
State Space Search Nogood Learning: Online

Refinement of Critical-Path Dead-End Detectors in

Planning

Marcel Steinmetz

Saarland University, Saarbrücken, Germany

Jörg Hoffmann

Saarland University, Saarbrücken, Germany

Abstract

Conflict-directed learning is ubiquitous in constraint satisfaction problems
like SAT, but has been elusive for state space search on reachability problems
like classical planning. Almost all existing approaches learn nogoods relative
to a fixed solution-length bound, in which case planning/reachability reduces
to a constraint satisfaction problem. Here we introduce an approach to learn-
ing more powerful nogoods, that are sound regardless of solution length, i. e.,
that identify dead-end states for which no solution exixts.

The key technique we build on are critical-path heuristics hC , relative
to a set C of conjunctions. These recognize a dead-end state s, returning
hC(s) =∞, if s has no solution even when allowing to break up conjunctive
subgoals into the elements of C. Our key idea is to learn C during search.
Whenever forward search has identified an unrecognized dead-end s, where
hC(s) < ∞, we analyze the situation at s, and add new conjunctions into
C in a way guaranteeing to obtain hC(s) = ∞. Thus we learn to recognize
s, as well as similar dead-ends search may encounter in the future. We
furthermore learn clauses φ where s′ 6|= φ implies hC(s′) = ∞, to avoid the
overhead of computing hC on every search state. Arranging these techniques
in a depth-first search, we obtain an algorithm approaching the elegance of
nogood learning in constraint satisfaction, learning to refute search subtrees.

Email addresses: steinmetz@cs.uni-saarland.de (Marcel Steinmetz),
hoffmann@cs.uni-saarland.de (Jörg Hoffmann)

Preprint submitted to Artificial Intelligence December 13, 2016

We run comprehensive experiments on solvable and unsolvable planning
benchmarks. In cases where forward search can identify dead-ends, and
where hC dead-end detection is effective, our techniques reduce the depth-
first search space size by several orders of magnitude, and often result in
state-of-the-art performance.

Keywords: Search, Heuristic Search, Planning

1. Introduction

The ability to analyze conflicts, and to learn nogoods (or, dually, im-
plied clauses) that avoid similar mistakes in the future, is a key algorithm
ingredient in constraint satisfaction, including but not limited to SAT (e. g.
[1, 2, 3, 4, 5, 6, 7]). For reachability problems in large transition systems,
like goal reachability in classical planning which we consider here, progress in
this direction has been more elusive. Existing techniques almost entirely per-
tain to length-bounded reachability, where the learned nogoods are valid only
relative to a fixed bound on the length of the (remaining) solution path. In
this setting, planning/reachability reduces to a constraint satisfaction prob-
lem. Via a SAT encoding (e. g. [8, 9]), the respective nogood learning tech-
niques apply unmodified. For state space search, conflicts in length-bounded
search take the form of states unsolvable within the bound. This has been
thoroughly investigated in the context of Graphplan [10, 11, 12], and more
recently in property-directed reachability (PDR) [13, 14] (which, as pointed
out by Suda [14], can be viewed as an extension of Graphplan).

From the perspective of reachability testing, length-bounded reachability
is a limitation, as one needs to iterate over different length bounds until some
termination criterion applies. So, do we actually need a length bound to be
able to do conflict analysis and nogood learning?

1.1. Nogood Learning without a Length Bound

Research results in this direction are very sparse. For the identification of
dead-end states in forward state space search – states from which no solution
exists, arguably the most canonical form of “conflicts” in forward search –
nogood learning techniques are unavailable.

In work done as part of the Prodigy system development in the late
80s/early 90s, sound action-pruning rules were learned by analyzing the

2

structure of a backward search [15]. Kambhampati et al. thoroughly ana-
lyzed conflict-based learning, and its relation with CSP methods, in partial-
order planning, i. e., a plan-space search framework [16, 17]. Bhatnagar
and Mostow [18] considered forward state space search nogood learning, yet
their techniques are not sound (do not guarantee that pruned states actually
are dead-ends). Kolobov et al’s SixthSense technique [19] learns to detect
dead-ends in probabilistic forward search planning, yet incorporates classical
planning as a sub-procedure (SixthSense did, however, inspire part of our
techniques, as we detail below). Value function refinement using Bellman
updates (e. g. [20, 21, 22, 23]) will eventually learn that a state is a dead-
end, yet does not generalize that knowledge so is not a meaningful form of
“nogood learning”.

Nevertheless, the question of learning nogoods for dead-end detection is
quite relevant. Such conflicts, though not as quintessential as in constraint
satisfaction (including length-bounded reachability), are important in many
applications. For example, bad decisions often lead to dead-ends in over-
subscription planning (e. g. [24, 25, 26]), in planning with limited resources
(e. g. [27, 28, 29]), and in single-agent puzzles like Sokoban (e. g. [30]) or
Solitaire card games (e. g. [31]). In explicit-state model checking of safety
properties (e. g. [32, 33, 34]), a dead-end is any state from which the error
property cannot be reached – which one would expect to be the case for most
states.

We introduce a method that learns sound and generalizable nogoods from
dead-end states during forward state space search. To our knowledge, this
is the first of its kind. Our work is placed in classical planning, where the
state space is modeled in terms of finite-domain state variables, an initial
state, deterministic transition rules (actions), and a conjunctive goal condi-
tion. But, in principle, the approach applies to reachability checking in other
transition system models as well, so long as they are suitable for the design
of so-called critical-path heuristics. We briefly discuss applications beyond
classical planning at the end of the paper.

1.2. Dead-End Detection Methods in Classical Planning

We distinguish between (a) dead-end detection vs. (b) proving unsolvabil-
ity. Both are closely related, but while (a) is dedicated to the detection of
dead-ends during a forward state space search, (b) is dedicated to proving
that the initial state is a dead-end. The difference lies in the attribution
of computational resources: (a) will be done on every state during a search

3

so should be fast, while (b) will be done just once so can use the entire
computational resources available. At the algorithm design level, this means
that techniques (a) will typically employ easy-to-test sufficient criteria, while
(b) will explore a search space in some form. Forward state space search
employing (a) is one method for doing (b), but is not limited to (b): dead-
end detection can be useful also on solvable problems, as it allows to avoid
fruitless parts of the search space. Our approach here falls into class (a).

Both (a) and (b) have been traditionally neglected in classical planning;
(b) has even been completely ignored, the focus being exclusively on solvable
problems. In particular, the benchmarks used in the International Plan-
ning Competition (IPC) are all solvable. First works designing techniques
dedicated to (b) appeared in 2013 and 2014 [35, 36]; (b) became the cen-
ter of attention for the first time in 2016, with the inaugural Unsolvability
International Planning Competition (UIPC’16).1

That said, heuristic functions – estimators of goal distance – have been
intensely investigated in classical planning (e. g. [39, 40, 41, 42, 43, 44, 45]),
and most of these have the ability to detect dead-ends. They return heuristic
value h(s) = ∞ if state s is unsolvable even in the relaxation underlying h.
Yet this has traditionally been treated as a by-product of estimating goal
distance. Hoffmann et al. [36] were the first to break with this tradition.
They introduced the concept of unsolvability heuristics, reducing heuristic
functions to dead-end detectors which either return ∞ (“dead-end”) or 0
(“don’t know”). They designed unsolvability heuristics based on state-space
abstractions, specifically merge-and-shrink abstractions [46, 47, 48, 45]. In
UIPC’16, apart from merge-and-shrink abstractions [49], new unsolvability
heuristics participated based on pattern databases [42, 50], potential heuris-
tics [51, 52, 53], and critical-path heuristics [39, 54, 55]. The latter is the
approach we introduce here. All other dead-end detectors in UIPC’16 – all
that exist at the time of writing – are statically fixed before search begins,
i. e., they do not learn from search experience at all.

Apart from the mentioned unsolvability heuristics, UIPC’16 had many
participants falling into class (b), including BDDs [56, 57], partial delete-
relaxation [58, 59, 60], and admissible pruning [61, 62, 63]. We will get back

1Some attention has been given to (a) in richer planning frameworks, in the aforemen-
tioned work by Kolobov et al. [19], as well as in work on the PRP system [37, 38]. Both
rely on expensive sub-procedures though, solving non-deterministic or classical planning
problems as part of the dead-end detection.

4

to this in the experiments.

1.3. Our Approach

Critical-path heuristics lower-bound goal distance through the relaxing
assumption that, to achieve a conjunctive subgoal G, it suffices to achieve
the most costly atomic conjunction contained in G. In the original critical-
path heuristics hm, where m is a parameter, the atomic conjunctions are all
conjunctions of size≤ m [39]. This restriction was later on relaxed by Haslum
[64]. As part of recent works on partial delete relaxation [65, 66, 67, 68], the
critical-path heuristic hC was defined, whose parameter is a set C of atomic
conjunctions that can be chosen freely.

It is well known that, for sufficiently large m, hm delivers perfect goal
distance estimates: simply set m to the number of state variables, reasoning
over all relevant conjunctions. The latter is impractical of course, and indeed
this guarantee is only of theoretical interest. Goal distance is preserved under
the hC relaxing assumption only if achieving the most costly atomic c ⊆ G
involves achieving the remaining subgoal G \ c as a side effect. Practically
feasible critical-path heuristics, in particular h1, are known to typically be
weak lower bounds (e. g. [40]).

However, matters change when we shift focus to dead-end detection rather
than goal distance estimation. As a corollary of the above, for appropriately
chosen C, hC detects all dead-ends. This is a much more realistic ambition.
First, it requires accuracy, not on all states, but only on the dead-ends.
Second, it is quite natural for G to be unsolvable because some small c ⊆ G
is. For example, in resource-constrained planning, say our remaining fuel does
not suffice to reach the 3 most distant locations, out of the 100 locations G
requires us to visit.

In summary, hC has the necessary power to refute arbitrary dead-end
states in principle, and there is reason to believe it will be useful for that
purpose in practice. Our idea is to use hC for dead-end detection, learning
the conjunctions C from the conflicts – the unrecognized dead-end states –
encountered during search.

We denote the unsolvability-heuristic variant of hC , that returns ∞ iff
hC does, by uC . We initialize C, before search begins, to the set of singleton
conjunctions. During search, components Ŝ of undetected dead-ends, where
uC(s) = 0 for all s ∈ Ŝ, are identified (become known) when all their descen-
dants have been explored. We show how to refine uC on such components
Ŝ, adding new conjunctions into C in a manner guaranteeing that, after the

5

refinement, uC(s) = ∞ for all s ∈ Ŝ.2 The refined uC may generalize to
other dead-ends search may encounter in the future, i. e., refining uC on Ŝ
may result in detecting also other dead-end states s′ 6∈ Ŝ. As we show in our
experiments, this can happen at massive scale.

