Star-Topology Decoupled State Space Search

Daniel Gnad

Saarland University, Saarbriicken, Germany

Jorg Hoffmann

Saarland University, Saarbriicken, Germany

Abstract

State space search is a basic method for analyzing reachability in discrete transi-
tion systems. To tackle large compactly described transition systems — the state
space explosion — a wealth of techniques (e. g., partial-order reduction) have been
developed that reduce the search space without affecting the existence of (optimal)
solution paths. Focusing on classical Al planning, where the compact description
is in terms of a vector of state variables, an initial state, a goal condition, and a set
of actions, we add another technique, that we baptize star-topology decoupling,
into this arsenal. A star topology partitions the state variables into components
so that a single center component directly interacts with several leaf components,
but the leaves interact only via the center. Many applications explicitly come with
such structure; any classical planning task can be viewed in this way by selecting
the center as a subset of state variables separating connected leaf components.
Our key observation is that, given such a star topology, the leaves are condi-
tionally independent given the center, in the sense that, given a fixed path of tran-
sitions by the center, the possible center-compliant paths are independent across
the leaves. Our decoupled search hence branches over center transitions only, and
maintains the center-compliant paths for each leaf separately. As we show, this
method has exponential separations to all previous search reduction techniques,
1. e., examples where it results in exponentially less effort. One can, in principle,
prune duplicates in a way so that the decoupled state space can never be larger
than the original one. Standard search algorithms remain applicable using sim-
ple transformations. Our experiments exhibit large improvements on standard Al

Email addresses: gnad@cs.uni-saarland.de (Daniel Gnad),
hoffmann@cs.uni-saarland.de (Jorg Hoffmann)

Preprint submitted to Artificial Intelligence January 8, 2018

planning benchmarks with a pronounced star topologyﬂ

Keywords: Al Planning, heuristic search, problem decomposition

1. Introduction

Reachability analysis in large discrete state transition systems arises in several
areas of computer science. Examples are Al planning [4] and diagnosis [5], model
checking [6], and multiple sequence alignment [7]]. The question is whether, start-
ing from a given state s, the system can reach a given state ¢, or can reach some
state satisfying a given property, like a planning goal in Al, or the negation of a
safety property in model checking. Answering this question is hard due to the
state explosion problem [8]]. The transition system is compactly described, in
terms of state variables and transition rules, a network of synchronized automata,
or a bounded Petri net. The size of the system itself — the compact description’s
state space — 1s exponential in the size of that description.

Forward state space search is one basic method for reachability analysis. A
wealth of techniques have been developed that reduce the search space while
preserving completeness (finding a solution if one exists) and, ideally, optimal-
ity (finding a solution with minimum summed-up transition cost). Partial-order
reduction exploits permutable parts of the state space [18, 9} [10, [11}, 12, [13} 14} 15}
16]. Symmetry reduction exploits symmetric parts of the state space [17, 18,19,
20, 21]]. In Petri-net unfolding, the search space is an acyclic Petri net (a DAG)
over conditions (vertices annotated with state-variable values) and events (ver-
tices annotated with transitions), where events are added based on which markings
(combinations of state-variable values) are reachable [22, 23, 24, 25, 26, 27, [28]].

Our contribution consists in a new search reduction method, star-topology de-
coupling, which is complementary to all previous methods, and can be configured
to either preserve completeness and optimality, or to only preserve completeness
(allowing stronger reductions). We introduce the method in Al planning, where a
planning fask is given in terms of finite-domain state variables, an initial state, a
goal condition, and a set of actions describing the possible transitions.

IParts of the presented material were previously published [, 2, B]]. This article introduces,
analyses, and evaluates our techniques much more comprehensively. In particular, it adds new
theoretical results pertaining to the space of star-topology factorings, to pruning methods avoiding
state space blow-ups, and to exponential separations from previous techniques.

1.1. Star-Topology Decoupling

The distinguishing feature of star-topology decoupling is the assumption of
a particular structural profile, a star topology. Viewing disjoint subsets of state
variables as components, in a star topology a single center component interacts
with multiple leaf components, but the leaves interact with each other only via the
center. Many applications explicitly come with such structure. For example, dis-
tributed systems are often synchronized via a central component (client-server ar-
chitectures, shared-memory computing systems), and cooperative agents are syn-
chronized via their shared (commonly affected/queried) state variables. Arbitrary
Al planning tasks can be viewed in this way by selecting the center as some subset
of state variables breaking the dependencies between connected (leaf) components
of the remaining state variables.

The key to star-topology decoupling is a particular form of *“conditional in-
dependence”: given a fixed path of transitions by the center, the possible center-
compliant paths are independent across the leaves. For example, say the center C'
is a state variable encoding the position of a vehicle v, and each leaf L is a state
variable encoding the position of a transportable object o. Given a fixed path 7€
of vehicle moves, the compliant moves for any object o, alongside 7, are those
which load/unload o at those points on 7¢ where v is currently at the required loca-
tion. Any sequence of such load/unload actions for o — any 7°-compliant path for
o — can be committed to for o, independently of what any other transportable ob-
ject o' is committed to. Decoupled search exploits this property by searching over
center paths 7w only; it maintains, alongside each 7, the leaf states reachable on
7¢-compliant paths. This way, the component (local) state spaces are searched
separately, avoiding the enumeration of combined (global) states across leaves. In
catchy (though imprecise) analogy to conditional independence in graphical mod-
els, star-topology decoupling “instantiates” the center to break the dependencies
between the leaves.

The search is least-commitment in the sense that leaf moves are committed
to only at the end, when the goal is reached. During the search, the leaf states
reachable on 7¢-compliant paths are maintained exhaustively. Namely, the end
point of each center path 7 in the search is associated with a decoupled state
s, which for every leaf component L stores those leaf states s of L reached by
7¢-compliant paths. One can view s as a compact representation of a set of global
states, its frypercube [s]: all states formed from the center state reached by 7, and
any combination of 7“-compliant s*. These are exactly those global states that

can be reached on a transition path whose center sub-path is 7.

Optionally, each s’ is annotated with the cost of a cheapest 7¢-compliant path
achieving s”. We refer to that cost as s’s price: it is not a cost we have already
committed to paying, but a cost we will pay if, at the end, we commit to using s.
Maintaining leaf state prices allows to preserve optimality; maintaining only leaf
state reachability suffices to preserve completeness.

In the example above, for any transportable object o, the object’s initial lo-
cation [is reachable on a 7“-compliant path, namely the empty path, at cost 0.
Every other location [for o is reachable on a 7¢-compliant path of length 2 — load
at [y, unload at [— iff 7 visits [, and afterwards visits {. Once the goal location
of o is reachable, we can commit to a compliant path, i. e., a suitable load/unload
pair, moving o to its goal location. In case different loads/unloads have different
cost, distinguishing leaf state prices allows to select a cheapest such pair for each
o. Searching over center paths enabling different-cost pairs allows to guarantee
global optimality.

