FF: The Fast-Forward Planning System

Jorg Hoffmann
Institute for Computer Science
Albert Ludwigs University
Georges-Kohler-Allee, Geb. 52
79110 Freiburg, Germany
hoffmann@informatik.uni-freiburg.de

Abstract

Fast-Forward, abbreviated FF, was the most suc-
cessful automatic planner in the AIPS-2000 plan-
ning systems competition. Like the well known
HSP system, FF relies on forward search in the
state space, guided by a heuristic that estimates
goal distances by ignoring delete lists. It differs
from HSP in a number of important details. This
article describes the algorithmic techniques used
in FF in comparison to HSP, and evaluates their
benefits in terms of runtime and solution length
behavior.

Introduction

Fast-Forward, abbreviated FF, was the most suc-
cessful automatic planner in the ATPS-2000 plan-
ning systems competition. Though its perfor-
mance clearly distinguished it from the other
planners, the idea behind the approach is not new
to the planning community. In fact, the basic
principle is that of the HSP system, first intro-
duced by Bonet et al. (Bonet, Loerincs, & Geffner
1997). Planning problems are attacked by for-
ward search in state space, guided by a heuristic
function that is automatically extracted from the
domain description. To arrive at such a function,
both planning systems relaz the planning prob-
lem by ignoring parts of its specification, i.e., the
delete lists of all actions.

FF can be seen as an advanced successor of the
HSP system, which differs from its predecessor in
a number of important details.

1. A more sophisticated method for heuristic eval-
uation, taking into account positive interac-
tions between facts.

2. A novel kind of local search strategy, employ-
ing systematic search for escaping plateaus and
local minima.

3. A method that identifies those successors of a
search node that seem to be—and usually are—
most helpful in getting to the goal.

Copyright © 2001, American Association for Artifi-
cial Intelligence (www.aaai.org). All rights reserved.

We describe those methods in the subsequent
sections. Afterwards, we overview the results of
an empirical investigation determining which of
the techniques yields which benefits in terms of
runtime and solution length performance. We re-
flect on an experiment we have made, and, start-
ing from this, outline the avenue of research we
are currently focussing on.

Heuristic

Trying to attack domain independent planning as
heuristic search, the main difficulty lies in the au-
tomatic derivation of the heuristic function. For
human algorithm designers, a common approach
to deriving a heuristic is to relax the problem P
at hand into a simpler problem P’, which can be
solved efficiently. Facing a search state in P, one
can then use the solution length of the same state
in P’ to estimate its difficulty.

Bonet et al. (Bonet, Loerincs, & Geffner 1997)
have proposed a way of applying this idea to
domain independent planning. They relax the
high-level problem description by simply ignoring
delete lists. In the relaxed problem, all actions
only add new atoms to the state, but don’t remove
any. During the execution of a relaxed action se-
quence, states thus only grow, and the problem
is solved as soon as each goal has been added by
some action. Let us illustrate this. Say we have
an action that moves a robot from some point A
to another point B. The precondition contains a
fact stating that the robot needs to be at location
A for the action to be applicable. After applying
the action, the add list produces a fact stating
the robot stands at location B, and the delete list
removes the fact stating it stands at A. In the re-
laxation, the delete is ignored, so the precondition
fact is not removed—after executing the relaxed
action, the robot is located at A and B simul-
taneously. In a similar fashion, a relaxed planner
can solve the n-discs Tower-of-Hanoi problem in n
steps, and simultaneously assign the truth values
TRUE and FALSE to a variable in a Boolean satisfi-
ability problem. Nevertheless, the relaxation can



be used to derive heuristics that are quite infor-
mative on a lot of benchmark planning problems.
The length of an optimal relaxed solution
is an admissible—underestimating—heuristic,
which could, theoretically, be used to find opti-
mal solution plans by applying the A* algorithm.
However, computing the length of an optimal re-
laxed solution is NP-hard (Bylander 1994). Con-
sidering this, Bonet et al. (Bonet, Loerincs, &
Geffner 1997) introduced the following way of ap-
prozimating relaxed solution length from a search
state S, based on computing weight values for all
facts, which estimate their distance to S. First,
initialize weight(f) := 0 for all facts f € S, and
weight(f) := oo for all others. Then apply all ac-
tions. For each action with preconditions pre(o)
that adds a fact f, update the weight of f to

weight(f) := min(weight(f), weight(pre(o)) + 1)