The computation of uC , like that of hC , is low-order polynomial time in
the number of atomic conjunctions |C|. Nevertheless, as C becomes larger,
recomputing uC on every search state may cause substantial runtime over-
head. We tackle this with a form of clause learning inspired by Kolobov
et al.’s [19] aforementioned SixthSense method. Whenever uC(s) = ∞, we
learn a minimal clause φ that any non-dead-end state must satisfy, specif-
ically where s′ 6|= φ implies uC(s′) = ∞. We do so by starting with the
disjunction of facts p false in s, and iteratively removing p – adding p into
s – while preserving uC(s) = ∞; this method is inherited from SixthSense,
which does essentially the same though based on h2. Whenever we need to
test whether a state s′ is a dead-end, we first evaluate the clauses φ, and
invoke the computation of uC(s′) only in case s′ satisfies all of these.

Arranging these techniques in a depth-first search, we obtain an algorithm
approaching the elegance of nogood learning in constraint satisfaction: When
a subtree is fully explored, the uC-refinement and clause learning (i) learns
to refute that subtree, (ii) backjumps to the shallowest non-refuted
ancestor, and (iii) generalizes to other similar search branches in the
future. Our experiments show that this can be quite powerful.

We provide a comprehensive evaluation with respect to the state of the
art, for finding plans in solvable benchmarks with dead-ends, and for prov-
ing unsolvability in unsolvable benchmarks. We find that the success of our
techniques depends on the extent of three structural properties of the input
planning task: conflict identification, the ability of forward search to quickly
find conflicts and thus enable the learning in the first place; effective learn-
ing, the ability to recognize dead-ends with small conjunction sets C; and
generalization, the ability of uC to detect states s′ it was not refined on. On
cases where the extent of all three properties is large, our techniques reduce
depth-first search space size by orders of magnitude, and often result in per-

2Refinement methods adding new conjunctions into C were previously designed for
the purpose of goal distance estimation via partial delete relaxation [66, 69, 67]. These
methods can, in principle, be used in our context as well. Yet, as we will show, they are
not well suited for dead-end detection in practice. Our new refinement methods, geared
to that purpose, are typically superior.

6

formance competitive with, or surpassing, the state of the art. This is most
pronounced on resource-constrained planning, specifically the benchmarks by
Nakhost et al. [28] as well as over-constrained versions thereof. On competi-
tion benchmarks, this kind of structure is less frequent, but does appear in
several domains from both the IPC and the UIPC.

For unsolvable benchmarks, we also evaluate the usefulness of the learned
conjunction sets C as unsolvability certificates – a role they are suited to in
principle, given they are efficiently verifiable (polynomial time in |C|), while
potentially exponentially smaller than the state space itself.

Section 2 provides our basic notations and the necessary planning back-
ground. Section 3 provides an example walkthrough to illustrate the workings
of our techniques. Section 4 explains how we arrange forward search to iden-
tify, and learn from, dead-ends. Section 5 introduces two alternative methods
for uC refinement, applicable under different conditions. Section 6 discusses
our clause learning technique. We describe our experiments in Section 7 and
conclude in Section 8. Some proofs are moved out of the main text, and are
available in Appendix A.

2. Background

We consider the STRIPS framework for classical planning. A planning
task is a quadruple Π = 〈F ,A, I,G〉, where F is a set of propositions (facts),
I ⊆ F is the initial state, G ⊆ F is the goal, and A is a set of actions.
Associated with each action a ∈ A is a precondition pre(a) ⊆ F , an add list
add(a) ⊆ F , and a delete list del(a) ⊆ F . Since we are only concerned with
goal reachability, which is independent of action costs, we assume unit action
costs of 1 throughout.

A planning task is a compact representation of a transition system, its
state space ΘΠ = 〈S, T , I,SG〉, where

• S = 2F is the set of all possible states. A state s ∈ S contains the facts
considered to be true in s. All other facts are considered to be false.

• T ⊆ S×A×S is the set of transitions. There is a transition from state
s ∈ S to state s[[a]] ∈ S via action a ∈ A, denoted s

a−→ s[[a]], if a is
applicable to s, i. e. pre(a) ⊆ s, and s[[a]] is given by (s\del(a))∪add(a).
If the action does not matter, we write transitions as s→ s′.

• I is Π’s initial state.

7

• SG ⊆ S is the set of goal states, i. e. all those s ∈ S where G ⊆ s.

A plan for a state s is a path from s to some t ∈ SG in ΘΠ. A plan for Π
is a plan for I. If a state s does not have any plan, we call s a dead-end. If
I is a dead-end, we say that Π is unsolvable. Deciding whether a plan for a
state/for Π exists is PSPACE-complete [70].

Example 1. We will illustrate our techniques with a (simple) transportation
planning task. Consider Figure 1. There is one truck that should bring the
two packages on the given map to their destinations, namely package 1 to l3
and package 2 to l1. The truck movements are subject to fuel consumption.
There is no refueling so we need to make do with what’s initially available.

l2l1

1

l3

2

Figure 1: Our illustrative running example.

For an initial fuel amount of 5, the problem can be modeled as the follow-
ing STRIPS planning task Π = 〈F ,A, I,G〉. F consists of the facts t(x) for
x ∈ {l1, l2, l3} denoting the position of the truck; the location of the packages
p1(x) and p2(x) for x ∈ {l1, l2, l3, T} (T denoting that the package has been
loaded into the truck); and f(x) for x ∈ {0, 1, . . . , 5} specifying the available
amount of fuel. The initial state is I = {t(l2), p1(l1), p2(l3), f(5)}. The goal
is G = {p1(l3), p2(l1)}. There are actions drive(x, y, z) to drive the truck
from location x to location y, assuming that z fuel units are available and
driving the truck consumes one fuel unit; actions load(p, x) to load package
p at location x; and actions unload(p, x) to unload package p at location
x. For example, a = drive(l1, l2, 3) has precondition pre(a) = {t(l1), f(3)},
add list add(a) = {t(l2), f(2)}, and delete list del(a) = {t(l1), f(3)}; and
a = unload(p2, l1) has precondition pre(a) = {p2(T), t(l1)}, add list add(a) =
{p2(l1)}, and delete list del(a) = {p2(T)}.

A plan for Π is to drive from l2 to l1, load p1, drive to l3, unload p1 and
load p2, drive back to l1, and unload p2. This plan consumes all 5 fuel units.
There is no plan that consumes less than 5 fuel units, so if we set the initial
fuel amount to a value smaller than 5, then Π becomes unsolvable.

A heuristic is a function h : S → N+
0 ∪{∞}. By h∗, we denote the perfect

8

heuristic, which maps every s to the length of a shortest plan for s, or to ∞
if s is a dead-end.

Following Hoffmann et al. [36], we say that a heuristic u is an unsolvability
heuristic, or dead-end detector, if u assigns each state to either ∞ or 0. The
interpretation of u(s) =∞ will be “dead-end”, that of u(s) = 0 will be “don’t
know”. We require u to be sound, i. e., whenever u(s) =∞ then s is indeed
a dead-end. In other words, there are no false positives. This is to preserve
optimality/completeness when pruning states where u(s) =∞. On the other
hand, the dead-end detector may return u(s) = 0 although s is actually a
dead-end, i. e., false negatives are possible. Following established terminology
[71, 72], we refer to dead-end states s where u(s) =∞ as recognized, and to
those where u(s) = 0 as unrecognized. The ideal dead-end detector would
be the perfect one, denoted u∗, that recognizes all dead-ends, as this would
allow us to prune all dead-ends during search. However, like h∗, computing
u∗ corresponds to solving the input planning task in the first place.

The family of critical-path heuristics, which underlie Graphplan [10] and
were formally introduced by Haslum and Geffner [39], approximate the cost
of achieving a fact conjunction, e. g. the goal, by the cost of achieving the
most expensive atomic conjunction taken into account by the heuristic. In
the original formulation, the critical-path heuristic hm considered as atomic
all fact conjunctions of size of at most m, m ∈ N being a parameter of
the heuristic. This restriction was later on relaxed by Haslum [64], who
designs a procedure approximating hm, considering only part of the size-m
subgoals. Most recently, Hoffmann and Fickert [73] defined the heuristic hC ,
parameterized by an arbitrary set C of fact conjunctions.

To formalize critical-path heuristics, we define the regression of a fact
set G over an action a as R(G, a) := (G \ add(a)) ∪ pre(a) in case that
add(a) ∩ G 6= ∅ and del(a) ∩ G = ∅; otherwise, the regression is undefined
and we write R(G, a) = ⊥. By A[G] we denote the set of actions where
R(G, a) 6= ⊥. We identify fact conjunctions with fact sets; let C ⊆ 2F

be any set of conjunctions. The generalized critical-path heuristic hC(s) is
defined through hC(s) := hC(s,G) where

hC(s,G) =

0 G ⊆ s
1 + mina∈A[G] h

C(s, R(G, a))G ∈ C
maxG′⊆G,G′∈C h

C(s,G′) else
(1)

Note here that we overload hC to denote both, a function of state s in which
case the estimated distance from s to the global goal G is returned, and a

9

function of state s and subgoal G in which case the estimated distance from
s to G is returned. We will use this notation convention throughout.

The definition of hC distinguishes between three cases. If the subgoal
is already true in the considered state s (top case), then its value is 0. If
the subgoal G is not an atomic conjunction (bottom case), then its hC value
is estimated by the most expensive atomic subgoal that is a subset of G.
Otherwise (middle case), G is an atomic subgoal that is not already true in
the considered state. Then the hC value is set to the cheapest possible way
of achieving G, by minimizing over the actions that can be used to achieve
G, and computing the resulting costs recursively for each.

Observe that, in the middle case, if there exists no action that can be used
to achieve G, then the minimization evaluates to ∞, and thus the overall
outcome value may be hC(s) = ∞. Intuitively, this happens if s has no
solution even when allowing to break up subgoals into the elements of C. As
we are interested only in dead-end detection, not goal distance estimation,
this is the main ability of hC we are interested in. Consequently, most of
the time we will consider not hC but the critical-path unsolvability heuristic,
denoted uC , defined by uC(s) :=∞ if hC(s) =∞, and uC(s) := 0 otherwise.

One can compute hC , solving Equation 1, in time polynomial in |C| and
the size of Π, using simple dynamic programming algorithms similar to those
for hm [39]. It is known that, in practice, hm is reasonably fast to compute for
m = 1, consumes substantial runtime for m = 2, and is typically infeasible
for m = 3. The behavior is similar when using general conjunction sets C,
in the sense that very large C can incur substantial runtime overhead. As
hinted, we will use a clause-learning technique to alleviate this.

