
FF: The Fast-Forward Planning SystemJ�org Ho�mannInstitute for Computer ScienceAlbert Ludwigs UniversityGeorges-K�ohler-Allee, Geb. 5279110 Freiburg, Germanyho�mann@informatik.uni-freiburg.deAbstractFast-Forward, abbreviated FF, was the most suc-cessful automatic planner in the AIPS-2000 plan-ning systems competition. Like the well knownHSP system, FF relies on forward search in thestate space, guided by a heuristic that estimatesgoal distances by ignoring delete lists. It di�ersfrom HSP in a number of important details. Thisarticle describes the algorithmic techniques usedin FF in comparison to HSP, and evaluates theirbene�ts in terms of runtime and solution lengthbehavior. IntroductionFast-Forward, abbreviated FF, was the most suc-cessful automatic planner in the AIPS-2000 plan-ning systems competition. Though its perfor-mance clearly distinguished it from the otherplanners, the idea behind the approach is not newto the planning community. In fact, the basicprinciple is that of the HSP system, �rst intro-duced by Bonet et al. (Bonet, Loerincs, & Ge�ner1997). Planning problems are attacked by for-ward search in state space, guided by a heuristicfunction that is automatically extracted from thedomain description. To arrive at such a function,both planning systems relax the planning prob-lem by ignoring parts of its speci�cation, i.e., thedelete lists of all actions.FF can be seen as an advanced successor of theHSP system, which di�ers from its predecessor ina number of important details.1. A more sophisticated method for heuristic eval-uation, taking into account positive interac-tions between facts.2. A novel kind of local search strategy, employ-ing systematic search for escaping plateaus andlocal minima.3. A method that identi�es those successors of asearch node that seem to be|and usually are|most helpful in getting to the goal.Copyright c 2001, American Association for Arti�-cial Intelligence (www.aaai.org). All rights reserved.

We describe those methods in the subsequentsections. Afterwards, we overview the results ofan empirical investigation determining which ofthe techniques yields which bene�ts in terms ofruntime and solution length performance. We re-ect on an experiment we have made, and, start-ing from this, outline the avenue of research weare currently focussing on.HeuristicTrying to attack domain independent planning asheuristic search, the main di�culty lies in the au-tomatic derivation of the heuristic function. Forhuman algorithm designers, a common approachto deriving a heuristic is to relax the problem Pat hand into a simpler problem P 0, which can besolved e�ciently. Facing a search state in P , onecan then use the solution length of the same statein P 0 to estimate its di�culty.Bonet et al. (Bonet, Loerincs, & Ge�ner 1997)have proposed a way of applying this idea todomain independent planning. They relax thehigh-level problem description by simply ignoringdelete lists. In the relaxed problem, all actionsonly add new atoms to the state, but don't removeany. During the execution of a relaxed action se-quence, states thus only grow, and the problemis solved as soon as each goal has been added bysome action. Let us illustrate this. Say we havean action that moves a robot from some point Ato another point B. The precondition contains afact stating that the robot needs to be at locationA for the action to be applicable. After applyingthe action, the add list produces a fact statingthe robot stands at location B, and the delete listremoves the fact stating it stands at A. In the re-laxation, the delete is ignored, so the preconditionfact is not removed|after executing the relaxedaction, the robot is located at A and B simul-taneously. In a similar fashion, a relaxed plannercan solve the n-discs Tower-of-Hanoi problem in nsteps, and simultaneously assign the truth valuestrue and false to a variable in a Boolean satis�-ability problem. Nevertheless, the relaxation can