To determine the weight of an action’s precondi-
tions, one needs to define the weight of a set of
facts. Bonet et al. assume facts to be achieved
independently.

weight(F) := Z weight(f)
fer

The updates are iterated until weight values don’t
change anymore. The difficulty of the state is
then estimated as

hisp(S) := weight(G) = > weight(g)

geg

Here, G denotes the goal state of the problem at
hand. The heuristic function obtained that way
can be computed reasonably fast, and is often
quite informative. Bonet and Geffner therefore
used it in their first version of HSP, as it entered
the AIPS-1998 planning competition.

The crucial observation leading to FF’s heuris-
tic method is this. While computing optimal re-
laxed solution length is NP-hard, deciding relaxed
solvability is in P (Bylander 1994). Therefore,
there exist polynomial-time decision algorithms.
If such an algorithm constructs a witness, one can
use that witness for heuristic evaluation. An al-
gorithmic method that accomplishes this is the
very well known Graphplan algorithm (Blum &
Furst 1997). Started on a solvable relaxed prob-
lem, Graphplan finds a solution plan in polyno-
mial time (Hoffmann & Nebel 2001). Facing a
search state S, we therefore run a relaxed version
of Graphplan starting out from S, and use the
generated output for heuristic evaluation.

Relaxed Graphplan can be described as follows.
First, build the planning graph until all goals are
reached. The graph consists of alternating fact-
and action-layers. The first fact layer is identi-
cal to S. The first action layer contains all ac-
tions that are applicable in S. The union of all

those action’s add effects with the facts that are
already there forms the second fact layer. To
this layer, again all actions are applied, and so
on, until a fact layer is reached that contains all
goals. This process corresponds quite closely to
the computation of the weight values in HSP, as
described above. Once the goals are reached, one
can extract a relaxed plan in the following man-
ner. Start at the top graph layer m, working on all
goals. At each layer i, if a goal is present in layer
i — 1, then insert it into the goals to be achieved
at ¢ — 1. Else, select an action in layer ¢ — 1 that
adds the goal, and insert the action’s precondi-
tions into the goals at ¢ — 1. Once all goals at i
are worked on, continue with the goals at ¢ — 1.
Stop when the first graph layer is reached. The
process results in a relaxed plan (O, ...,O0p—1),
where each O; is the set of actions selected at time
step ¢. We estimate solution length by counting
the actions in that plan.

hpp(S)= Y 0

1=0,...,m—1

The estimation values obtained this way are usu-
ally lower than HSP’s estimates, as extracting
a plan takes account of positive interactions be-
tween facts. Consider a planning problem where
the initial state is empty, the goals are {G1, G2},
and there are the following three actions.

opGi: P = ADD (4
Osz! P = ADD G2
opP: )= ADD P

The meaning of the notation should be clear
intuitively. HSP’s heuristic estimate of the goal’s
distance to the initial state is four: Each single
goal has weight two. The actions opG; and opG»
share the precondition P, however. Relaxed plan
extraction recognizes this, and selects opP only
once, yielding a plan containing only three ac-
tions.

Search

While the heuristics presented in the preceding
section can be computed in polynomial time,
heuristic evaluation of states is still costly in the
HSP as well as in the FF system. It is there-
fore straightforward to choose hill-climbing as the
search method, in the hope to reach the goal by
evaluating as few states as possible. HSP, in its
ATPS-1998 version, used a common form of hill-
climbing, where a best successor to each state was
chosen randomly, and restarts took place when-
ever a path became too long. FF uses an enforced
form of hill-climbing instead.