The conjunction set C is a very powerful algorithm parameter. The
downside is, how to choose the value of that parameter? This question has
been previously addressed only in the context of partial delete-relaxation
heuristics [66, 67, 73], which extract delete-relaxed plans on top of hC . All
known methods learn C offline, prior to search, by iteratively refining a
delete-relaxed plan for the initial state. Once this refinement process stops,
the same set C is used throughout the search. Departing from this, here we
learn C online, based on conflict analysis during search.

3. An Illustrative Example Walkthrough

To provide the reader with an intuition before delving into the techni-
cal details, we next give an example walkthrough. We illustrate the overall

10

{t(l2),f(2),p1(l1),p2(l3)}

I 0

{t(l1),f(1),p1(l1),p2(l3)}
s1 0 ∞

{t(l3),f(1),p1(l1),p2(l3)}
s2 0 ∞

{t(l1),f(1),p1(T),p2(l3)}
s3 0 ∞

{t(l2),f(0),p1(l1),p2(l3)}
s4 ∞

{t(l2),f(0),p1(T),p2(l3)}
s5 ∞

Figure 2: The search space using our methods, on our running example (Figure 1) with
initial fuel amount 2. We annotate uC values in red; crossed-out values become outdated
after conflict-based uC-refinement.

search process, and how the learning (i) refutes completed parts of the
search, (ii) leads to backjumping, and (iii) generalizes to other sim-
ilar search branches.

Reconsider Example 1, and assume an initial fuel amount of 2. This is
insufficient to transport the packages to their goal locations, so the planning
task is unsolvable. However, to prove unsolvability, a standard state space
search needs to explore all action sequences containing at most two drive
actions. In particular, the search needs to explore two very similar main
branches, driving first to l1 vs. driving first to l3. Using our methods, the
learning on one of these branches immediately excludes the other branch.

Figure 2 illustrates the search space for a depth-oriented search (with open
& closed lists but expanding the deepest node first) using our methods. The
set of atomic conjunctions C is initialized to the singleton conjunctions, i. e.
single facts, C = {{p} | p ∈ F}. In other words, with the initial conjunction
set C, uC(s) = ∞ iff h1(s) = ∞. As regression over singleton subgoals
ignores the delete lists, this is equivalent to the goal being delete-relaxed
unreachable (relaxed-unreachable for short). In our example, this basically
means to ignore fuel consumption so long as at least one fuel unit is left.

In the initial state I, the goal is relaxed-reachable and we get uC(I) = 0.
Thus, I is expanded: the truck can be driven to l1 (resulting in state s1) or
to l3 (resulting in state s2). In both cases, the remaining fuel is decreased
to 1. In particular, some fuel is still available, so the goal remains relaxed-
reachable, uC(s1) = uC(s2) = 0. Say we expand s1 next. Loading package p1

results in state s3, and since loading a package does not affect the fuel, we still
have uC(s3) = 0. On the other hand, driving the truck back to l2 (state s4)
sets the available fuel to 0, and thus the goal becomes relaxed-unreachable
from s4, uC(s4) = ∞ (in fact, s4 can be recognized trivially as a dead-end,
since there are no actions).

Whenever we obtain uC(s) = ∞ on some state s, in the present case
uC(s4) = ∞, we call clause learning on s to identify a clause φ where, for

11

all states s′, s′ 6|= φ implies uC(s′) = ∞. This is not mandatory in theory –
the dead-end detection power of the learned clauses is dominated by that of
uC – but can be useful in practice, as it can reduce the number of calls to
uC and hence the runtime overhead. To identify the clause φ, we minimize
the inverse state F \ s – the set of facts false in s – to obtain a minimal
reason for uC(s) = ∞. In the specific case of s4, the learned clause is
φ = t(l3) ∨ f(1) ∨ f(2) ∨ p1(l3). To understand that clause, observe that s4

remains a dead-end regardless of the position of p2; and, if p1 is not at the
goal location l3, then it has to be transported to l3 meaning that either the
truck has to be at l3, or there must be sufficient fuel to drive to l3.

After the computation of φ has finished, search continues with the expan-
sion of s3, where p1 can be unloaded (leading back to s1), or the truck can
be driven to l2 (resulting in s5). The latter state is a dead-end because we
ran out of fuel. That will be recognized by uC of course. Observe, however,
that s5 6|= φ, so we recognize s5 to be a dead-end without even invoking the
computation of uC(s5).

Now the descendants of s3 have been fully explored, so s3 becomes a
known, yet unrecognized, dead-end. In other words: search has encountered
a conflict.

To learn from that conflict, we start a refinement of C, in a manner
guaranteeing that uC recognizes s3 to be a dead-end after the refinement.
In the present case, the refinement algorithm – precisely, “neighbors refine-
ment” which will be explained in Section 5.2 – extends C by a single atomic
conjunction, c = {t(l2), f(1)}. The details of the refinement algorithm are
technically involved, so we omit them here. For now, observe that adding c
into C indeed suffices to obtain uC(s3) =∞. This is because, to achieve the
goal p1(l3), we need to unload p1 at l3 which has t(l3) in its precondition. The
drive(l2, l3, z) actions achieving t(l3) have f(z) in their precondition, which
in s3 is possible only for z = 1. However, drive(l2, l3, 1) has the new atomic
conjunction c = {t(l2), f(1)} in its precondition. Although each fact t(l2)
and f(1) is reachable from s3 individually – drive to l2 for t(l2), do nothing
for f(1) – they are not reachable in conjunction. The latter is recognized by
uC when including c into C, i. e., uC(s3, c) =∞ for C = {{p} | p ∈ F}∪{c}.
In summary, adding c to C lets uC recognize that a single fuel unit is not
enough to solve s3, because there is insufficient fuel to drive to location l3.

Having finished the uC refinement on s3, we call the clause learning on
s3. We learn the clause t(l2)∨ t(l3)∨ f(2)∨ p1(l3). That clause does not hold
in s1, so we have shown (without invoking uC on s1) that uC(s1) = ∞. In

12

particular, as advertised, (i) uC now refutes the entire state space below the
conflict node s3, and (ii) search can backjump to the shallowest non-refuted
ancestor, I.3

Finally, s2 is the only state left open. However, re-evaluating uC(s2)
before expanding s2, we find that uC(s2) = ∞. Similarly as in s3, getting
the goal p2(l3) requires to achieve the atomic conjunction c = {t(l2), f(1)} in
the first place, yet that conjunction is unreachable from s2. In other words,
(iii) the knowledge learned on the previous search branch, in the form of the
reasoning encapsulated by the extended conjunctions set C = {{p} | p ∈
F} ∪ {c}, generalizes to the present search branch.

With s2 pruned, there are no more open nodes, and unsolvability is proved
without ever exploring the option to drive to l3 first. We could at this point
continue, running the learning process on the now known-yet-unrecognized
dead-end I: if we keep running our search on an unsolvable task, then uC

eventually learns to refute the initial state itself.
We now explain these algorithms in detail. We cover the identification

of conflicts during search, conflict analysis & refinement for uC , and clause
learning, in this order.

4. Forward Search with Conflict Identification & Learning

Assume some unsolvability heuristic u. We will henceforth refer to dead-
end states s unrecognized by u, u(s) = 0, as conflicts. We wish to learn from
conflicts, refining u, during search. For that purpose, we need to augment
search to identify the conflicts in the first place; and we need to say where
exactly to learn.

This is straightforward in principle, but subtleties arise from the need
to do so efficiently. After any search step, how to navigate directly to the
known conflict states? And actually, how to directly identify the components
of such states, which may be (and is, for one of our uC refinement methods)
relevant to the learning?

3The latter would happen here anyway as s1 has no open children, which furthermore
(given the transition from s3 back to its parent s1) was necessary to identify the conflict
at s3. For an example with non-trivial backjumping, say we have packages p1, . . . , pn all
initially at l1 and with goal l3, and one can unload a package only at its goal location.
Then our method expands a single sequence of loading actions below s1, learns the same
conjunction c = {t(l2), f(1)} at the bottom, and backjumps all the way to I. Similar
situations can be constructed for non-symmetric packages.

13

We spell out these subtleties in what follows. We first (Section 4.1) design
a generic extension to search algorithms using open & closed lists, like A∗,
greedy best-first search, etc., preserving their optimality and completeness
guarantees. We then (Section 4.2) design a dedicated depth-first search vari-
ant, which has turned out to be most useful in our experiments as it identifies
conflicts much more quickly, facilitating the learning process. Throughout
this section, we consider an arbitrary unsolvability heuristic u, the only as-
sumption being that there exists a refinement method which, given a conflict
state s, refines u to recognize s.

4.1. Generic Search Algorithm

Algorithm 1 shows pseudo-code for our procedure. Consider first only
the main loop, a generic search that can be instantiated into standard search
algorithms in the obvious manner by suitable handling of the open and closed
lists. The only difference to the standard algorithms then lies in the dead-
end pruning, (a) via u(s) at node expansion time, (b) via u(s′) at node
generation time, and (c) via a call to the CheckAndLearn() procedure after
state expansion. Of these, (a) and (b) are straightforward. A state is pruned,
and considered closed, if it is detected to be a dead-end. Note that (a) makes
sense despite the fact that s was already tested by (b) when it was first
generated. This is because u may have been refined in the meantime, and
may now recognize s to be a dead-end.

The conflict identification and learning process is organized by (c), the
CheckAndLearn() procedure. Before explaining that procedure, we introduce
some basic observations and terminology: we will capture the “knowledge” of
the search in terms of a partial state-space graph. We require some notations
identifying such graphs, and we require a simple comparison concept that will
serve to identify the class of all possible search graphs consistent with the
search knowledge.

Denote by ΘΠ = 〈SΠ, T Π, IΠ,SΠ
G 〉 the state space of our input task Π.

We consider transition systems Θ = 〈S, T , IΠ,SG〉 over subsets S ⊆ SΠ of
states, with SG = SΠ

G ∩S, and with potentially arbitrary transitions T . Given
such Θ, for a subset S ′ ⊆ S of states, by Θ|S′ we denote the subgraph of
Θ induced by S ′. Given two such transition systems Θ1 = 〈S1, T 1, IΠ,S1

G〉
and Θ2 = 〈S2, T 2, IΠ,S2

G〉, and a state set S ′ ⊆ S1 (S ′ will be the closed list
below), we say that Θ2 coincides with Θ1 on S ′ if S ′ ⊆ S2 and, for all s ∈ S ′,
s→2 s′ if and only if s′ ∈ S1 and s→1 s′.

14

Algorithm 1: Generic open & closed list based forward search algo-
rithm, with conflict identification and learning.

