistic Model Checking: An Empirical Study. In: TACAS. pp. 46–60.
Springer (2004)

66. Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., Levine, S.: Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. In: Conf. Robot Learning. pp. 1094–1100. PMLR (2020)

67. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. FM Sys. Des. 43(2), 338–367 (2013)

	MoGym: Using Formal Models for Training and Verifying Decision-making Agents