Facing a search state S, FF evaluates all of its
direct successors. If none of those has a better



heuristic value than S, it goes one step further,
i.e., search then looks at the successor’s succes-
sors. If none of those two-step successors looks
better than S, FF goes on to the three-step suc-
cessors, and so on. The process terminates when
a state S’ with better evaluation than S is found.
The path to S’ is then added to the current plan,
and search continues with S’ as the new starting
state. In short, each search iteration performs
complete breadth first search for a state with
strictly better evaluation. If a planning problem
does not contain dead end situations, then this
strategy is guaranteed to find a solution (Hoff-
mann & Nebel 2001).

It has been recognized in the SAT community
that the behavior of a local search method de-
pends crucially on the structure of the problem
it is trying to solve (Frank, Cheeseman, & Stutz
1997). Important features here are the number
and distribution of solutions, as well as the size
of local minima and plateaus. Our observation is
that plateaus and local minima, when evaluating
states with FF’s or HSP’s heuristic, tend to be
small in many benchmark planning problems. It
is therefore an adequate approach trying to find
an exit state to such regions by complete breadth
first search. We come back to this later.

Helpful Actions

The relaxed plan that FF extracts for each search
state can not only be used to estimate goal dis-
tance, but also to identify the successors that
seem to be most useful, and to detect goal order-
ing information (Hoffmann & Nebel 2001). Here,
we explain the identification of a set of useful
successors, generated by what we call the help-
ful actions. Consider the following small exam-
ple, taken from the Gripper domain, as it was
used in the AIPS-1998 competition. There are
two rooms, A and B, and two balls, which shall
be moved from room A to room B, using a robot.
The robot changes rooms via the move opera-
tor, and controls two grippers which can pick or
drop balls. Say the robot is in room A, and has
picked up both balls. The relaxed solution that
our heuristic extracts is this.

< { move AB },
{ drop balll B left,
drop ball2 B right } >

This is a relaxed plan consisting of two action
sets. Looking at the first set yields our set of help-
ful actions: moving to room B is the only action
that makes sense in the situation at hand. The
two other applicable actions drop balls into room
A, which is useless. To the human solver, this
is obvious. It can automatically be detected by
restricting any state’s successors to those gener-
ated by the first action set in its relaxed solution.

However, this is too restrictive in some cases. To
a search state S, we therefore define the set H(.S)
of helpful actions as follows.

H(S) :={o] pre(o) C S,add(o) NGy # 0}

Here, G denotes the set of goals that relaxed plan
extraction constructs one level ahead of the initial
graph layer. We thus consider as helpful those ap-
plicable actions that add at least one goal at the
lowest layer of the relaxed solution. These are the
actions that could be selected for the first set in
the relaxed solution. The successors of any state
S in breadth first search are then restricted to
H(S). While not completeness preserving, this
approach works well in most of the current plan-
ning benchmarks. If enforced hill-climbing using
that pruning technique fails to find a solution, we
simply switch to a complete weighted A* algo-
rithm.

Performance Evaluation

A question of particular interest is, if FF is so
closely related to HSP-1.0, then why does it per-
form so much better? We have conducted the
following experiments to give an answer.

The three major differences of FF in com-
parison to HSP are relaxed plan extraction vs.
weight values computation, enforced hill-climbing
vs. hill-climbing, and helpful actions pruning vs.
no such pruning technique. We have implemented
experimental code where each of these differences
is attached to a switch, which can be turned on or
off. This yields eight planners, where (off,off,off)
is an imitation of HSP-1.0, and (on,on,on) corre-
sponds to FF. Each of these planners was run on a
large set of benchmark planning problems, taken
from 20 different domains. The collected data
was then examined with the intention of assessing
the impact that each single switch has on perfor-
mance. For a detailed description, we refer the
reader to our longer article (Hoffmann & Nebel
2001). Here, we overview the results. Data is sub-
divided into three parts, where we vary on each
single switch in turn, keeping the others fixed.

FF Distance Estimates versus HSP
Distance Estimates

Have a look at Figure 1. There are three ta-
bles, each one corresponding to a single switch.
The four columns in each table stand for the four
alignments of the respective other switches. In
each column, the alignment’s behavior with one
setting of the table’s switch is compared to the
behavior with the other setting. Entries in a
row show the number of planning domains in our
test suite, where the corresponding setting of the
switch leads to significantly better performance
than the other setting, in terms of running time,
and in terms of solution length.