Procedure GenericForwardSearch(Π)
Open := {I}, Closed := ∅;
while Open 6= ∅ do

select s ∈ Open;
if G ⊆ s then

return path from I to s;

Closed := Closed ∪ {s};
if u(s) =∞ then

continue;

for all a ∈ A applicable to s do
s′ := s[[a]];
if s′ ∈ Closed then

continue;

if u(s′) =∞ then
Closed := Closed ∪ {s′};
continue;

Open := Open ∪ {s′};
CheckAndLearn(s);

return unsolvable;

Procedure CheckAndLearn(s)
/* loop detection */

if s is labeled as dead-end then
return;

R[s] := {t | t reachable from s in Θsearch|Open∪Closed};
if R[s] ⊆ Closed then

label s;
/* refinement (conflict analysis) */

refine u s.t. u(t) =∞ for every t ∈ R[s];
/* backward propagation */

for every parent t of s do
CheckAndLearn(t);

15

Assume now any time point during search using Algorithm 1. We define a
transition system reflecting the current search, namely, the transition system
which is like ΘΠ|Open∪Closed except that closed states s ∈ Closed that were
pruned – that were detected to be dead-ends – do not have any outgoing
transitions. We refer to this transition system as the search graph, and we
denote it by Θsearch. We say that a state s is a known dead-end if, given the
search graph – intuitively, given the search “knowledge” about ΘΠ so far –
s must be a dead end. Formally, capturing the search knowledge as the set
of transition systems Θ that coincide with Θsearch on Closed , s is a known
dead-end if it is a dead-end in every such Θ. In other words, search knows
s to be a dead-end if that is so in all state spaces indistinguishable from the
present one given the search so far.

It is easy to see that the known dead-ends are exactly the states all of
whose descendants in the search graph are already closed. That is, denoting

R[s] := {t | t reachable from s in Θsearch|Open∪Closed},

we have:

Proposition 1. At any time point during the execution of Algorithm 1, the
known dead-ends are exactly those states s where R[s] ⊆ Closed.

Proof. First, say that R[s] ⊆ Closed . Consider any descendant state t of s
in the current search graph. Then t is closed, either because it has already
been expanded, or because it has been detected as a dead-end. In the former
case, all outgoing transitions of t lead to states in Closed ; in the latter case,
t does not have any outgoing transitions. Let now Θ be a transition system
over S ⊆ SΠ as above, that coincides with Θsearch on Closed . Then all states
reachable from s in Θ are contained in Closed . As Closed ∩ SG = ∅, s must
be a dead-end in Θ, which is what we needed to prove.

Vice versa, if R[s] 6⊆ Closed , then some descendant t of s in the current
search graph is still open. We can construct a counter-example Θ simply
by extending Θsearch|Open∪Closed with a direct transition from t to some goal
state.

Given this, a näıve means to identify all known conflicts is to evaluate,
after every state expansion and for every s ∈ Closed , whether R[s] ⊆ Closed .
But one can do much better than this, by a dead-end labeling procedure.

One might, at first sight, expect such a labeling procedure to be trivial,
doing a simple bottom-up labeling following the reasoning that, if all direct

16

successors of s are already known dead-ends, then s is a known dead-end as
well. Such a simple procedure would, however, be incomplete, i. e., would
in general not label all known dead-ends, due to cycles. If states s1 and s2

are dead-ends but have outgoing transitions to each other, then neither of
the two will ever be labeled. Our labeling method, conducted as part of
CheckAndLearn(), thus involves complete lookaheads on the current search
graph, but on only those states that might actually have become a known
dead-end given the last state expansion. Namely, a state t can only become
a known dead-end after the expansion of a descendant s of t where R[s] ⊆
Closed after the expansion: otherwise, either the descendants of t have not
changed at all, or t still has at least one open descendant.

Consider now the bottom part of Algorithm 1. In the top-level invocation
of CheckAndLearn(s), s cannot yet be labeled; the label check at the start of
CheckAndLearn() is needed only for loop detection in recursive invocations,
cf. below. The test on R[s] corresponds to Proposition 1. For t ∈ R[s], as
t is reachable from s, we have R[t] ⊆ R[s], and thus R[t] ⊆ Closed , so all
t ∈ R[s] are known dead-ends as well. Some t may be recognized already,
u(t) = ∞, and thus (be dead-ends but) not be conflicts. If that is so for all
t ∈ R[s], then the refinement step is void and can be skipped.

Backward propagation on the parents of s is needed to identify all dead-
ends known at this time. Observe that the recursion will eventually reach
all ancestors t of s, and thus all states t that might have become a known
dead-end. Given the label check at the start of CheckAndLearn(), every state
is labeled at most once and hence |Closed | is an obvious upper bound on the
number of recursive invocations, even if the state space contains cycles. Note
that, in each recursive call, we can only label s itself, not all t ∈ R[s]. This
is because R[s] may contain ancestors t of s, and some other ancestor t′ of s
may be connected to s only via such t. In that case, t′ would not be reached
by the recursion.

In short, we label known dead-end states bottom-up along forward search
transition paths, conducting a full lookahead of the current search graph
in each. With the arguments outlined above (a full proof is available in
Appendix A), this is sound and complete relative to the search knowledge:

Theorem 1. At the start of the while loop in Algorithm 1, the labeled states
are exactly the known dead-ends.

Example 2. Reconsider the search space on our running example, depicted
in Figure 2. After expansion of s3, the call to CheckAndLearn(s3) con-

17

structs R[s3] = {s3, s1}, and finds that R[s3] ⊆ Closed. Thus s3 is labeled,
and u is refined to recognize s3 and s1. Backward propagation then calls
CheckAndLearn(s1), the parent of s3. As we have the special case of an ances-
tor t ∈ R[s], all states in R[s1] are already recognized so the refinement step
is skipped. The recursive calls on the parents of s1, CheckAndLearn(s3) and
CheckAndLearn(I), find that s3 is already labeled, respectively that R[I] 6⊆
Closed, so the procedure terminates here.

It is worth noting that the search “knowledge” considered in the above
is only the explicit knowledge, about states the search has already expanded
or pruned. This disregards the implicit knowledge potentially present due
to generalization: refining u on R[s] might recognize dead-ends t′ 6∈ R[s]. In
particular, the search might have already visited t′, t′ ∈ Open ∪ Closed , and
then, via u, the search might actually already know that t′ (and potentially
some of its ancestors) are dead-ends.

One can capture this formally by denoting with U := {t′ | t′ ∈ S, u(t′) =
∞} the currently recognized dead-end states; defining Θsearch[U] to be like
Θsearch except that all t′ ∈ U have no outgoing transitions; and defining a
state to be a u-known dead end if it is a dead-end in all Θ that coincide with
Θsearch[U] on Closed ∪ (Open ∩U). The u-known dead-ends then are exactly
those s where R[s] ⊆ Closed ∪U . To find all these s during search – and thus
immediately learn from all already identified dead-end states – after every
state expansion, we would have to reevaluate u on the entire open and closed
lists (plus backward propagation whenever a new dead-end is found). This
would cause prohibitive overhead. Hence we stick to learning only on the
known dead-ends, explicitly captured by the search.

An optimization we do apply in our instantiation of Algorithm 1 is to
reevaluate the learned clauses (see Section 6) every time R[s] is computed:
if a descendant of s is recognized by the clauses in the meantime, consider
it closed. As clause evaluation is fast, this tends to pay off. In particular,
it allows to not include detected dead-ends s into the closed list in the first
place, as such s will be recognized by the clauses anyway.

Algorithm 1 has several desirable properties regardless of its concrete
instantiation:

(1) Preserving guarantees: Instantiating the main loop to reflect any
standard search algorithm, the optimality and/or completeness guaran-
tees of that algorithm are preserved, as the only change is the pruning
of dead-end states.

18

(2) Unsolvability certificate: Upon termination, we have u(I) =∞, due
to the final call to CheckAndLearn(), doing backward propagation when
all nodes are closed.

In case an unsolvability certificate is not required, the final call to CheckAndLearn()
is redundant work. In our implementation, we provide an early termina-
tion option, which skips that step when the open list is already empty.

(3) Bail-out: Provided the unsolvability heuristic is transitive, search termi-
nates without any further state expansions if an unsolvability certificate
is already found. Here, we say that u is transitive if u(s) = ∞ implies
u(t) = ∞ for all descendants t of s. This is a natural property for u to
have – after all, proving s to be a dead end involves some form of rea-
soning about its descendants – and it does hold for the uC unsolvability
heuristic considered here. With transitive u, if u(I) =∞ then u(s) =∞
for all s, hence no more states will be expanded.

We remark that the problem of labeling the known dead-end states re-
lates closely to cost revision steps in cyclic AND-OR graphs, as done in AO∗

and other AND-OR search algorithms (e. g. [74, 75, 76]). It is equivalent
to labeling solved nodes when viewing states as AND nodes, and viewing
actions as trivial OR nodes with a single outgoing edge (action outcome).
Effective methods for labeling solved nodes, without complete forward looka-
heads, have been designed, yet these exploit non-trivial OR nodes (through,
e. g., focusing on a current greedy policy [75]). It remains an open question
whether such methods can be beneficial for our purposes. In any case, as we
shall see next, in depth-first search – which turns out to be most useful in
practice – the issue of forward lookaheads disappears.

4.2. Depth-First Search

Depth-first search (DFS) is particularly well suited for our purposes, be-
cause it fully explores the descendants of a state before proceeding with
anything else. In other words, DFS is geared at obtaining R[s] ⊆ Closed as
quickly as possible. This is key to identifying conflicts quickly.

But what exactly does DFS look like in our context? The issue is that
state spaces are, in general, cyclic, and nodes may have solutions via their
parents. In our running example, s3 has a transition to its parent s1. A
simple way to tackle this is what we will refer to as depth-oriented search
(DOS) (as previously indicated in Section 3), instantiating Algorithm 1 with

19

a depth-first search order, ordering the open list by decreasing distance from
the initial state.

It turns out that one can do better though. We next design an elegant
DFS variant of our approach, similar to backtracking in constraint satisfac-
tion problems. Consider first, to get some intuitions, the acyclic case. This
is restricted yet not entirely unrealistic: acyclic state spaces naturally occur,
e. g., if every action consumes a non-0 amount of budget or resource. In
DFS on an acyclic state space, state s becomes a known dead-end exactly
the moment its subtree has been completed, i. e., when we backtrack out of
s. Hence we can simply refine u at this point. As the same has previously
been done on the children s′ of s, we will have u(s′) = ∞ for every such
s′, so the conflict component R[s] simplifies to just s. Overall, the complex
CheckAndLearn procedure can be replaced by refining u on s at backtracking
time. But then, we do not need the open and closed lists anymore, and can
instead use a classical DFS.

In the cyclic case, matters are not that easy. But it turns out that one
can obtain a valid DFS algorithm (which defaults to classical DFS in the
acyclic case) from Tarjan’s algorithm to compute maximal strongly connected
components (SCCs) [77]. (Which has previously been put to use in certain
dynamic programming algorithms for probabilistic planning [78, 23].)