Star-topology decoupling has been inspired by factored planning methods,
which also partition the state variables into components [29, 30, 31} 32, 33} 134,
35,136,137, 138, 139, 40, 41l]. Hierarchical factored planning is remotely related; the
search for a plan proceeds top-down in a hierarchy of increasingly more detailed
levels identified by the factors. Localized factored planning is more closely re-
lated; the search for a plan proceeds by first planning locally on individual compo-
nents, followed by global cross-component constraint resolution. In comparison
to both, the key feature of star-topology decoupling is the focus on star topolo-
gies, which limits the possible interactions across factors, facilitating specialized
search algorithms (as outlined above).

Star-topology decoupling also relates to Petri net unfolding, specifically to
contextual unfolding [27] as planning actions typically have non-consumed pre-
conditions (typically called prevail conditions). For example, a load action re-
quires, but does not consume, a particular vehicle position. One can view star-
topology decoupling as a new form of unfolding where the “conditions” are com-
ponent states, and the star topology is exploited (a) to avoid the enumeration of
exponentially many event “histories”, keeping track of which prevail conditions
may have been consumed in the past; as well as (b) to get rid of the NP-hard
problem of testing the reachability of a marking in an unfolding prefix (for de-
coupled search, this is testable in linear time). As we shall see, these theoretical
advantages often translate into empirical ones.

1.2. Experiments Preview

Figure 1] gives a preview of empirical results. Details will be provided later.
We use the standard benchmarks from the international planning competition
(IPC), which are all solvable; and we use an established collection of unsolvable
benchmarks including those of the unsolvability IPC’16. Star topologies are found
automatically using a simple factoring strategy, identifying an X-shape over the
input task’s variable dependencies; the factoring strategy abstains if no non-trivial
star topology (> 2 leaves) is found this way

We build (the respective representations of) the entire reachable state spaces,
as a canonical measure of reduction power: How much can a reduction method
achieve on its own? We compare our method to partial-order reduction and Petri
net unfolding, the most competitive related methods (a comparison to the most
competitive localized factored planning method will be included later). The Petri
net unfolding tools are provided with straightforward encodings of planning tasks
into Petri nets, following Hickmott et al. [24].

Decoupled states are more complex structures than standard states, so we show
not only the number of states, but also the amount of memory — the number of
integer variables in our C++ implementation — used to represent them. For the
standard state space, this is simply the number of states times the number of state
variables. For decoupled states, we compute the state space of each leaf once up
front, give IDs to its leaf states, and use these IDs for reference later on. As the
unfolding tools often lag far behind in the number of state spaces successfully
built, their state space representation size data is omitted from this preview (but
will be discussed later).

The data clearly attest to the power of star-topology decoupling. Its completeness-
only (COM) variant successfully builds more than twice as many state spaces as
standard state space search, and more than three times as many as Petri net unfold-
ing. On commonly solved instances, average state space size is typically reduced
by at least one order of magnitude, and often by several orders of magnitude. In
most cases, these improvements apply even when preserving optimality (OPT),
and even relative to the state space pruned by strong stubborn sets.

That said, Figure m also exhibits two weaknesses. First, decoupled states are
more costly to maintain, incurring a runtime overhead. In some cases, the over-
head outweighs the reduction gain, and fewer state spaces are successfully built.

The name “factoring” comes from factored planning; we will use the words “component” and
“factor” interchangeably.

Instances Reachable State Space. Middle & Right: Average over Instances Commonly Built by Std, POR, OPT, COM
Success Number of States Representation Size (in Thousands)
Domain || Alll X|| Std|POR|Pun|Cun|OPT|COM Std POR| OPT| COM Sd| POR| OPT| COM
Solvable Benchmarks: From the International Planning Competition (IPC)]
Depots 221 22| 4| 4 2| 2| 3 5|| 1,193,760(1,193,760(1,173,096|132,640|| 30,954.8| 30,954.8|35,113.1| 3,970.0
Driverlog|| 20| 20|| 5| 5| 3| 3| 8 10|/ 3,005,640(3,005,640| 27,404| 4,708|| 35,632.4| 35,632.4| 706.1| 127.2
Elevator || 100| 100(| 21| 17| 1| 3| 8| 41| 2,168,429/2,168,329| 839,359| 7,902|| 22,652.1| 22,651.1|21,046.2| 186.7
Floortile 80| 80| 2| 2f O O] O 2
Logistic 63| 63|| 12| 12| 7| 11| 23] 27 422,508| 422,507 2,605 171|| 3,793.8| 3,793.8 85.5 8.2
Miconic || 150 145|| 50| 45| 25| 30| 45| 145|| 2,594,960|2,592,063| 10,730 68| 52,728.9| 52,673.1| 218.8 2.4
NoMyst 40| 40|| 11| 11| 5] 7| 40| 40{| 3,561,168(3,107,551 501 370|| 29,459.3| 25,581.5 11.5 10.0
Pathway 30 30| 4| 4| 3| 3] 4 4 875,781 19,804| 177,383(177,378|| 54,635.5| 1,229.0(11,211.9(11,211.9
PSR 50 311 31 3] 3] 3] 3 3 2,385 2,055 596 596 39.4 339 11.1 11.1
Rovers 40| 40| S| 6| 4| 4| S 5| 3,925,445 263,656 138,812(131,127|| 98,051.6| 6,534.4| 4,045.9| 4,032.9
Satellite 36| 36| 5| 5/ 5 5/ 4 4 170,808 36,149 109,268| 11,272|| 2,864.2 582.5| 2,219.1] 352.7
TPP 300 29| S| 5| 4| 4| 11| 11|/10,029,509(9,593,134 20 17((340,961.5|326,124.8 9 8
Transport|| 140 140|| 28| 23| 11| 11| 18| 34 621,070| 621,047| 499,889 7,014|| 4,958.6| 4,958.5/12,486.4| 173.3
Woodwor|| 100 87| 11| 20| 16| 22| 16| 16| 9,042,574 5,843 370,345(197,138|438,638.5 226.8(16,624.1| 9,688.9
Zenotrav 200 20 7| 7| 2| 4] 7 7(| 1,965,822|1,965,763| 38,106| 3,385|| 17,468.0| 17,467.5| 1,028.5 99.4
[Unsolvability IPC’16 |
BTransp 290 29| 7| 6| 3] 3| 4| 11 142,018 142,018 92,922| 1,225 5,961 5961| 5,721 73
NoMyst 241 24| 2| 2| O 1] 17| 18|| 8,328,306|5,016,457 360 296 99,324| 59,872 10 9
Rovers 200 20| 71 7{ o] 3] 7 8| 8,949,038|6,169,356| 830,272|814,693|| 247,683 172,389 25,687 25,445
[Unsolvable Benchmarks: Extended from [42]] |
NoMyst 40[40| 9| 8| 2| 4| 40[40| 5,014,955|3,875,186 113 105|| 85,254.2| 65,878.2 39 3.8
Rovers 40| 40| 4| 4| 0 0| 4 4||13,503,020(5,856,821| 393,164|361,084|(697,778.9(302,608.9|22,001.8/|20,924.4
> [[1074] 1008[]202[196] 96] 123] 267] 435]]]