be used to derive heuristics that are quite infor-mative on a lot of benchmark planning problems.The length of an optimal relaxed solutionis an admissible|underestimating|heuristic,which could, theoretically, be used to �nd opti-mal solution plans by applying the A� algorithm.However, computing the length of an optimal re-laxed solution is NP-hard (Bylander 1994). Con-sidering this, Bonet et al. (Bonet, Loerincs, &Ge�ner 1997) introduced the following way of ap-proximating relaxed solution length from a searchstate S, based on computing weight values for allfacts, which estimate their distance to S. First,initialize weight(f) := 0 for all facts f 2 S, andweight(f) :=1 for all others. Then apply all ac-tions. For each action with preconditions pre(o)that adds a fact f , update the weight of f toweight(f) := min(weight(f); weight(pre(o))+1)To determine the weight of an action's precondi-tions, one needs to de�ne the weight of a set offacts. Bonet et al. assume facts to be achievedindependently.weight(F ) :=Xf2F weight(f)The updates are iterated until weight values don'tchange anymore. The di�culty of the state isthen estimated ashHSP (S) := weight(G) =Xg2Gweight(g)Here, G denotes the goal state of the problem athand. The heuristic function obtained that waycan be computed reasonably fast, and is oftenquite informative. Bonet and Ge�ner thereforeused it in their �rst version of HSP, as it enteredthe AIPS-1998 planning competition.The crucial observation leading to FF's heuris-tic method is this. While computing optimal re-laxed solution length is NP-hard, deciding relaxedsolvability is in P (Bylander 1994). Therefore,there exist polynomial-time decision algorithms.If such an algorithm constructs a witness, one canuse that witness for heuristic evaluation. An al-gorithmic method that accomplishes this is thevery well known Graphplan algorithm (Blum &Furst 1997). Started on a solvable relaxed prob-lem, Graphplan �nds a solution plan in polyno-mial time (Ho�mann & Nebel 2001). Facing asearch state S, we therefore run a relaxed versionof Graphplan starting out from S, and use thegenerated output for heuristic evaluation.Relaxed Graphplan can be described as follows.First, build the planning graph until all goals arereached. The graph consists of alternating fact-and action-layers. The �rst fact layer is identi-cal to S. The �rst action layer contains all ac-tions that are applicable in S. The union of all

those action's add e�ects with the facts that arealready there forms the second fact layer. Tothis layer, again all actions are applied, and soon, until a fact layer is reached that contains allgoals. This process corresponds quite closely tothe computation of the weight values in HSP, asdescribed above. Once the goals are reached, onecan extract a relaxed plan in the following man-ner. Start at the top graph layerm, working on allgoals. At each layer i, if a goal is present in layeri� 1, then insert it into the goals to be achievedat i� 1. Else, select an action in layer i� 1 thatadds the goal, and insert the action's precondi-tions into the goals at i � 1. Once all goals at iare worked on, continue with the goals at i � 1.Stop when the �rst graph layer is reached. Theprocess results in a relaxed plan hO0; : : : ; Om�1i,where each Oi is the set of actions selected at timestep i. We estimate solution length by countingthe actions in that plan.hFF (S) := Xi=0;:::;m�1 jOijThe estimation values obtained this way are usu-ally lower than HSP's estimates, as extractinga plan takes account of positive interactions be-tween facts. Consider a planning problem wherethe initial state is empty, the goals are fG1; G2g,and there are the following three actions.opG1: P ) ADD G1opG2: P ) ADD G2opP : ; ) ADD PThe meaning of the notation should be clearintuitively. HSP's heuristic estimate of the goal'sdistance to the initial state is four: Each singlegoal has weight two. The actions opG1 and opG2share the precondition P , however. Relaxed planextraction recognizes this, and selects opP onlyonce, yielding a plan containing only three ac-tions. SearchWhile the heuristics presented in the precedingsection can be computed in polynomial time,heuristic evaluation of states is still costly in theHSP as well as in the FF system. It is there-fore straightforward to choose hill-climbing as thesearch method, in the hope to reach the goal byevaluating as few states as possible. HSP, in itsAIPS-1998 version, used a common form of hill-climbing, where a best successor to each state waschosen randomly, and restarts took place when-ever a path became too long. FF uses an enforcedform of hill-climbing instead.Facing a search state S, FF evaluates all of itsdirect successors. If none of those has a better