Algorithm 2 shows the pseudo-code. The key observation is that s be-
comes a known dead-end exactly at the moment when we have identified the
maximal SCC S ⊆ S that contains s, i. e., once DFS backtracks out of the
last state in S. This is simply because, with R[s] ⊆ Closed , we must also
have R[t] ⊆ Closed for any ancestor state t of s reachable from s. Thus,
to get rid of the expensive CheckAndLearn procedure, DFS can use Tarjan’s
algorithm to identify the maximal SCCs, and refine u whenever a maximal
SCC has been found. Henceforth, whenever we say “DFS”, we mean DFS as
per Algorithm 2.

Regarding the properties of DFS, obviously property (1 preserving guar-
antees) from above is not meaningful here, and DFS is complete but not op-
timal. DFS inherits properties (2 unsolvability certificate) and (3 bail-out).
Like for Algorithm 1, we implemented a simple early termination option in
case an unsolvability certificate is not desired. DFS furthermore has several
desirable properties beyond (2) and (3):

(4) Backjumping: Due to the pruning test on u(s) =∞ inside the state-
expansion loop, DFS will backjump across predecessor states s that are

20

Algorithm 2: Depth-first search (DFS), with conflict identification and
learning following Tarjan’s algorithm.
Global variables: N := 0;

stack := empty stack;
idx, lowlink functions S 7→ N ∪ {∞},
initially idx(s) = lowlink(s) =∞ for all s ∈ S;

Procedure DFS(s)
if G ⊆ s then

return true;

if u(s) =∞ then
return false;

idx(s) := N ; lowlink(s) := N ; N := N + 1; push s onto stack;
for each a ∈ A applicable to s do

s′ := s[[a]];
if idx(s′) =∞ then

if DFS(s′) then
return true;

else if u(s) =∞ then
return false;

else
lowlink(s) := min{lowlink(s), lowlink(s′)}

else if s′ is on stack then
lowlink(s) := min{lowlink(s), idx(s′)}

if idx(s) = lowlink(s) then
R[s] := ∅;
while s 6∈ R[s] do

t := stack.top(); stack.pop();
R[s] := R[s] ∪ {t};

refine u s.t. u(t) =∞ for every t ∈ R[s];

return false;

21

now recognized dead-ends. For transitive unsolvability heuristics, the
backjump will be across all recognized dead-ends on the current search
path, as u(s) =∞ implies u(t) =∞ for all t below s.

(5) Immediate u-known learning: DFS guarantees to learn, before the
next state expansion, on all dead-ends t′ that are u-known but not
known, and where u(t′) 6= ∞ (there is still something to learn on t′).
To see this, let t′ be such a state. As t′ is not a known dead-end, it
must lie along the current search path ~t. As u(t′) 6= ∞ but t′ is a
u-known dead-end, t′ must be an inner node along ~t, and every leaf
node s along ~t reachable from t′ must satisfy u(s) = ∞. But then,
search backtracks out of the SCC containing t′ without any further
state expansions, which is what we needed to show.

(6) Duplicate pruning for free: As u learns to refute the subtree below
s, it subsumes the duplicate pruning that would be afforded by a closed
list. Due to generalization, if will often surpass that pruning by far.

Compared to this, in the generic search of Algorithm 1, towards (4) one can
test, at the start of the CheckAndLearn() procedure, whether u(s) = ∞.
This leads to backjumping in depth-oriented search, and leads to aggressive
pruning of search paths in other open list based searches like greedy best-first
search. For (5), as discussed this does not hold for Algorithm 1 in general,
as the new u-known states may lie on arbitrary search paths; it does hold
for depth-oriented search though. Finally, (6) is specific to DFS, and cannot
be exploited by Algorithm 1 regardless of the search order, as that algorithm
needs to maintain a closed list anyway. Intuitively, depth-first search is closer
to the structure of dead-end detection, and combines more gracefully with it
than other search algorithms.

For both Algorithm 1 and Algorithm 2, in practice it is often useful to
combine several dead-end detectors {u1, . . . , uk}, instantiating u in the re-
spective pseudo-code with maxi ui to profit from complementary dead-end
detection capabilities. The refinement step then in principle allows arbitrary
combinations of refinements on the individual ui. Here, we will empirically
investigate the combination of uC with the aforementioned dead-end detec-
tors u based on merge-and-shrink abstraction [36, 49] respectively potential
heuristics [52, 53]. As refinement methods for the latter are not available
at the time of writing, we will refine uC only. A subtlety that arises in this

22

context regards the handling of dead-end states recognized by u but not by
uC . We now consider the refinement step in detail.

5. Conflict Analysis & Refinement for Critical-Path Heuristics

We now tackle the refinement step in Algorithms 1 and 2, for the dead-
end detector uC . Given R[s] where all t ∈ R[s] are dead-ends, how to refine
uC on R[s] to recognize all these dead-ends?

Naturally, the refinement will add a set X of conjunctions into C. A
suitable refinement is always possible, i. e., there exists X s.t. uC∪X(s) =∞
for all t ∈ R[s]. But how to find such X?

One possibility is to use known conjunction-learning methods from the
literature [66, 69, 67], which iteratively remove conflicts in delete-relaxed
plans for a given state s. These methods do guarantee to eventually recognize
s if it is a dead-end. But they are not geared to this purpose, and as we shall
see, are not effective in practice for that purpose. Here we introduce two
methods specifically designed for dead-end detection: path-cut refinement
and neighbors refinement.

The major difference between the two methods lies in their applicability.
Neighbors refinement applies only to R[s] that satisfy what we call the uC-
recognized neighbors property. Consider the neighboring states t of R[s],
i. e., those with an incoming transition from R[s]. All these t must already
be recognized as dead-ends. But recognized by which dead-end detector?
We say that R[s] has uC-recognized neighbors if all t are recognized by uC ,
uC(t) =∞. This necessarily holds if uC is the only dead-end detector used.
But if uC is combined with some other dead-end detector u, then some of
the states t may be recognized only by u, not by uC .

It turns out that the recognized neighbors property can be exploited for an
especially effective refinement method, neighbors refinement. For the general
case, we design the alternate path-cut refinement method.

Path-cut refinement (Section 5.1) learns conjunctions X cutting off the
critical paths in a hC computation reaching the goal. One such refinement
step guarantees to strictly increase the value of hC . To render hC infinite
as desired, we need to iterate these refinement steps, recomputing hC in
between iterations. Neighbors refinement (Section 5.2), in contrast, is a con-
structive method, identifying the new conjunctions X directly from those for
the neighbor states, without necessitating any intermediate recomputations
of uC .

23

5.1. Path-Cut Refinement
Path-cut refinement assumes some arbitrary dead-end state s as input,

and augments C to recognize s. To recognize all dead-ends within the com-
ponent R[s], we run the method on s only. Due to the aforementioned
transitivity property of uC , this suffices to recognize all states in R[s].

The refinement is based on cutting off critical paths, i. e., the recursion
paths in the definition of hC (Equation 1). The refinement is iterative, where
each iteration identifies a set X of conjunctions adding which into C guar-
antees to strictly increase hC(s). Given this, the method really pertains to
hC rather than the simplified uC , and it applies not only to dead-end states,
but to any state s where hC(s) < h∗(s). Therefore, for the remainder of this
subsection, we will talk about hC , not uC . At the end of the refinement on
a dead-end state s, we will have hC(s) = uC(s) =∞.

We consider now in detail a single refinement step (one iteration of the
overall refinement). In what follows, like in Equation 1 we use hC(s,G) to
denote the hC value of subgoal fact set G, i. e., the approximated cost, given
the hC relaxation of achieving G from s. Correspondingly, we use h∗(s,G)
to denote the real cost of achieving G from s. The hC recursion path on a
current subgoal G is cut off by identifying a small conjunction x ⊆ G that
cannot be achieved with action sequences of length at most hC(s,G). The
union of these x over all critical recursion paths yields the desired set X.
Algorithm 3 shows the pseudo-code.

To understand Algorithm 3, consider the initializing call on G = G and
n = hC(s). Our aim is to identify a (small) conjunction x ⊆ G that cannot be
achieved from s by any action sequence of length at most hC(s,G). Towards
finding such x, we start by selecting an arbitrary critical (maximum hC value)
atomic conjunction c ∈ C, c ⊆ G. We initialize x := c. As hC(s, c) = n,
c is achieved, under the hC approximation, by an action sequence of length
n. However, as n = hC(s,G) < h∗(s,G), we know that we can extend x = c
with additional facts p ∈ G \ c in a way excluding that case, i. e., making x
achievable under hC only by action sequences of length > n.

To find suitable facts p for extending x, we recursively consider the actions
a ∈ A[c], i. e., the actions that can achieve c (that add part of c and delete
none of it). For each of these, we augment x so that there is a conjunction
x′ ⊆ R(x, a) that cannot be achieved with action sequences of length at most
n − 1. If a deletes part of G, we can tackle a simply by adding one such
deleted fact p into x, effectively removing a from the set of achievers of x.
For the remaining actions a, we recursively identify a suitable x′ ⊆ R(G, a).

24

Algorithm 3: A single step of path-cut refinement on a state s. The
initializing call to the algorithm is on G := G and n := hC(s). The
algorithm assumes that hC(s) < h∗(s), and identifies a set X of con-
junctions so that hC(s) < hC∪X(s). s, C, and X are global variables;
X := ∅ is set initially.

Procedure PathCutRefine(G,n)
if n = 0 then

/* We know here that G 6⊆ s */

let p ∈ (G \ s); x := {p};
else

/* Select an atomic conjunction (invariant: hC(s,G) ≥ n) */

let c ∈ C s.t. c ⊆ G and hC(s, c) ≥ n;
x := c;
if hC(s, c) = n then

/* Cut each path that achieves c */

for every action a ∈ A[c] do
if del(a) ∩G 6= ∅ then

let p ∈ del(a) ∩G;
x := c ∪ {p};
/* ⇒ a is no longer an achiever of x */

else
x′ := PathCutRefine(R(G, a), n− 1);
x := x ∪ (x′ \ pre(a));
/* ⇒ R(x, a) contains x′ */

X := X ∪ {x};
return x;

25

The latter is necessarily possible as we will always have hC(s,G) < h∗(s,G)
(in particular, G 6⊆ s at the recursion termination n = 0). We then extend
x in a way ensuring that x′ is contained in the regression R(x, a), implying
that x cannot be reached at time n.

Spelling out these arguments (see the proof in Appendix A), one obtains
that PathCutRefine is correct:

Theorem 2. Let C be any set of atomic conjunctions. Let s be a state with
hC(s) < h∗(s). Then:

(i) The execution of PathCutRefine(G, hC(s)) is well defined, i. e., (a) in
any call PathCutRefine(G, n) there exists c ∈ C so that c ⊆ G and
hC(s, c) ≥ n; and (b) if n = 0, then G 6⊆ s.