Figure 1: State space size using an X-shape factoring strategy. Best results highlighted in bold-
face. “Success”: reachable state space fully explored. “X”: non-trivial X-shape (> 2 leaves)
identified, i.e., factoring strategy did not abstain. “Std”: standard state space. “POR”: standard
state space with partial-order reduction using strong stubborn sets [16]. “Pun”: Petri-net unfold-
ing using Punf [43]]. “Cun”: contextual Petri-net unfolding using Cunf [44]. “OPT”: decoupled
state space, preserving completeness and optimality. “COM”: decoupled state space, preserving
completeness only. Representation size is the number of integer variables in the underlying C++
implementation (see text). All planning competition benchmark domains were run. Domains
on which the factoring strategy abstained, and domains where no approach could build any state
space, are not included in the table. Multiple test suites of the same domain are accumulated into
the same table row. Runtime limit 30 minutes, memory limit 4 GB.

Second, Figure [I| shows only a selection of domains, namely those where the X-
shape factoring strategy does (sometimes) not abstain. On the majority of the 49
IPC benchmark domains, the strategy abstains on every instance.

Summing up both observations, star-topology decoupling requires a particular
form of structure to work well, namely a pronounced star topology, with many
leaf components. Not all applications, nor all [IPC benchmark domains, have that
structure.

However, this weakness — requiring particular structure to work well — is

6

shared by all known search reduction techniques. The distinguishing feature
of star-topology decoupling is that the required structure is explicit, and easily
testable. This is valuable in practice, as it allows to avoid wasting runtime on un-
suitable cases. The factoring strategy takes negligible runtime, and if it abstains,
one can run an alternate technique instead. This is perfect for the design of solver
portfolios, combining the strengths of different approaches (e. g. [45,146]).

An issue not visible in Figure [I] is that, in practice, the objective is not to
exhaust the entire state space, but to find a solution path, or prove that none ex-
ists. Search techniques orthogonal to ours are available to do so without hav-
ing to exhaust the state space. Using such techniques reduces the advantage of
star-topology decoupling over standard state space search. Nevertheless, as we
shall see, star-topology decoupling often improves over the state of the art on [PC
benchmarks.

1.3. Properties

Star-topology decoupling has exponential separations relative to all previous
search reduction methods: example families whose decoupled state space has size
polynomial in the size of the input, while the previous method’s state space repre-
sentation is exponential in that size.

Yet the technique is not without risks. The decoupled state space may be
exponentially larger than the standard state space, and may even be infinite. As we
show, however, (a) finiteness can be guaranteed with a simple dominance pruning
technique, and (b) a more expensive hypercube pruning technique (involving a co-
NP-complete sub-problem) guarantees that the number of reachable decoupled
states 1s bounded by the number of reachable standard states. Empirically on
the IPC benchmarks, (b) incurs a prohibitive computational overhead, and even
without (b) the number of decoupled states never exceeds the number of standard
states. So our implementation uses (a) only.

Star-topology decoupling combines gracefully with standard search methods,
in particular with heuristic search algorithms, guiding state space exploration
through heuristic functions mapping states to estimated goal distance [47]]. Heuris-
tic search has been extremely successful in Al planning (e. g. [48, 49, 50} 51} 152,
53, 154, 55]). As we show, heuristic search methods can be applied unmodified
to decoupled search, via simple transformations, preserving their optimality and
completeness guarantees.

The paper is structured as follows. Section [2| introduces the planning frame-
work and basic notations. In Section [3] we define star topologies, as factorings

(state-variable partitions) inducing a star structure. Section [] specifies the de-
coupled state space. Section [5 shows that blow-ups can occur, and identifies the
dominance/hypercube pruning methods avoiding these. Section [6] discusses the
relation to previous methods, including the exponential separations. Section |/|ex-
plains how to plug-in standard heuristic search techniques, and Section |8| presents
our experiments. Section [9) concludes with a discussion of future research direc-

tions. Some proofs are moved out of the main text, into

2. Background

Al Planning is concerned with the design of mechanisms taking decision about
action, finding plans that lead from an initial state to a goal. Here we consider
classical planning, which assumes discrete state variables, complete knowledge
about the initial state, and deterministic actions. The planning problem then con-
sists of checking reachability in a large, discrete and deterministic, labeled transi-
tion system. We give our notation for such transition systems first, then give the
syntax and semantics of our planning model.

A labeled transition system in our terminology is a tuple © = (S, L, ¢, T, I, S¢)
consisting of a finite set of states .S, a finite set of transition labels L, a function
¢ : L — R associating each label with its non-negative cost, a set of transitions
T C S x L xS, an initial state /] € S, and a set of goal states Sz C 5. We
assume that © is deterministic, i. e., for every s and [there exists at most one s’

such that (s,1,s") € T. We will often write s L & for (s,l,s') € T,ors — ¢
if the label does not matter. A solution for s € S is a path 7 in © from s to a
goal state. A solution for [is called a solution for ©. We consider additive cost,
i.e., the cost of a path 7, denoted cost(7), is the summed-up cost of its labels. A
solution for s (respectively ©O) is optimal if its cost is minimal among all solutions
for s (respectively ©).

Our planning syntax follows the finite-domain variables model (e. g., [56,152]).
A planning task is a tuple IT = (V, A, ¢, I, G). V is a finite set of state variables
v, variables for short, each associated with a finite domain D(v). A complete
assignment to V' is a state. I is the initial state, and the goal G is a partial
assignment to V. A is a finite set of actions, where each action a € A is associated
with its precondition pre(a), and its effect eff (a), each a partial assignment to V.
The function ¢ : L — R’ associates each action with its cost. We will often
write variable/value pairs (v, d) as v = d.

The semantics of planning tasks are defined via their state spaces, determin-
istic labeled transition systems as above. The state space of a planning task is

straightforwardly defined given the task’s syntax; we do so via introducing a num-
ber of notations that will be useful. Our convention will be to denote states (as
well as partial assignments) by p, ¢, reserving the more usual s, t for the decou-
pled states introduced later on. For a partial assignment p, V(p) C V denotes
the subset of state variables on which p is defined. Given V' C V(p), it will be
convenient to denote by p[V'| := pl|y the restriction of p to V. An action a is
applicable in a state p if p[V(pre(a))] = pre(a). The outcome of applying a in p
is p[a] := p[V(p) \ V(eff(a))] Ueff(a), i.e., we overwrite p with a’s effect where
defined. We will also use the notation p[Ja] for arbitrary partial assignments p.