heuristic value than S, it goes one step further,i.e., search then looks at the successor's succes-sors. If none of those two-step successors looksbetter than S, FF goes on to the three-step suc-cessors, and so on. The process terminates whena state S0 with better evaluation than S is found.The path to S0 is then added to the current plan,and search continues with S0 as the new startingstate. In short, each search iteration performscomplete breadth �rst search for a state withstrictly better evaluation. If a planning problemdoes not contain dead end situations, then thisstrategy is guaranteed to �nd a solution (Ho�-mann & Nebel 2001).It has been recognized in the SAT communitythat the behavior of a local search method de-pends crucially on the structure of the problemit is trying to solve (Frank, Cheeseman, & Stutz1997). Important features here are the numberand distribution of solutions, as well as the sizeof local minima and plateaus. Our observation isthat plateaus and local minima, when evaluatingstates with FF's or HSP's heuristic, tend to besmall in many benchmark planning problems. Itis therefore an adequate approach trying to �ndan exit state to such regions by complete breadth�rst search. We come back to this later.Helpful ActionsThe relaxed plan that FF extracts for each searchstate can not only be used to estimate goal dis-tance, but also to identify the successors thatseem to be most useful, and to detect goal order-ing information (Ho�mann & Nebel 2001). Here,we explain the identi�cation of a set of usefulsuccessors, generated by what we call the help-ful actions. Consider the following small exam-ple, taken from the Gripper domain, as it wasused in the AIPS-1998 competition. There aretwo rooms, A and B, and two balls, which shallbe moved from room A to room B, using a robot.The robot changes rooms via the move opera-tor, and controls two grippers which can pick ordrop balls. Say the robot is in room A, and haspicked up both balls. The relaxed solution thatour heuristic extracts is this.< f move A B g,f drop ball1 B left,drop ball2 B right g >This is a relaxed plan consisting of two actionsets. Looking at the �rst set yields our set of help-ful actions: moving to room B is the only actionthat makes sense in the situation at hand. Thetwo other applicable actions drop balls into roomA, which is useless. To the human solver, thisis obvious. It can automatically be detected byrestricting any state's successors to those gener-ated by the �rst action set in its relaxed solution.

However, this is too restrictive in some cases. Toa search state S, we therefore de�ne the set H(S)of helpful actions as follows.H(S) := fo j pre(o) � S; add(o) \G1 6= ;gHere, G1 denotes the set of goals that relaxed planextraction constructs one level ahead of the initialgraph layer. We thus consider as helpful those ap-plicable actions that add at least one goal at thelowest layer of the relaxed solution. These are theactions that could be selected for the �rst set inthe relaxed solution. The successors of any stateS in breadth �rst search are then restricted toH(S). While not completeness preserving, thisapproach works well in most of the current plan-ning benchmarks. If enforced hill-climbing usingthat pruning technique fails to �nd a solution, wesimply switch to a complete weighted A� algo-rithm. Performance EvaluationA question of particular interest is, if FF is soclosely related to HSP-1.0, then why does it per-form so much better? We have conducted thefollowing experiments to give an answer.The three major di�erences of FF in com-parison to HSP are relaxed plan extraction vs.weight values computation, enforced hill-climbingvs. hill-climbing, and helpful actions pruning vs.no such pruning technique. We have implementedexperimental code where each of these di�erencesis attached to a switch, which can be turned on oro�. This yields eight planners, where (o�,o�,o�)is an imitation of HSP-1.0, and (on,on,on) corre-sponds to FF. Each of these planners was run on alarge set of benchmark planning problems, takenfrom 20 di�erent domains. The collected datawas then examined with the intention of assessingthe impact that each single switch has on perfor-mance. For a detailed description, we refer thereader to our longer article (Ho�mann & Nebel2001). Here, we overview the results. Data is sub-divided into three parts, where we vary on eachsingle switch in turn, keeping the others �xed.FF Distance Estimates versus HSPDistance EstimatesHave a look at Figure 1. There are three ta-bles, each one corresponding to a single switch.The four columns in each table stand for the fouralignments of the respective other switches. Ineach column, the alignment's behavior with onesetting of the table's switch is compared to thebehavior with the other setting. Entries in arow show the number of planning domains in ourtest suite, where the corresponding setting of theswitch leads to signi�cantly better performancethan the other setting, in terms of running time,and in terms of solution length.