(ii) If X is the set of conjunctions resulting from PathCutRefine(G, hC(s)),
then hC∪X(s) > hC(s).

As a single call to PathCutRefine only guarantees to increase hC(s) by
at least 1, for dead-end refinement we need to iterate these calls, setting
C := C ∪ X after each call, until hC(s) = ∞ holds. This is guaranteed
to eventually happen, simply because every iteration adds at least one new
conjunction to C (otherwise, the value of hC could not have increased), and
the number of conjunctions is finite. In the worst case, C eventually contains
all conjunctions, and hC(s) =∞ holds trivially.

Example 3. Consider again the search space of our running example in
Figure 2. After expanding s3, all of its children are either closed or recognized
under uC. Thus, s3 becomes a known, though unrecognized dead-end. At this
point in time C consists only of the unit conjunctions, C = {{p} | p ∈ F},
and hence hC = h1. Say that we now conduct path-cut refinement on s3 to
suitably extend C.

In the first call to PathCutRefine, we have G4 := G = {p1(l3), p2(l1)}
and n = hC(s) = h1(s) = 4. There is only one option for the selection of c,
because h1(s, {p1(l3)}) = 3 < 4 = h1(s, {p2(l1)}). So we choose c4 = {p2(l1)}
and initialize the conflict to x4 := c4. To see whether p2(l1) can be reached
with an action sequence of length no longer than 4, and thus to determine
whether we have to augment x4 by p1(l3), we continue with the recursion
on the only achiever of c4, unload(p2, l1). This yields a recursive call on
G3 := R(G4, unload(p2, l1)) = {p1(l3), t(l1), p2(T)}.

26

In PathCutRefine(G3, 3), there are two options for choosing the conjunc-
tion c3, namely c3 = {p1(l3)} and c3 = {p2(T)}. Say that we consider the crit-
ical path responsible for the top-level goal p2(l1), i. e., we choose c3 = {p2(T)},
and we set x3 := c3. With the critical-path action load(p2, l3), this yields
a recursive call on G2 := R(G3, load(p2, l3)) = {p1(l3), t(l1), t(l3), p2(l3)}.
From the options in that recursive call, say we consider again the criti-
cal path responsible for p2(l1), setting c2 = {t(l3)} and x2 := c2. With
the critical-path action drive(l2, l3, 1), this yields a recursive call on G1 :=
R(G2, drive(l2, l3, 1)) = {p1(l3), t(l1), p2(l3), t(l2), f(1)}. Considering again
the critical path responsible for p2(l1), we select c1 = {t(l2)} and set x1 := c1.
Now, the only supporting action to be considered is drive(l1, l2, 1) (higher fuel
levels yield unreachable preconditions under the current hC already). How-
ever, we do not require a recursive call over that action, as drive(l1, l2, 1)
deletes t(l1) and f(1), which are both part of our subgoal G1. Say we extend
x1 with the deleted fact f(1).

The recursion now goes back up the recursion path over the levels i ∈
{2, 3, 4}, corresponding to the actions drive(l2, l3, 1), load(p2, l3), unload(p2, l1),
with the current conjunctions x2 = {t(l3)}, x3 = {p2(T)}, x4 = {p2(l1)}.
At each step, we extend xi with xi−1 minus the respective action’s precon-
dition. At i = 2, xi−1 = {t(l2), f(1)}; both are in the precondition of
drive(l2, l3, 1), so x2 remains the same. But then, x3 and x4 also remain
the same in the remaining steps. Therefore, upon termination the only non-
singleton conjunction in X is {t(l2), f(1)}. Recall from our example walk-
through in Section 3 that this is exactly the single conjunction needed to
render uC∪X(s3) = uC∪X(s1) =∞.

5.2. Neighbors Refinement

Neighbors refinement assumes as input a set Ŝ of dead-end states that
satisfies the uC-recognized neighbors property. Namely, we denote by T̂ the
neighbors of Ŝ, i. e., the set of states t 6∈ Ŝ where there exists s ∈ Ŝ s.t. s→ t.
The uC-recognized neighbors property requires that uC(t) =∞ for all t ∈ T̂ .

In the context of Algorithms 1 and 2, we set Ŝ := {s′ | s′ ∈ R[s], uC(s′) =
0}. Provided that uC is the only dead-end detector used, it is easy to see that
the uC-recognized neighbors property always holds at the refinement step on
R[s]: R[s] contains only closed states, so it contains all states s′ reachable
from s, up to the neighbor states t ∈ R[s] \ Ŝ where uC(t) =∞.

For illustration, consider again our running example, specifically the search
space in Figure 2. At the refinement step on s3, we have Ŝ = {s′ | s′ ∈

27

R[s3], uC(s′) = 0} = {s3, s1}. The neighbor states are T̂ = {s4, s5}. The
uC-recognized neighbors property is satisfied: each of the neighbor states is
already recognized by uC , using the singleton conjunctions only, as there is
no more fuel left.

We use uC(s,G) to denote the uC value of subgoal fact set G. Our refine-
ment method is based on what we refer to as the uC neighbors information:
the values uC(t, c) for all t ∈ T̂ and c ∈ C. We compute this information
once, at the start of the refinement procedure.4 Thanks to that information,
in contrast to path-cut refinement as well as all previous conjunction learning
methods, we do not require any intermediate recomputation of uC during the
refinement. Instead, neighbors refinement uses the uC neighbors information
to directly pick suitable conjunctions x for the desired set X. The method
is inspired by the following simple characterizing condition for uC dead-end
recognition:

Lemma 1. Let C be any set of atomic conjunctions, let s be a state, and let
G ⊆ F . Then uC(s,G) =∞ if and only if there exists c ∈ C such that:

(i) c ⊆ G and c 6⊆ s; and

(ii) for every a ∈ A[c], uC(s, R(c, a)) =∞.

Proof. “⇒”: By definition of uC , there must be a conjunction c ∈ C so that
c ⊆ G and uC(s, c) = ∞. The latter directly implies that c 6⊆ s, and that
uC(s, R(c, a)) =∞ for every a ∈ A[c].

“⇐”: As c ⊆ G, we have uC(s,G) ≥ uC(s, c). As c 6⊆ s, we have
uC(s, c) = mina∈A[G] u

C(s, R(G, a)). For every a ∈ A[G], uC(s, R(c, a)) =∞,
so we have uC(s, c) =∞ as desired.

Say now that s is any state in Ŝ. We need to find X so that uC∪X(s) =
uC∪X(s,G) = ∞. Given Lemma 1, we can do so by (i) picking some con-
junction c with c ⊆ G and c 6⊆ s, and then, recursively in the same manner,
(ii) picking for every possible supporter a ∈ A[c] an unreachable conjunction
c′ for R(c, a). As s is a dead-end, and as uC recognizes all dead-ends in the
limit, Lemma 1 tells us that a suitable conjunction c exists at every recursion

4Alternatively, one can cache the uC neighbors information during search prior to the
refinement on Ŝ. But that turns out to be detrimental. Intuitively, as new conjunctions
are continually added to C, the cached uC information is “outdated”. Using up-to-date
C yields more effective learning.

28

level. But the lemma does not tell us what that conjunction is. In particular,
c must actually be unreachable, i. e., it must hold that h∗(s, c) = ∞. But,
given s and any one conjunction c, this is the same as asking whether a plan
for c exists, which is PSPACE-complete to decide.

Now, we already know that the states s ∈ Ŝ are dead-ends. Therefore,
we can in principle use the full subgoals as our conjunctions, i. e., in (i) we
can use c := G because we know that h∗(s,G) = ∞, and in (ii) we can use
c′ := R(c, a) because we know that h∗(s, R(c, a)) = ∞. However, this näıve
solution is pointless. It effectively constructs a full regression search tree
from G, selecting conjunctions corresponding to the regressed search states.
For the method to be practically useful, what we need to find are small
unreachable subgoals. It turns out that one can exploit the uC-recognized
neighbors property to that end.

Pseudo-code for our neighbors refinement procedure is shown in Algo-
rithm 4. The purpose of a call to NeighborsRefine(G), invoking the re-
finement on a target subgoal G, is to include conjunctions into X making
G unreachable from Ŝ under uC∪X , i. e., so that uC∪X(s,G) = ∞ for all
s ∈ Ŝ. For this to be possible, of course G must be unreachable from Ŝ, i. e.,
h∗(s,G) = ∞ for every s ∈ Ŝ. That prerequisite is obviously true at the
top-level call, where G = G, because the states s ∈ Ŝ are dead-ends. As we
shall see below, the prerequisite is invariant over calls to Extract(G), i. e.,
the returned x also is unreachable from Ŝ. As, for an unreachable subgoal,
all regressed subgoals also are unreachable, the prerequisite thus holds at
every invocation of NeighborsRefine(G).

But how to identify the conjunctions X? To this end, the top-level proce-
dure of NeighborsRefine(G) mirrors the structure of Lemma 1. Following
Lemma 1 (i), it starts by calling Extract(G), which identifies a subgoal
x ⊆ G unreachable from Ŝ. Following Lemma 1 (ii), the procedure then
finds conjunctions making x, and thus the target subgoal G which contains
x, unreachable from Ŝ under uC∪X . To this end, the refinement is called
recursively on the regressed subgoals R(x, a) for the actions a supporting x.

More precisely, a recursive call is needed only for those supporters a not
dealt with by the previous conjunctions C, i. e., those where, on some state
s ∈ Ŝ, the regressed subgoal R(x, a) is actually reachable under uC . Fur-
thermore, such a supporting action has already been dealt with by the new
conjunctions X in case there is some x′ ⊆ R(x, a). That is so because the
conjunctions X are constructed so that, upon termination, they are unreach-
able from Ŝ under uC∪X . (We get back to the latter below.)

29

Algorithm 4: Neighbors refinement on a state s. The initializing call
to the algorithm is on G := G. The algorithm assumes that Ŝ is a set of
dead-end states, that T̂ are its neighbors, and that the uC-recognized
neighbors property holds. It assumes that the uC neighbors information
(the values uC(t, c) for all t ∈ T̂ and c ∈ C) is available. It identifies a
set X of conjunctions so that uC∪X(s) =∞ for all s ∈ Ŝ. Ŝ, T̂ , C, and
X are global variables; X := ∅ is set initially.

Procedure NeighborsRefine(G)
x := Extract(G);
X := X ∪ {x};
for a ∈ A[x] where ex. s ∈ Ŝ s.t. uC(s,R(x, a)) = 0 do

if there is no x′ ∈ X s.t. x′ ⊆ R(x, a) then
NeighborsRefine(R(x, a));

Procedure Extract(G)
x := ∅;
/* Lemma 2 (i) */

for every t ∈ T̂ do
select c0 ∈ C s.t. c0 ⊆ G and uC(t, c0) =∞;
x := x ∪ c0;

/* Lemma 2 (ii) */

for every s ∈ Ŝ do
if x ⊆ s then

select p ∈ G \ s; x := x ∪ {p};

return x;

Consider now the Extract(G) sub-procedure, called on a target subgoal
G. The procedure assumes that (a) G is unreachable from Ŝ. It identifies a
smaller subgoal x ⊆ G, giving the guarantees that (b) x is still unreachable
from Ŝ, and (c) x is unreachable from the neighbor states T̂ under uC . To
be precise, (c) means that, for every t ∈ T̂ , there exists c0 ∈ C such that
c0 ⊆ x and uC(t, c0) =∞. To guarantee (c), the sub-procedure relies on the
uC neighbors information.