Given a planning task IT = (V] A, ¢, I,), its state space, denoted Oy, is the
labeled transition system O = (5, L, ¢, T, I, Sg) whose states S are all states of
IT; whose labels L are the actions A; whose cost function c is that of II; whose
transitions p — ¢ are those were a is applicable in p and ¢ = p[a]; whose initial
state [is that of IT; and whose goal states Si are those p where p[V(G)] = G. A
solution 7 for Oy is a plan for II. We will identify 7 with the sequence of actions
labeling its transitions.

Given a planning task II, deciding whether a plan exists is PSPACE-complete
[S7]. At an algorithmic level, Al planning distinguishes three different problems:
optimal planning, where the objective is to find an optimal plan; satisficing plan-
ning, where it suffices to find any plan; and proving unsolvability, where the ob-
jective is to prove that the goal is unreachable.

Example 1. We use three running examples, named the Vanilla, NoEmpty, and
Scaling example respectively. The latter will be used for illustration as well as
scalability arguments. All examples are based on simple transportation scenarios.

In both the Vanilla and the NoEmpty example, there are two trucks t o, tg mov-
ing along three locations ly, s, l3 arranged in a line, and there is one transportable
object o. The planning task 11 = (V, A, c,I,G) has variables V' = {o,t4,tp}
where D(t4) = D(tg) = {l1,l2,l3} and D(0) = {l1,ls,l3,ta,tp}. The initial
state is [= {tx = l1,tp = l3,0 =11, }, i.e., t4 and o start at |y, and t starts
at l3. The goal is G = {o = l3}. The actions are truck moves and load/unload.
All actions have cost 1, and the only difference between the two examples is the
precondition of truck moves. Namely, A consists of the actions:

1. move(t,x,y) fort € {ta,tg} and {x,y} € {{l1,12},{l2,13}}: precondition
{t = x} in the vanilla example; precondition {t = x,0 = t} in the no-empty
example; effect {t = y}.

2. load(t,x) fort € {ta,tg} and x € {l1,ls,13}: precondition {t = x,0 = z};
effect {o = t}.

3. unload(t,z) fort € {ta,tp} and x € {l1,ls,l3}: precondition {t = x,0 = t};
effect {o = x}.

In the NoEmpty example, a truck can only move if the object is currently inside it.
For both examples, an optimal plan is (load(t 4, 1), move(ta, 11, ls), move(ta,la, l3),
unload(t 4, 13)).

The Scaling example is like the Vanilla example except that there is only one
truck and we scale the number of objects as well as the length of the line. The
planning task 11 = (V, A, ¢, I, G) has variables V = {t, 01, ..., 0,} where D(t) =
{li,...,lm} and D(o;) = {l1,...,lm,t}. The initial state is [= {t = l;,0, =
li,...,0n =1}, i. e, the truck and all objects start at l,. The goal is G = {0, =
Ly« -y 0n = Ui }, L e., all objects must be transported to the other end of the line.
The actions are as before, adapted to suit the modified example structure:

1. move(z,y) for v = l;,y = l; such that |i — j| = 1: precondition {t = z};

effect {t = y}.

2. load(o,z) for o € {o1,...,0,} and x € {ly,... l,}: precondition {t =
x,0 = x}; effect {o =t}.

3. unload(x,y) for o € {o1,...,0,} and x € {l,...,l;,}: precondition {t =
x,0 = t}; effect {o = x}.

An optimal plan for this example loads all objects, drives to the other end of the
line, and unloads all objects.

We require some additional notations and concepts. When we say that an
action a affects a variable v, we mean that v € V(eff(a)). Non-affected ac-
tion preconditions, i.e., pre(a)[V(pre(a)) \ V(eff(a))], are referred to as pre-
vail conditions. To characterize and identify star topologies, we will use the
input task’s causal graph, which captures direct state variable dependencies (e. g.
(30,158,159, 52]). Given a planning task IT = (V, A, ¢, I, G), the causal graph CGp
is a directed graph whose vertices are the variables V/, and that has an arc from «
to v, denoted u — v, if u # v and there exists an action a € A such that either
(i) u € V(pre(a)) and v € V(eff(a)), or (i) u € V(eff(a)) and v € V(eff(a)).
This captures (i) precondition-effect dependencies, as well as (ii) effect-effect de-
pendencies. Intuitively, given a causal graph arc © — v, changing the value of v

10

may involve changing that of u as well, because either (i) © may need to provide a
precondition, or (ii) © may be affected as a side effect of changing the value of v.

We assume for simplicity that CGyy is weakly connected. This is without loss
of generality because, otherwise, the task can be equivalently split into several
independent tasks.

Example 2. The causal graphs of our running examples are shown in Figure

NN T

(@) (b) ()
Figure 2: The causal graphs of our running examples: (a) Vanilla, (b) NoEmpty, (c) Scaling.

3. Star-Topology Factorings

We decompose planning tasks into components identified by disjoint sets of
state variables. Following the factored planning literature (e.g. [33]), we refer
to such decompositions, i.e., to partitions of the state variables, as factorings,
and to the components as factors. A factoring identifies a star topology if its
cross-component interactions take a star shape. Section [3.1] introduces the rele-
vant variants of this concept. Section [3.2]characterizes the space of star-topology
factorings, with a view on maximizing the number of leaf factors.

3.1. Concepts

We start with some special cases that are instructive due to their simplicity, and
that are useful in practice as they are easy to identify (in particular, they underlie
our current factoring strategies).

Definition 1 (Strict-Star Factoring). Let 11 be a planning task with variables V.
A factoring F is a partition of V' into disjoint non-empty subsets F', called factors.

Let F be a factoring. The interaction graph |Gy (F) is the quotient graph of
CGy given F, i. e., the directed graph whose vertices are the factors, with an arc
F — F'if F # F' and there exist v € F and v' € F' such that v — V' is an arc
n CGH

F is a strict-star factoring if |F| > 1 and there exists F¢ € F s.t. all arcs
in |Gy (F) are incident to FC. FC€ is the center of F, and each other factor
Ft e Fb.= F\{F°}is aleaf.

11

F is a fork factoring if the arcs in |Gy (F) are exactly {F¢ — F* | FF ¢
F\{FC}}; it is an inverted-fork factoring if the arcs in |G (F) are exactly
{FL — FC | FL e F\ {F°}}.

In a fork factoring, the only cross-factor interactions consist in the center factor
establishing prevail conditions for actions affecting a leaf factor. In an inverted-
fork factoring, the only cross-factor interactions consist in leaf factors establishing
prevail conditions for actions affecting the centerﬂ In a strict-star factoring, both
directions of precondition-effect interactions are admitted, plus there may be ac-
tions simultaneously affecting the center and a leaf, i.e., whose effect variables
intersect both F'¢ and one F'* ¢ F~.