Hill-climbing Enforced Hill-climbing
Distance Estimate All Actions | Helpful Actions All Actions | Helpful Actions
time length | time length | time length | time length
HSP distance 2 2 1 2 2 0 1 0
FF distance 12 2 12 5 11 9 9 11

Search Strategy

All Actions

HSP distance

FF distance

Helpful Actiouns

HSP distance

FF distance

time length | time length | time length | time length
Hill-climbing 5 1 9 1 3 2 1 2
Enforced Hill-climbing 9 8 8 10 16 6 16 9
Hill-climbing Enforced Hill-climbing
Pruning Technique HSP distance FF distance HSP distance FF distance
time length | time length | time length | time length
All Actions 2 0 0 2 1 2 0
Helpful Actions 13 7 8 15 5 15 3

Figure 1: Comparison of related planners when varying on goal distance estimates, search strategies, or
pruning technique, from top to bottom. Performance is compared in terms of number of domains in our
20-domain test suite where one alternative leads to significantly better performance than the other one.

Let us focus on the topmost table, compar-
ing the behavior of HSP goal distance estimates
to that of FF estimates, when they are used by
four different planners, obtained from aligning
the other switches. The time entries in the left-
most column, for example, tell us that in 2 of our
20 planning domains hill-climbing without help-
ful actions had shorter running times when using
HSP estimates than it did when using FF esti-
mates. On the other hand, the alingment suc-
ceeded faster with FF estimates in 12 of the cases.
In the remaining domains, both estimates lead to
roughly the same runtime performance. We ob-
serve:

1. FF’s estimates improve runtime performance in
around half of our domains across all switch
alignments.

2. With enforced hill-climbing in the background,
FF’s estimates have clear advantages in terms
of solution length.

We remark that, in many of the domains with
improved runtime performance, FF’s estimates
improve runtime across all our problem instancess
reliably, but only by a small amount (Hoffmann
& Nebel 2001). In some domains, however, HSP’s
heuristic overestimates goal distances quite dras-
tically because it ignores positive interactions. In
those domains, FF’s estimates yield clear advan-
tages.

For the second observation, we have no good ex-
planation. It seems that the greedy way in which
enforced hill-climbing builds its plans is just bet-
ter suited when distance estimates are cautious,
ie., low.

Enforced Hill-climbing versus
hill-climbing

Consider the table in the middle of Figure 1,
comparing all combinations of the estimates and
pruning technique switches, when used by hill-
climbing in contrast to usage by enforced hill-
climbing. We observe the following:

1. Without helpful actions in the background, en-
forced hill-climbing degrades performance al-
most as many times as it improves it, but with
helpful actions, enforced hill-climbing is faster
in 16 of our 20 domains.

2. Enforced hill-climbing often finds better solu-

tions.

Whether one or the other search strategy is ad-
equate depends on the domain. The advantage of
enforced hill-climbing when helpful actions are in
the background is due to the kind of interaction
that the pruning technique has with the different
search strategies. In hill-climbing, helpful actions
saves running time proportional to the length of
the paths encountered. In the enforced method,
it cuts the branching factor during breadth first
search, yielding exponential savings.

When enforced hill-climbing enters a plateau in
the search space, it performs complete search for
an exit, and adds the shortest path to that exit to
its current plan prefix. When hill-climbing enters
a plateau, on the other hand, it strolls around
more or less randomly, until it hits an exit state.
All the actions on its journey to that state are
kept in the final plan. The former search method
therefore often finds shorter plans than the latter.



Helpful Actions versus All Actions

We finally focus on the bottom table in Figure 1.
It comprises one column for each variation of dis-
tance estimate and search strategy, comparing
the behavior with helpful actions pruning to that
without. Our observations are the following:

1. Helpful actions pruning improves runtime per-
formance significantly in about three out of four
of our domains across all switch alignments.

2. Ouly in one single domain is there a significant
increase in solution length when one turns on
helpful actions pruning.