Hill-climbing Enforced Hill-climbingDistance Estimate All Actions Helpful Actions All Actions Helpful Actionstime length time length time length time lengthHSP distance 2 2 1 2 2 0 1 0FF distance 12 2 12 5 11 9 9 11All Actions Helpful ActionsSearch Strategy HSP distance FF distance HSP distance FF distancetime length time length time length time lengthHill-climbing 5 1 9 1 3 2 1 2Enforced Hill-climbing 9 8 8 10 16 6 16 9Hill-climbing Enforced Hill-climbingPruning Technique HSP distance FF distance HSP distance FF distancetime length time length time length time lengthAll Actions 2 0 3 0 2 1 2 0Helpful Actions 13 7 14 8 15 5 15 3Figure 1: Comparison of related planners when varying on goal distance estimates, search strategies, orpruning technique, from top to bottom. Performance is compared in terms of number of domains in our20-domain test suite where one alternative leads to signi�cantly better performance than the other one.Let us focus on the topmost table, compar-ing the behavior of HSP goal distance estimatesto that of FF estimates, when they are used byfour di�erent planners, obtained from aligningthe other switches. The time entries in the left-most column, for example, tell us that in 2 of our20 planning domains hill-climbing without help-ful actions had shorter running times when usingHSP estimates than it did when using FF esti-mates. On the other hand, the alingment suc-ceeded faster with FF estimates in 12 of the cases.In the remaining domains, both estimates lead toroughly the same runtime performance. We ob-serve:1. FF's estimates improve runtime performance inaround half of our domains across all switchalignments.2. With enforced hill-climbing in the background,FF's estimates have clear advantages in termsof solution length.We remark that, in many of the domains withimproved runtime performance, FF's estimatesimprove runtime across all our problem instancessreliably, but only by a small amount (Ho�mann& Nebel 2001). In some domains, however, HSP'sheuristic overestimates goal distances quite dras-tically because it ignores positive interactions. Inthose domains, FF's estimates yield clear advan-tages.For the second observation, we have no good ex-planation. It seems that the greedy way in whichenforced hill-climbing builds its plans is just bet-ter suited when distance estimates are cautious,i.e., low.

Enforced Hill-climbing versushill-climbingConsider the table in the middle of Figure 1,comparing all combinations of the estimates andpruning technique switches, when used by hill-climbing in contrast to usage by enforced hill-climbing. We observe the following:1. Without helpful actions in the background, en-forced hill-climbing degrades performance al-most as many times as it improves it, but withhelpful actions, enforced hill-climbing is fasterin 16 of our 20 domains.2. Enforced hill-climbing often �nds better solu-tions.Whether one or the other search strategy is ad-equate depends on the domain. The advantage ofenforced hill-climbing when helpful actions are inthe background is due to the kind of interactionthat the pruning technique has with the di�erentsearch strategies. In hill-climbing, helpful actionssaves running time proportional to the length ofthe paths encountered. In the enforced method,it cuts the branching factor during breadth �rstsearch, yielding exponential savings.When enforced hill-climbing enters a plateau inthe search space, it performs complete search foran exit, and adds the shortest path to that exit toits current plan pre�x. When hill-climbing entersa plateau, on the other hand, it strolls aroundmore or less randomly, until it hits an exit state.All the actions on its journey to that state arekept in the �nal plan. The former search methodtherefore often �nds shorter plans than the latter.