Example 3. Consider again the causal graphs of our running examples, Fig-
ure In the Vanilla example (a), we obtain a fork factoring when grouping
FC = {ta,tg} and F* = {{o}}, and we obtain an inverted-fork factoring when
grouping F© = {0} and F* = {{ta},{t}}. In the NoEmpty example (b), each
of these groupings yields a strict-star factoring (but neither is a fork nor inverted
fork as the dependencies go both ways). In the Scaling example (c), the most sen-
sible grouping is the fork factoring with F¢ = {t} and FX' = {{o1},...,{o.}}:
the truck is connected to every other variable so should be in the center.

{t, f} (/{77117 ﬂf, ng}\‘
//l\\ {p(01), q(01),{p(02), q(02),{p(03), q(03),
{o1} {02} {os} {os} {os} (01), s(01)} r(02), 5(02)} 7(03), s(03)}

Figure 3: Possible fork factorings in transportation with fuel consumption (left), and production-
planning problems with machines m; processing objects o; (right).

As a more practical illustration, Figure |3\ shows fork factorings on examples
similar to Al planning competition (IPC) benchmarks. On the left we consider
a transportation domain with fuel consumption (as in the IPC NoMystery bench-
mark domain). A truck t with fuel supply f transports objects o1, ..., 0, t and f
form the center factor, each o; is a leaf factor on its own.

On the right, we consider a scheduling domain requiring to process a set of ob-
Jjects with a set of machines (similar to the IPC Woodworking benchmark domain).
Individual objects o; are mutually independent except for sharing the machines, so

3The fork/inverted-fork terminology here follows Katz and Domshlak [60], who considered
similar causal graph structures in the context of tractability analysis.

12

that the machines are grouped into the center and each leaf factor groups together
the properties pertaining to one o,.

We use strict-star factorings, and the forks and inverted forks sub-cases, in
practice, and we will use them throughout the paper in illustrations and practi-
cal discussions. This notwithstanding, our techniques are defined for, and work
correctly on, more general structures.

Decoupled search branches on all actions affecting the center, i.e., these are
included into the center paths being searched over. Therefore, these actions can
be arbitrary. In particular, they can affect and/or rely on multiple leaves. The only
restriction we require, thus, is that the other actions — those that do not affect the
center — are limited to a single leaf factor each:

Definition 2 (General Star Factoring). Let 11 be a planning task, and let F be
a factoring. F is a star factoring if |F| > 1 and there exists F¢ € F such
that, for every action a where V(eff(a)) N FC = (), there exists F' € F with
V(eff(a)) C F and V(pre(a)) C F U FC. FC is the center of F, and all other
factors FL € FL .= F\ {F“} are leaves.

This restriction on non-center-affecting actions obviously holds in a strict-
star factoring. However, a center-affecting action in a star factoring may affect
multiple leaves. In other words, strict-star factorings are a special case of star
factorings:

Proposition 1. Let 11 be a planning task. Then every strict-star factoring is a star
factoring, but not vice versa.

Observe that Definition [2| can always be enforced without loss of generality,
simply by introducing redundant effects on F'“. However, the actions affecting
F¢ are those the decoupled search branches over, so this transformation is just
another way of saying that “cross-leaf preconditions/effects can be tackled by
centrally branching over the respective actions”.

General star factorings as per Definition [2| cannot be characterized in terms
of just the causal graph. If there is a causal-graph arc between two leaves, we
cannot distinguish whether or not all responsible actions also affect the center.
In contrast, strict-star factorings can be characterized in terms of just the causal
graph, making them easier to identify. Also, as we shall see next, they already are
quite powerful, motivating their use in practice.

13

Figure 4: Illustration of Theorem [T} Characterizing fork factorings in terms of “horizontal lines”
{T, B} through the DAG of causal graph SCCs.

3.2. The Space of Strict-Star Factorings

To design an automatic factoring strategy, we need to know under which con-
ditions a strict-star factoring exists, and if so, how to find one with a maximal
number of leaves.

If a factoring F has K leaves, we say it is a K-leaves factoring. By the
maximum number of strict-star (fork/inverted-fork) leaves, we refer to the
number of leaves in a strict-star (fork/inverted-fork) factoring which maximizes
that number.

Let us first consider the simple fork and inverted fork special cases. Denote by
F5CC the factoring whose factors are the strongly connected components (SCC)
of the causal graph CGy. Clearly, any fork or inverted-fork factoring F must
be coarser than F{<C, i.e., for every F' € F5°C we must have F' € F with
F C F'. As an immediate consequence, if the causal graph is strongly connected,
| FSE€| = 1, then we cannot obtain a factoring with more than one component, so
no fork or inverted-fork factoring exists.

The opposite is also true: if |F5C| > 1, then fork and inverted-fork factorings
exist. To see this, consider the interaction graph IGy(F5°C) over causal graph
SCCs. This is a directed acyclic graph (DAG), and we can directly read off the
maximum number of fork/inverted-fork leaves:

Theorem 1 (Fork & Inverted-Fork Factorings). Let Il be a planning task. Then
fork and inverted-fork factorings exist if and only if | F5°¢| > 1. In that case, the
maximum number of fork leaves equals the number of leaf vertices in |Gy (Fo<C),

and the maximum number of inverted-fork leaves equals the number of root ver-
tices in |Gy (F5CC).

PROOF SKETCH: The “only if” in the first part of the claim has already been
argued. The “if”” direction follows from the second part of the claim. To see why
that latter part holds true for fork factorings (the argument for inverted forks is
symmetric), observe that, as illustrated in Figure 4} any fork factoring F can be

14

viewed as “drawing a horizontal line” through |G (F5°C) where the roots are at
the top and the leaves are at the bottom. Denote by 7' the top part above the line,
and by B the bottom part. A fork factoring is then obtained by taking 7" to be
the center, and taking the set VV of weakly connected components of Gy (F5CC)
within B to be the leaves. Clearly, [JV| is at most the number of leaf vertices in
IGH(]:I%CC)- Vice versa, drawing the line just above the leaf vertices, we obtain a
fork factoring with exactly that number of leaf factors. a

Consider now the more general strict-star factorings. Observe first that these
do not need to respect causal graph SCCs. The NoEmpty example, cf. Figure
has a single-SCC causal graph, but we can factorize it as pointed out in Example
Indeed, for any planning task, any partition of the variables into two non-empty
subsets yields a strict-star factoring (where we are free to choose which factor is
the center respectively the single leaf). So, for a task with variables V', there are
at least 2!V — 2 strict-star factorings. That wealth of factorings is, however, of
unclear practical value, as they have only a single leaf.

It turns out that the number of strict-star leaves is characterized exactly by
independent sets in the causal graph, i.e., subsets of variables with no CGyy arcs
between them:

Lemma 1. Let 11 be a planning task. Then from any size- K independent set in
CGry one can construct a K -leaves strict-star factoring, and vice versa.