The first loop in the sub-procedure is over the neighbor states t ∈ T̂ .
Drawing on the uC neighbors information, it selects for each of these a prior
atomic conjunction, c0 ∈ C, justifying that uC(t, G) = ∞. Such a c0 must
always exist: For the top-level goal G = G, by construction we have that

30

uC(t,G) =∞, so by the definition of uC there exists c0 ⊆ G with uC(t, c0) =
∞. For later invocations of Extract(G), we have that G = R(x, a), where
x was constructed by a previous invocation of Extract(G). By property
(c) of that previous invocation, there exists c′0 ∈ C such that x ⊇ c′0 and
uC(t, c′0) = ∞. But then, in particular we have that uC(t, x) = ∞. Given
this, we must also have that uC(t, R(x, a)) = ∞, i. e., uC(t, G) = ∞. But
then, as desired there exists a conjunction c0 ⊆ G with uC(t, c0) =∞.

The loop over neighbor states accumulates all the c0 into x. Subsequently,
the sub-procedure loops over the dead-end states s. In case the current x is
contained in s, it adds a fact p ∈ G \ s into x. Such a p necessarily exists
due to the assumed property (a), G is unreachable from Ŝ. (In practice, to
keep x small, we use simple greedy strategies in Extract, trying to select c0

and p shared by many t and s.)
Observe that the returned x satisfies property (c) by construction. It

remains to prove that x also satisfies property (b), i. e., that x is, again,
unreachable from Ŝ:

Lemma 2. Let C be any set of atomic conjunctions. Let Ŝ be a set of
dead-end states, and let T̂ be its neighbors with the uC-recognized neighbors
property. Let x ⊆ F . If

(i) for every t ∈ T̂ , there exists c0 ∈ C such that c0 ⊆ x and uC(t, c0) =∞;
and

(ii) for every s ∈ Ŝ, x 6⊆ s;

then h∗(s, x) =∞ for every s ∈ Ŝ.

Proof. Assume for contradiction that there is a state s ∈ Ŝ where h∗(s, x) <
∞. Then there exists a transition path s = s0 → s1 · · · → sn from s to some
state sn with x ⊆ sn. Let i be the largest index such that si ∈ Ŝ. Such i exists
because s0 = s ∈ Ŝ, and i < n because otherwise we get a contradiction to
(ii). But then, si+1 6∈ Ŝ, and thus si+1 ∈ T̂ by definition. By (i), there exists
c0 ⊆ x such that uC(si+1, c0) =∞. This implies that h∗(si+1, c0) =∞, which
implies that h∗(si+1, x) = ∞. The latter is in contradiction to the selection
of the path. The claim follows.

Altogether, Algorithm 4 is correct in the following sense:

Theorem 3. Let C be any set of atomic conjunctions. Let Ŝ be a set of
dead-end states, and let T̂ be its neighbors with the uC-recognized neighbors
property. Then:

31

(i) The execution of NeighborsRefine(G) is well defined, i. e., it is always
possible to extract an x as specified.

(ii) The execution of NeighborsRefine(G) terminates.

(iii) Upon termination of NeighborsRefine(G), uC∪X(s) = ∞ for every
s ∈ Ŝ.

The arguments for (i) were outlined above. (ii) holds because every re-
cursive call adds a new conjunction x 6∈ X: before the recursive call to
NeighborsRefine(R(x, a)) in the top-level procedure, there is no x′ ∈ X s.t.
x′ ⊆ R(x, a); but that condition holds for the x′ constructed in that recur-
sive call. The number of possible conjunctions is finite, so the recursion must
eventually terminate.

Finally, (iii) is a corollary of the aforementioned property that, upon
termination, every x ∈ X is unreachable from Ŝ under uC∪X . To see that
the latter property holds, assume to the contrary that uC∪X(s, x) = 0. Then
hC∪X(s, x) = n for some finite number n. Let a be a best achiever of x
under hC∪X , i. e., hC∪X(s, R(x, a)) = n−1. By construction, in the recursive
call that included x into X, either an x′ ⊆ R(x, a) was already present
in X, or such an x′ was included in the recursive call on R(x, a). But then,
hC∪X(s, x′) ≤ n−1. Iterating this argument, we obtain a conjunction x0 ∈ X
where hC∪X(s, x0) = 0, i. e., x0 ⊆ s. Such x0 are never included into X by
construction, in contradiction, concluding the argument.

In short, all input states s ∈ Ŝ are refuted by uC∪X upon termination,
because NeighborsRefine(G) finds a conjunction refuting G itself (Lemma 1
(i)), then makes sure to find conjunctions refuting the regressed subgoal for
every supporting action (Lemma 1 (ii)). A detailed proof of Theorem 3 is
available in Appendix A.

Example 4. Consider again the search space of our running example in
Figure 2, and the refinement process on the states Ŝ = R[s3] = {s3, s1},
where the truck has driven to l1 and has a single fuel unit left. The recognized
neighbor states are T̂ = {s4, s5} where the truck has driven back to l2 and
has no fuel left.

We initialize X = ∅ and call NeighborsRefine({p1(l3), p2(l2)}). Con-
sider the call to the sub-procedure, Extract({p1(l3), p2(l2)}). Here, we find
that c0 = {p1(l3)} is suitable for each of s4 and s5: it is unreachable under uC

because there is no fuel left. Furthermore, c0 = {p1(l3)} is neither contained

32

in s3 nor in s1. So we return x = {p1(l3)}. Note that this is not a new
conjunction; it is already contained in C. The x extracted is guaranteed to
not already be in X, but it may be an element of C. In other words, as the
x in each recursive call, we may use a conjunction that was already atomic
beforehand.

Back in NeighborsRefine({p1(l3), p2(l2)}), we see that x can be achieved
by unloading at l3. We need to tackle the regressed subgoal, through the re-
cursive call NeighborsRefine({t(l3), p1(T)}). In that call, the extraction
sub-procedure returns x = {t(l3)}, which is suitable for the same reasons as
above. Observe that, again, this conjunction was already atomic beforehand.
We next need to exclude the drive action from l2 to l3, via the recursive call
NeighborsRefine({t(l2), f(1)}).

Consider finally the extraction sub-procedure in that recursive call, i. e.,
the call to Extract({t(l2), f(1)}). For the T̂ neighbor states, s4 and s5, where
the truck is at l2 but there is no more fuel, only the subgoal fact f(1) is eligible.
That is, we get c0 = {f(1)} for each of them. However, f(1) is contained
in the Ŝ states s3 and s4. So we need to add also the other subgoal fact into
x, ending up with x = G = {t(l2), f(1)}. Observe that this last x is the first
non-atomic x extracted.

The refinement process stops here, because the actions achieving x, driv-
ing to l2 from l1, and driving to l2 from l3, both incur the regressed sub-
goal f(2), for which we have uC(s3, {f(2)}) = uC(s1, {f(2)}) = ∞. Hence
the set X returned contains, like for path-cut refinement above, just the
one new conjunction {t(l2), f(1)}, which is exactly what is needed to ren-
der uC∪X(s3) = uC∪X(s1) =∞.

6. Clause Learning

As previously discussed, the computation of uC is low-order polynomial
time in the number |C| of atomic conjunctions, through simple dynamic
programming techniques. Yet in practice it may incur a substantial runtime
overhead for large C. We now introduce a clause learning technique to
alleviate this. Essentially, we learn weaker nogoods in addition to uC , that
are easier to evaluate than uC and serve as a filter in front of uC .

The clause learning method is technically quite simple. It follows an
earlier proposal by Kolobov et al. [19], in their SixthSense dead-end detec-
tion method for forward search probabilistic planning, where essentially the
same technique was used for verifying and minimizing nogood candidates

33

(the candidates having been previously derived from information obtained in
a determinization, i. e., via classical planning).

Consider any state s where uC(s) = ∞. Denote by φ :=
∨

p∈F\s p the
disjunction of facts false in s. Then φ is a valid clause: for any state s′, if s′

does not satisfy φ, written s′ 6|= φ as usual, then uC(s′) = ∞; in particular,
if s′ does not satisfy φ then it is a dead-end. To see this, just note that,
as uC(s) = ∞, the goal is unreachable from s under uC . To make the goal
reachable under uC , we need to make true at least one of the facts that are
false in s.

The valid clause φ just defined is, per se, not useful as it generalizes to
only those states subsumed by s, i. e., whose true facts are contained in those
of s. This changes when minimizing φ, testing whether individual facts p can
be removed while preserving validity. In other words, we aim at obtaining a
minimal reason for uC(s) = ∞ (similarly as done for failed “obligations” in
property-directed reachability [14]). Our minimization method is straight-
forward, testing the facts p ∈ F \ s one by one.

We start with s′ := s. We then loop over all p ∈ F \ s. In each loop
iteration, we test whether uC(s′ ∪ {p}) = ∞; if so, we set s′ := s′ ∪ {p}.
Upon termination of the loop, s′ is a set-inclusion maximal superset of s that
preserves goal unreachability under uC , i. e., where uC(s′) = ∞. We then
obtain our clause as the disjunction of the remaining facts, φ :=

∨
p∈F\s′ p.

SixthSense does the same except for using h2, rather than uC .

Example 5. Consider again our running example, and the clause learning
on state s4 from Figure 2, where the truck has moved from l2 to l1 and back
to l2, so that the packages are still in their initial locations but there is no
more fuel left.

The minimization loop starts with s′ = s = {t(l2), f(0), p1(l1), p2(l3)}.
Adding the other possible locations of p2, i. e. the facts p2(l1) and p2(l2),
the goal is still unreachable under uC because we cannot achieve the goal
p1(l3). So we set s′ := s′∪{p2(l1), p2(l2)}. Considering now the other possible
locations of p1, i. e. the facts p1(l2) and p1(l3), p1(l2) can be added as we still
cannot reach p1(l3). But p1(l3) cannot be added as we would then have G ⊆ s′.
So we set s′ := s′ ∪ {p2(l2)}. If we add any amount of fuel, the goal becomes
reachable under uC again (with singleton conjunctions only, fuel consumption
is ignored), so neither f(1) nor f(2) can be added. Finally, considering the
other possible locations of the truck, t(l1) and t(l3), we can add t(l1) as the
truck still cannot reach l3. But we cannot add t(l3) as, then, in the extended

34

s′ the truck would be at l2 and l3 simultaneously, and able to transport p1

from l2 to l3 without fuel consumption.
We end up with s′ = {t(l1), t(l2), f(0), p1(l1), p1(l2), p2(l1), p2(l2), p2(l3)}.