Helpful Actions versus All ActionsWe �nally focus on the bottom table in Figure 1.It comprises one column for each variation of dis-tance estimate and search strategy, comparingthe behavior with helpful actions pruning to thatwithout. Our observations are the following:1. Helpful actions pruning improves runtime per-formance signi�cantly in about three out of fourof our domains across all switch alignments.2. Only in one single domain is there a signi�cantincrease in solution length when one turns onhelpful actions pruning.On the 20 domains from our test suite, there isquite some variation with respect to the degree ofrestriction that helpful actions pruning exhibits.At the lower side of the scale, 5% of any state'ssuccessors are not considered helpful, while at theupper side, that percentage rises to 99%, i.e., onlyone out of a hundred successors is considered help-ful there. In two domains from the middle of thescale, the restriction is inadequate, i.e., solutionsget cut out of the state space. A moderate de-gree of restriction already leads to signi�cantlyimproved runtime behavior. This is especially thecase for enforced hill-climbing.Our second observation strongly indicates thatthe actions that really lead towards the goal areusually considered helpful. Looking at Figure 1,there are some domains where solution lengtheven decreases by not looking at all successors, es-pecially when solving problems by hill-climbing.When that search strategy enters a plateau, it canonly stroll around randomly in the search for anexit. If the method is additionally focussed intothe direction of the goals, by helpful actions prun-ing, �nding that exit might well take less steps.OutlookPut short, FF is a simple but e�ective algorithmicmethod, at least for solving the current planningbenchmarks. An intuition is that those bench-marks are often quite simple in structure, andthat it is this simplicity which makes them solv-able so fast by such a simple algorithm as FF. Tocorroborate this, we ran FF on a set of problemswith a more complicated search space structure.We generated random SAT instances accordingto the �xed clause-length model with 4:3 timesas many clauses as variables (Mitchell, Selman,& Levesque 1992), and translated them into aPDDL encoding. The instances have a growingnumber of variables, from 5 up to 30. We ran thethree planners FF, IPP, and Blackbox on thoseplanning problems. In contrast to the behaviorobserved on almost any of the classical planningbenchmarks, FF was clearly outperformed by thetwo other approaches. Typically, it immedeately

found its way down to a state with only few un-satis�ed clauses, and then got lost in the largelocal minimum it was in, which simply couldn'tbe escaped by systematic search. The other plan-ners did much better due to the kind of inferencealgorithms they employ, which can rule out manypartial truth assignments quite early.Following (Frank, Cheeseman, & Stutz 1997),we have investigated the state space structuresof the planning benchmarks, collecting empiricaldata about the density and size of local minimaand plateaus. This has lead us to a taxonomyfor planning domains, dividing them by the de-gree of complexity that the respective task's statespaces exhibit with respect to relaxed goal dis-tances. Most of the current benchmark domainsapparently belong to the \simpler" parts of thattaxonomy (Ho�mann 2001). We also approachour hypotheses from a theoretical point of view,where we measure the degree of interaction thatfacts in a planning task exhibit, and draw con-clusions on the search space structure from that.Our goal in that research is to devise a methodthat automatically decides which part of the tax-onomy a given planning task belongs to.AcknowledgementsThe author wishes to thank Bernhard Nebel fordiscussions and continued support. Thanks alsogo to Blai Bonet and Hector Ge�ner for their helpin comparing FF with HSP.ReferencesBlum, A. L., and Furst, M. L. 1997. Fast plan-ning through planning graph analysis. Arti�cialIntelligence 90(1-2):279{298.Bonet, B.; Loerincs, G.; and Ge�ner, H. 1997.A robust and fast action selection mechanismfor planning. In Proc. AAAI-97, 714{719. MITPress.Bylander, T. 1994. The computational complex-ity of propositional STRIPS planning. Arti�cialIntelligence 69(1{2):165{204.Frank, J.; Cheeseman, P.; and Stutz, J. 1997.When gravity fails: Local search topology. Jour-nal of Arti�cial Intelligence Research 7:249{281.Ho�mann, J., and Nebel, B. 2001. The FFplanning system: Fast plan generation throughheuristic search. To appear in Journal of Arti�-cial Intelligence Research.Ho�mann, J. 2001. Local search topology inplanning benchmarks: An empirical analysis. Toappear in Proc. IJCAI-01. Seattle, Washington,USA: Morgan Kaufmann.Mitchell, D.; Selman, B.; and Levesque, H. J.1992. Hard and easy distributions of SAT prob-lems. In Proc. AAAI-92, 459{465. San Jose, CA:MIT Press.