Proof: Say II has variables V. From left to right, let I = {vy,...,vx} C V be
an independent set in CGyy. Consider the factoring F = {V' \ I,{v1},...,{vk}}.
Designating V' \ I as the center, F is a strict-star factoring because the |Gy (F)
arcs over pairs of leaf factors coincide with those of CGy over pairs of variables
from I, of which by prerequisite there are none.

Fromright to left, let 7 = {F“, FF, ..., FE} be astrict-star factoring. Design
the variable subset I by picking, from every F}X, an arbitrary variable v; € FF.
Then [is an independent set in CGyy because an arc v; — v; in CGp would imply
an arc F" — F} in |G (F). O

Intuitively, to obtain a strict-star topology, we can select the center as an arbi-
trary borderline separating the leaves. Given this, parts A vs. B of the causal graph
can be turned into separate leaves iff they have no direct connection, i. e., there is
no arc incident to both A and B. The only case where the maximum number of
strict-star leaves is 1 is that where the causal graph is completely connected (every
pair of variables has a direct dependency), an extremely rare case in practice.

On the downside, leaf-number maximization is now intractable:

15

Theorem 2 (Strict-Star Factorings). Let I1 be a planning task. Then the maxi-
mum number of strict-star leaves equals the size of a maximum independent set in
CGy. Given K € N, it is NP-complete to decide whether the maximum number of
strict-star leaves is > K.

Proof: Immediate from Lemma [I| and NP-completeness of Maximum Indepen-
dent Set [61]]. [

One may use Theorem 2] for the design of factoring strategies based on approx-
imations of Maximum Independent Set. For now, we employ the more straight-
forward approach, using Theorem [I] to efficiently find forks, inverted forks, and
an “X-shape” combination thereof.

4. The Decoupled State Space

We next introduce our search reduction method. We assume an input planning
task IT and a (general) star factoring F with center F'“ and leaves F*. To make
the exposition accessible, we begin in Section 4.1] by introducing the basic con-
cepts and terminology illustrated with an example, and we provide two example
walkthroughs in Section[4.2] Section[4.3]specifies the decoupled state space, as an
alternative labeled transition system to search in. Section proves correctness,
1. e., soundness, completeness, and optimality, relative to the input planning task.

4.1. Concepts and Notations

Consider the Vanilla example (an object o and two trucks ¢ 4, ¢ moving along
a line of three locations /1, I, I3), and consider the fork factoring given by F'¢ =
{ta,tp} and FL' = {{o}}. We refer to actions affecting the center — in the ex-
ample, the truck moves — as center actions, notation convention a®; we denote
the set of all center actions by A®. The search is over center paths, sequences
7 of center actions applicable to / when ignoring preconditions on the leaves
(in the example there are no such preconditions, so center paths are simply appli-
cable sequences of truck moves). The search begins with the empty center path,
¢ = ().

Each center path in the search ends in a decoupled state s. The decoupled
state contains a center state center|s], a value assignment to F'“; for 7¢ = (), we
have center[s] = {ta = l;,tp = l3}. The decoupled state furthermore contains
a pricing function, a mapping prices[s] : ST — R%" U {co} from leaf states to
non-negative numbers, or oo to indicate unreachable leaf states. A leaf state sk

16

is a value assignment to any one leaf F'L' € FL. SE[FL] denotes the set of leaf
states of a specific leaf F'¥, and S* = |Jpro 7o SY[F*] denotes the set of all leaf
states across leaves.

In the example, S* = S*|(,y = {{o = i1}, {0 = b}, {o = I3}, {0 = ta},
{o = tp}} is the set of all value assignments to the object-position variable o. The
prices in the initial decoupled state s are: prices[s|({o = 1 }) = 0, prices[s]({o =
ta}) =1, and prices[s](sy) = oo for all other leaf states s,. The price of {o = [, }
is 0 as this is already true in the original initial state. The other prices correspond
to the costs of cheapest 7¢-compliant leaf paths, as will be defined shortly.

A leaf action o is an action affecting a leaf F©' € F%. The set of all leaf
actions is denoted A”, and for the set of actions affecting a specific F'© we write
AL[FE]. A leaf path L of FX is a sequence of AL[FL] actions applicable to
I when ignoring preconditions on the center. In our case, F'X = {0} and a leaf
path is any sequence of loads/unloads applicable when ignoring the truck-position
preconditions. Note that, in general (though not in our example), the center ac-
tions A are not disjoint from the leaf actions A*[F*]. In fact, for general star
factorings, a center action a® may affect multiple leaves. All center actions will
be handled as part of the center search. Therefore, we define center path cost as
the summed-up cost of the path’s actions, while we define leaf path cost as the
summed-up cost of only the path’s non-center, A*[F*]\ A°, actions.

A leaf path 7% of leaf F'* complies with a center path 7, 77 is 7¢-compliant,
if: (1) the subsequences of A“[F] N A actions in 7% and 7 coincide; and (2)
the AX[F]\ A® actions in 7 can be scheduled alongside ¢ so that (a) for the
actions in 7! all preconditions on F'“ are satisfied, and (b) for the actions in 7¢
all preconditions on F'* are satisfied. In our present example, (1) is moot because
AL[FE] N A% is empty, and (2b) is moot because center actions do not have leaf
preconditions. But (2a) matters because the object moves (load/unload) rely on
center preconditions. As we show in Section4.3] the leaf paths complying with a
given center path 7¢ can be easily maintained in the form of a layered compliant-
path graph (with layers corresponding to the steps along 7).

Coming back to our pricing function prices|s], the price of {0 = [} is 0 be-
cause the empty leaf path 7% = () complies with 7¢. The price of {0 = t4} is
1 because the leaf path 7% = (load(t4, 1)) complies with 7 the only center
precondition of 7, t4 = [, is satisfied in the center state center[s] = {t, =
li,tp = I3}. For the leaf state {o = tp}, however, there is no 7¢-compliant leaf
path because we would need the center precondition ¢tz = [, which is not true
anywhere along 7¢. In particular, the path (load(tp,[;)) is not 7“-compliant for
that reason. The path (load(t3, I3)) is 7°-compliant, but is not actually a leaf path

17

because it is not applicable to /: its precondition o = I3 on the leaf itself is not
satisfied. Similarly for the leaf states {0 = Iy} and {0 = [3}. These leaf states are
not reachable given 7, so their price in s is co.

Keep in mind that a pricing function does not represent a commitment, but a
set of options, one of which will be committed to later on. In the example, if we
later on choose to load o into ¢ 4, the cost for doing so will be 1. The commitments
will only be made once we reach the goal. Namely, a decoupled goal state is
one whose center state is center goal state, and where every leaf has a finite-price
leaf goal state. Given a center path 7¢ leading to a decoupled goal state, we can
extract a (global) plan 7 for the input task by augmenting 7¢ with 7¢-compliant
leaf goal paths. In fact, pricing functions allow to extract a plan 7w optimal subject
to using exactly the center action subsequence 7. This is so because every global
plan decomposes into a center path augmented with compliant leaf paths, and the
pricing functions keep track of the cheapest compliant leaf paths.