On the 20 domains from our test suite, there is
quite some variation with respect to the degree of
restriction that helpful actions pruning exhibits.
At the lower side of the scale, 5% of any state’s
successors are not considered helpful, while at the
upper side, that percentage rises to 99%, i.e., only
one out of a hundred successors is considered help-
ful there. In two domains from the middle of the
scale, the restriction is inadequate, i.e., solutions
get cut out of the state space. A moderate de-
gree of restriction already leads to significantly
improved runtime behavior. This is especially the
case for enforced hill-climbing.

Our second observation strongly indicates that
the actions that really lead towards the goal are
usually considered helpful. Looking at Figure 1,
there are some domains where solution length
even decreases by not looking at all successors, es-
pecially when solving problems by hill-climbing.
When that search strategy enters a plateau, it can
only stroll around randomly in the search for an
exit. If the method is additionally focussed into
the direction of the goals, by helpful actions prun-
ing, finding that exit might well take less steps.

Outlook

Put short, FF is a simple but effective algorithmic
method, at least for solving the current planning
benchmarks. An intuition is that those bench-
marks are often quite simple in structure, and
that it is this simplicity which makes them solv-
able so fast by such a simple algorithm as FF. To
corroborate this, we ran FF on a set of problems
with a more complicated search space structure.
We generated random SAT instances according
to the fixed clause-length model with 4.3 times
as many clauses as variables (Mitchell, Selman,
& Levesque 1992), and translated them into a
PDDL encoding. The instances have a growing
number of variables, from 5 up to 30. We ran the
three planners FF, IPP, and Blackbox on those
planning problems. In contrast to the behavior
observed on almost any of the classical planning
benchmarks, FF was clearly outperformed by the
two other approaches. Typically, it immedeately

found its way down to a state with only few un-
satisfied clauses, and then got lost in the large
local minimum it was in, which simply couldn’t
be escaped by systematic search. The other plan-
ners did much better due to the kind of inference
algorithms they employ, which can rule out many
partial truth assignments quite early.

Following (Frank, Cheeseman, & Stutz 1997),
we have investigated the state space structures
of the planning benchmarks, collecting empirical
data about the density and size of local minima
and plateaus. This has lead us to a taxonomy
for planning domains, dividing them by the de-
gree of complexity that the respective task’s state
spaces exhibit with respect to relaxed goal dis-
tances. Most of the current benchmark domains
apparently belong to the “simpler” parts of that
taxonomy (Hoffmann 2001). We also approach
our hypotheses from a theoretical point of view,
where we measure the degree of interaction that
facts in a planning task exhibit, and draw con-
clusions on the search space structure from that.
Our goal in that research is to devise a method
that automatically decides which part of the tax-
onomy a given planning task belongs to.

Acknowledgements

The author wishes to thank Bernhard Nebel for
discussions and continued support. Thanks also
go to Blai Bonet and Hector Geffner for their help
in comparing FF with HSP.

References

Blum, A. L., and Furst, M. L. 1997. Fast plan-
ning through planning graph analysis. Artificial
Intelligence 90(1-2):279-298.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997.
A robust and fast action selection mechanism
for planning. In Proc. AAAI-97, 714-719. MIT
Press.

Bylander, T. 1994. The computational complex-
ity of propositional STRIPS planning. Artificial
Intelligence 69(1-2):165-204.

Frank, J.; Cheeseman, P.; and Stutz, J. 1997.
When gravity fails: Local search topology. Jour-
nal of Artificial Intelligence Research 7:249-281.

Hoffmann, J., and Nebel, B. 2001. The FF
planning system: Fast plan generation through
heuristic search. To appear in Journal of Artifi-
cial Intelligence Research.

Hoffmann, J. 2001. Local search topology in
planning benchmarks: An empirical analysis. To
appear in Proc. IJCAI-01. Seattle, Washington,
USA: Morgan Kaufmann.

Mitchell, D.; Selman, B.; and Levesque, H. J.
1992. Hard and easy distributions of SAT prob-
lems. In Proc. AAAI-92, 459-465. San Jose, CA:
MIT Press.