A variant of decoupled search is obtained by replacing the pricing functions
with reachability functions, that distinguish only whether a leaf state is reach-
able (prices|s|(s) < o0), or not (prices[s|(s;) = o0). This allows to preserve
completeness, but does not allow to preserve optimality. It is of advantage in
practice because reachability functions can be computed more efficiently, and as
they make less distinctions so reduce the size of the decoupled state space. Reach-
ability functions are equivalent to pricing functions in the modified task where all
leaf action costs are set to 0, so we will specify the more general pricing functions
only.

4.2. Example Walkthroughs

We illustrate the workings of decoupled search with two examples, the first
continuing our example above, the second pointing out how state space size may
be exponentially reduced. Both examples use fork factorings. Two additional
examples, illustrating inverted-fork and strict-star factorings, are available in [Ap-]

pendix A.

Example 4. Consider again the Vanilla example with F© = {t4,t5} and F* =
{{o}}. Denote the empty center path by ©§, and the corresponding decoupled
state (as above) by so. The outgoing transitions of a decoupled state are given by
those center actions whose center precondition is satisfied, and whose precondi-
tion on each leaf has a finite price. In sq, these actions are move(t4,ly,ls) and
move(tp, s,).

18

Say we choose move(ta,lyi,ls). Denote the extended center path by ch , and
the outcome decoupled state by s,. Then center[si] = {ta = lo,tp = l3}. The
prices prices[sq] are 0 for {o = 11} and 1 for {0 = t 4}, as these were the prices in
So, and no cheaper compliant paths become available in s,: in forks, prices can
only decrease along a center path (this is not so for non-forks). The only change in
prices[sy] is that {o = l5} gets price 2, accounting for the leaf path (load(t 4, 11),
unload(t 4, 1)), which is ©$-compliant because it can be scheduled alongside T
in the form (load(ta,ly), move(ta,ly, o), unload(t 4,15)).

Now say we obtain 75 and sy from 7€ and s, by moving tp to l,. Then
center([ss] = {ta = lo,tg = 2}, and we have the new finite price prices|ss]({0 =
tg}) = 3 thanks to the ©$-compliant path T4 = (load(t 4,1,), unload(t 4, 15),
load(tp,ls)). Say further that we obtain 75 and sz from 75 and sy by moving tp
back to l3. Then prices[ss]({o = I3}) = 4 thanks to the 7§ -compliant path %
extending Tk with unload(tg,13). We have now reached a decoupled goal state.
We obtain a global plan by scheduling 7% alongside 7§, yielding the 7-step global
plan that loads o onto t 5, moves t 4 to lo, unloads o, moves tg to ly, loads o onto
ta, moves tg to ls, and unloads o.

Say finally that we continue on from this decoupled goal state, obtaining 7§
and sy from 7§’ and s3 by moving t 4 to ls. Then center[sy| = {ta = I3,t5 = I3}.
The compliant leaf path % supporting {o = I3} in ss, to yield the price tag
4, is superseded by the new ©{-compliant (but not w§-compliant) path 7t =
(load(ta,ly), unload(ta,l3)). This decreases the price tag to prices[sy|({o =
I3}) = 2. Observe that we now get a 6-step global plan, i. e., a plan better than
that of the decoupled goal state s3 we passed through on the way to s4. Intuitively,
decoupled goal states have leaf-goal price tags, the cost of “buying” compliant
leaf goal paths. The center paths account only for the center, not for the leaves,
so the larger path costs of decoupled-goal-state descendants may be counteracted
by a cheaper leaf-goal price tag, as in this example. We will show in Section 7]
how optimal search algorithms can deal with this via a simple transformation.

Example 5. Consider the Scaling example, where one truck t and n objects o;
move along a line ly, . .. 1, of length m, the truck and all objects starting in [y,
the goal being to transport all objects to l,,,. The standard state space has m(m +
1)" reachable states. By contrast, using the fork factoring with F¢ = {t} and
FL = {{o1},...,{o.}}, the decoupled state space has only w
decoupled states. This does not even depend on the number of objects.

Intuitively, the reason is that pricing function changes happen synchronously

across all leaves, as a function of truck moves, to the effect that we need to keep

reachable

19

track only of the subsequence of locations visited by the truck. In detail: The
initial decoupled state allows each object to be loaded, so each has the price tags
0 for {o; = l1} and 1 for {o; = ta}. After moving to ls, each object gets the
additional price tag 2 for {o; = ly}. Now there are two choices, moving back to
[y which yields the same center state as before but with the additional {o; = 5}
price tags, or moving ahead to l3 which yields the new price tags 2 for {o; = l3}.
In this manner, for each location l;, the new decoupled states are the single one
where the truck reaches [; for the first time, plus the 1 — 1 ones reached by going
back to l;_1, ..., ly. This yields the overall count ZZ 1= M

Each decoupled state has size 1 + n(m + 1) (truck position; n objects, each
with m + 1 leaf states), so the overall state-space representation size is O(nm?).

Remarkably, while the Scaling example is trivial, as we will detail in Section|[6]
it exponentially separates star-topology decoupling from most previous search re-
duction methods.

4.3. Specifying the Transition System

The decoupled state space is a labeled transition system over decoupled states.
To compute the pricing functions, we maintain a compliant-path graph for each
leaf. That graph represents exactly the compliant leaf paths. Namely, given a
center path 7€, the 7°-compliant-path graph for a leaf F'* is a layered graph over
time-stamped F'* leaf states, where the time steps ¢ correspond to the center states
along 7, as follows:

Definition 3 (Compliant-Path Graph). Let II be a planning task, F a star fac-

toring with center F© and leaves F*, and 7° = (af,... aS) a center path
traversing center states (s§,...,sS). The tC-compliant-path graph for a leaf

Fr e FL, denoted CompGH[, F'Y), is the arc-labeled weighted directed graph
whose vertices are {sF | s € SL[FL] 0 <t < n}, and whose arcs are:

(i) sk LN s't with weight c(a)whenevers Le SL[FL] and a* € AL[FL]\
A are such that s¢[V(pre(a®)) N F¢] = pre(DFC), s¥[V(pre(at)) N
FL] = pre(a™)[F), and s*[a"] = s'*.

(ii) sk S L1 with weight 0 whenever s* s L e SL[F* are such that s*[V(pre(a

FL) = pre(af)[F*] and s"[aC] = s'".

20

C

)N

Item (i) concerns transitions within each time step ¢, i.e., the graph captures
how FL — only F¥, not the center or anything else — can be moved given the
center preconditions provided by s&. Recall here that the center actions A® are
not disjoint from the leaf actions AL[F'F]. Within time steps, we consider the
leaf-only actions, AL[FL]\ A°.

Item (ii) concerns transitions across time steps, from ¢ to ¢t + 1, compliant with
the center action al. Leaf states s’ at step ¢ survive (have a transition to ¢+ 1) only
if they comply with the leaf precondition required by a¢, and they get transformed
to leaf states s’ f .1 at step ¢ + 1 through the effect of af on F'*. Note that, if af
has no precondition on F'” (e. g., in a fork), then all leaf states s” survive. If a¢
has no effect on F'* (e. g., in a fork or inverted fork), then the surviving leaf states
remain the same at £ + 1, i. e., the item (ii) transitions have the form s 2 s&, .

The arc weights capture the cost incurred for FZL, i.e., the cost of the 7¢-
compliant leaf paths of F'*. Within time steps, for the actions moving only F',
these are just the action costs. Across time steps, where the center moves (which
may or may not move F'L as a side effect), the arc weight is 0 because these costs
are accounted for on the center path itself.

In short, CompGy[r®, F'] captures all ways in which leaf paths for '~ can be
scheduled alongside I1. The 7w¢-compliant paths correspond exactly to the paths
from I[F']p, i. e., from the vertex representing F'*’s initial state in CompGg[n©, F'Z],
to the vertices of the last layer n, where n is the length of 7¢. Consequently, we
will define the pricing function for 7¢ and F'* through the cheapest such paths in
CompGy[©, FL].

Example 6. Consider the Vanilla example with fork factoring F¢ = {t 4,tg} and
FL = {{o}}, and the center path 7 = (move(ta,li,l5)). The ©¢-compliant-
path graph for the leaf F* = {o} is shown in Figure[3]

(un)load(t4,l2); w1 (un)load(t g, l3); w1

(o=ta)1 (o=tg) (o=l) (0=12)1 (0=13)1
Two Two Two Two Two

(OZtA)() (O:tB)o (O:ll)o (O: lg)() (0: lg)()

(un)load(ta,l1); w1l (un)load(t g, l3); w1
Figure 5: The compliant-path graph for 7¢ = (move(t 4, l1,l2)) in the Vanilla example.

The 7°-compliant leaf path {load(t ,1,), unload(t 4, 15)) in this graph starts
at I[F'*y, i. e., the vertex (o = l)o. It follows the arc labeled load(t 4, 1) to (0 =

21

ta)o, follows the 0-arc to (0 = t4)1, and follows the arc labeled unload(t 4, ls) to
(0 = l3)1. The non-compliant leaf path (load(t 4, 1y), unload(t 4, 13), load(t 4, 15),
unload(t 4,1,)) is not present in the graph as the arc (un)load(t 4, ly) appears only
att = 1, while unload(t 4, 1,) is not available anymore at t = 1.

The pricing function, corresponding to the distances of the t = 1 vertices from
the initial-state vertex (0 = 1), is 1 for {o =ta}, 0 for {o =11}, 2 for {o =15},
and oo elsewhere.

Note that CompGy[n®, FL] contains redundant parts, not reachable from the
initial-state vertex (0 = ly)o. This is just to keep Definition 3| simple. In practice,
it suffices to maintain the reachable part of CompGy[r®, FL].

Consider now the NoEmpty example with the same factoring F¢ = {t4,tp}
and F* = {{o}} (now a strict-star factoring). Say again that 7° = (move(t , 11, 15)).
The w°-compliant-path graph for F'X = {0} is shown in Figure @

(un)load(t4,1l2); w1 (un)load(tp,l3); w1
(0:tA)1 (OZtB)l (0111)1 (0 lg)l (0:l3)1

TWO

(0:tA)0 (OZtB)O (0:l1)0 (0112)0 (0: lg)o

—_— - @

(un)load(ta,l1); w1l (un)load(tg,13); w 1

Figure 6: The compliant-path graph for 7¢ = (move(t,11,12)) in the NoEmpty example.

Note the (only) difference to Figure[S} From time 0 to time 1, the only arc we
have now is that from (0 = t)o to (0 = ta)1. This is because move(t 4,1y, l5) now
has the precondition o = t 4. All other values of o do not comply with the center
action being applied at this time step, and are excluded from the compliant paths.
Consequently, the pricing function now is oo for {o = 11 }.

We are now ready to define the decoupled state space:

Definition 4 (Decoupled State Space). Let II = (V, A, c,I,G) be a planning
task, and F a star factoring with center F¢ and leaves F". A decoupled state
s is a triple (7%[s], center|s], prices|s]) where 7°|s] is a center path, center|s| is
a center state, and prices|s] is a pricing function, prices[s] : ST — RT U {cc},
mapping each leaf state to a non-negative price. The decoupled state space is a
labeled transition system ©F, = (ST, A c| 0, T7, I7, SE) as follows:

(i) ST is the set of all decoupled states.

22

(ii)
(iii)
(iv)

(v)

(vi)

The transition labels are the center actions AC.

The cost function is that of 11, restricted to A°.

F ; s a¢ F c c
T contains a transition (s — t) € T7 whenever a© € A® and s,t are
such that:

1. 7%[s] o (a®) = 7C[t];

2. center[s][V(pre(a®)) N F€] = pre(a®)[FC];

3. center[s]|[a“] = center][t];

4. forevery FL € FEwhere V(pre(a®))NEFL # 0, there exists s € SE[F]
s.t. stV (pre(a®)) N FL] = pre(a®)[F*] and prices[s|(s’) < oo; and

5. for every leaf FL' € FT and leaf state s* € ST[FL], prices[t|(s) is the

cost of a cheapest path from I1[F*)y to s& in CompGy[r©[t], FL], where
n = |rC[t]].

17 is the decoupled initial state, where center[I”] := I[FC], n°[I7] := (),
and, for every leaf F* € F* and leaf state s* € ST[FL|, prices[I7](s") is
the cost of a cheapest path from I[F'*]y to s& in CompGy[(), F'%].

SZ are the decoupled goal states s¢, where center|sg| is a center goal state
and, for every F' € FL, there exists a leaf goal state s € SL[F!] s.t.
prices[sg](s%) < oc.

Note that @ﬁ is infinite, for two reasons: (1) decoupled states contain center
paths, of which there are infinitely many unless the center cannot move in circles;
(2) there are infinitely many pricing functions. We show in the next section that
this finitess can be attained by a simple dominance pruning method.

We refer to paths 77 in ©f; as decoupled paths. The notions of path cost
and solutions, for decoupled states as well as for ©7, are inherited from labeled
transition systems. However, we also require a specialized notion of cost and
optimality, augmented cost/optimality, different from the standard additive-cost
notion. This is because, when applied to ©7;, the standard notion accounts only
for the center-action