This yields the clause φ = t(l3)∨ f(1)∨ f(2)∨ p1(l3) as previously advertised
in our example walkthrough (Section 3).

Note that the clause we end up with depends on the ordering of facts in
the minimization loop. If, for example, we test t(l3) at the very beginning of
the loop, then it can be added: with p1 being only at l1, having t at both l2 and
l3 still requires fuel to achieve p1(l3). On the other hand, if we do add t(l3)
into s′, then later on we cannot add p1(l2), nor t(l1). We use an arbitrary
fact ordering in our implementation, i. e., we do not attempt to find clever
orderings.

The recomputation of uC(s′ ∪ {p}) for each fact p in the minimization
loop can be optimized by doing it in an incremental manner. Omitting im-
plementation details, we essentially store the dynamic programming table
(an index from atomic conjunctions into {0,∞}) of the previous iteration,
identify the table cells changing from ∞ to 0 due to the inclusion of p, and
propagate these changes. Nevertheless, the minimization sometimes incurs a
significant computational overhead. To reduce that overhead, in our imple-
mentation we slightly diverge from the above. We test, in each iteration of
the minimization loop, not individual facts p, but entire “state variables” v
in the internal representation of the Fast Downward planning system [79, 80],
which our implementation is based on. A state variable v here corresponds
to a set F(v) of facts exactly one of which is true in every state. In each loop
iteration, we test whether the entire F(v) for some v can be included into s′.
This yields weaker clauses, but takes less runtime.

During search, we maintain a conjunction Φ of clauses, starting with
empty Φ and adding φ to Φ whenever a new clause φ is learned. Clearly,
whenever s′ 6|= Φ, then uC(s′) =∞. So Φ is a weaker dead-end detector than
uC ; yet it can be evaluated more effectively. Our implementation does so
through a counter-based scheme, where we loop over Fast Downward’s state
variables v just once, incrementing a counter for every clause φ that v’s value
in s′ does not comply with. Then s′ 6|= Φ iff one of these counters reaches
the total number of state variables.

The question remains how to arrange the search: (1) When exactly to
learn clauses, (2) when exactly to test them, and (3) when to make a full
call to the unsolvability heuristic uC? Regarding (1), a clear outcome from

35

our preliminary experiments is that a clause should be learned every time
we evaluate uC on a state s and find that uC(s) = ∞. Regarding (2) and
(3), the obvious arrangement is to use the clauses as a filter, i. e., whenever
a state s is scheduled for evaluation by uC , first test whether s 6|= Φ, and if
so, return ∞ without invoking uC .

Observe that, in particular, while we get duplicate pruning “for free” from
the refutation knowledge accumulated in uC (cf. property (6) in Section 4.2),
in practice, computing uC may be a lot more time-consuming than duplicate
checking. That is dealt with by the clauses, which also subsume duplicate
pruning and are similarly cheap to evaluate.

7. Experiments

We evaluate our techniques for three different purposes: finding plans
in solvable planning tasks with dead-ends, proving unsolvability, generating
unsolvability certificates. We next detail our experiment setup, then cover
these different purposes in this order.

7.1. Experiment Setup: Algorithms and Benchmarks

Variants of our technique. We implemented all the described techniques in
Fast Downward [79], short FD. In our preliminary experiments, we found that
search algorithms other than depth-first search hardly ever benefited from
conflict-driven learning, as they did not identify enough conflicts. This per-
tains especially to A∗, which explores the search space in a breadth-oriented
fashion, considering many options. In contrast, for the identification of con-
flicts, it is beneficial to search deeply not broadly, pushing the state at hand
to either the goal or a dead-end situation.

Given this, we consider depth-first searches only. In particular, for solv-
able planning tasks, we consider satisficing planning, not giving a plan quality
guarantee. We focus on DFS, i. e., our extension of Tarjan’s algorithm (cf.
Section 4.2), our most elegant and effective search algorithm. For ordering
children nodes in DFS, we focus on an ordering by smaller value of the delete
relaxation heuristic hFF [41], which turns out to be beneficial for both, finding
plans and (to a lesser degree) proving unsolvability.

We experiment with three different conjunction learning methods, namely
path-cut refinement and neighbors refinement as introduced here, plus Key-
der et al.’s [69, 67] as a representative of prior conjunction-learning methods.
Keyder et al.’s method, like Haslum’s preceding one [66], is based on iterative

36

removal of conflicts in a delete-relaxed plan, and we will refer to it as conflict
refinement. We also run DFS without any refinement, as a direct comparison
pointing out the impact of learning vs. an identical search without learning.

For finding plans and for proving unsolvability, we run DFS with early
termination, stopping search as soon as there are no more open nodes. For
generating unsolvability certificates, we run DFS without early termination,
refining uC until it refutes the initial state.

We also run offline learning variants, for proving unsolvability and for
dead-end detection. In either case, we use path-cut refinement and con-
flict refinement, as neighbors refinement is not applicable in the offline con-
text. For proving unsolvability, we simply refine uC on the initial state until
uC(I) =∞. For dead-end detection, we refine uC on the initial state until a
size bound N is reached. Then we use the same set C for uC dead-end de-
tection throughout the search. This is inspired by previous work on partial
delete relaxation heuristics [69, 67, 68], and like that work the size bound N
is multiplicative: we stop when the number of “counters” – atomic entities
in the implementation of uC – reaches N times that when C contains the
singleton conjunctions only.

To evaluate the complementarity of our method vs. strong competing
methods, we design simple combinations with the two strongest alternate
dead-end detection techniques, namely unsolvability heuristics u obtained
from merge-and-shrink abstractions respectively potential heuristics (more
on these below). The combination uses both dead-end detectors every time
we test whether a state s is a dead-end. The only subtlety here is during
refinement at s, where, because of the additional dead-end detector u, as
already mentioned the uC-recognized neighbors property may not hold. Dis-
tinguishing the two possible cases, (a) if s has uC-recognized neighbors, then
we use neighbors refinement which generally works best if applicable. Case
(b), if s does not have uC-recognized neighbors, then we can use path-cut
refinement. Observe though that the latter will force uC to recognize all the
dead-ends below s already recognized by u. Therefore, we experiment with
two combination methods, one using both (a) and (b), and one using only
(b).

For ablation study purposes, we finally run variants of our strongest con-
figuration (DFS with neighbors refinement), with vs. without the clause
learning mechanism, and using depth-oriented search (open list preferring
deepest states), short DOS, instead of Tarjan’s algorithm.

37

State-of-the-art competing algorithms. Apart from standard search algorithms
and heuristic functions, the relevant techniques in our context are (a) dead-
end detection, (b) admissible pruning techniques, and (c) other methods for
proving unsolvability. For all of these, the state of the art at the time of
writing is represented by the participants of the 2016 inaugural Unsolvability
International Planning Competition (UIPC’16). To provide a comprehensive
picture, we include all UIPC’16 participants, save those vastly dominated in
that competition. However, our interest is in understanding algorithm be-
havior, as opposed to running a systems competition. For systems composed
of several distinct algorithm components, we therefore consider, not the sys-
tems, but their components. This pertains primarily to the winning system
Aidos [53], an algorithm portfolio; for the other UIPC’16 participants, our
modifications are minor.

In detail, we run the following algorithms. Throughout, we use the origi-
nal planning task representation produced by the FD translator [80], without
additional preprocessors. From category (a), we run the following algorithms.
We run merge-and-shrink (M&S) abstractions, in the two most competitive
unsolvability-heuristic variants of Hoffmann et al. [36]. One of the two M&S
variants computes the perfect unsolvability heuristic u∗, the other imposes
an abstraction size limit and yields an approximate dead-end detector. Very
similar M&S heuristics were used in UIPC’16 [49], in combination with addi-
tional irrelevance pruning [63] and dominance pruning [62]; we separate out
the latter components to keep things clean. We furthermore run the new
pattern database unsolvability heuristic [50], using a more restricted class of
abstractions based on projection (e. g. [42]), which participated in UIPC’16
on its own and as one component of Aidos. We run potential heuristics
[51, 52] for dead-end detection, another component of Aidos, and the one
that contributed most to its overall performance. These potential heuristics
use an LP solver to find an invariant proving that the goal is unreachable
(because the current state’s potential cannot be reduced to that of the goal
states).

From category (b), we run simulation-based dominance pruning [62], used
in the UIPC’16 M&S system [49], which finds a simulation relation over
states and prunes dominated states during search. We run strong stubborn
sets (SSS) pruning, used in two UIPC’16 entries [81, 53], a long-standing
partial-order reduction method (e. g. [82, 61]) exploiting permutability. We
run irrelevance pruning [63], also used in two UIPC’16 entries [57, 49], which
detects irrelevant operators (that cannot be part of an optimal solution)

38

based on dominance analysis in a merge-and-shrink abstraction.
From category (c), we run BDD-based symbolic search (e. g. [83, 84, 63]),

specifically the UIPC’16 Sympa system [57], separating out the irrelevance
pruning (same as for M&S heuristics above). We run property-directed reach-
ability (PDR) [13, 14] as in UIPC’16 [85]. We run resource-variable detection,
another component of Aidos, which performs domain analysis to identify a
state variable encoding a consumed resource-budget, and which during search
uses a cartesian abstraction [86, 87] lower bound to prune against the re-
maining budget. We run star-topology decoupled state space search [88, 89],
a decomposition technique exploiting possible factorizations into star topolo-
gies. We separate the standard state space search and strong stubborn sets
pruning components used as alternatives to star-topology decoupled state
space search in the UIPC’16 system. We run partial delete-relaxation via
red-black planning [58, 60], in its most competitive configuration established
after UIPC’16 [59]. This approach searches in a relaxation where “red” state
variables (but not “black” ones) are delete-relaxed. If there is no relaxed
plan, there cannot be a real plan either, so unsolvability of the input task
can be proved this way. The relaxation is iteratively strengthened by paint-
ing one more variable black. The only difference between our version and
the UIPC’16 one is the variable order in which that is done.

We do not run the UIPC’16 theorem proving approach [90], as this
was vastly outperformed by the other competition entries. We do not run
Haslum’s UIPC’16 entry [91], which also performed badly, and is very similar
to our configuration doing offline learning with conflict refinement. The main
difference is that it uses a less effective representation, where hC is computed
in a compiled planning task ΠC whose size is worst-case exponential in |C|.

Benchmarks. For unsolvable benchmarks, there is exactly one standard bench-
mark set at the time of writing, namely that of UIPC’16, which we use.

As solvable benchmarks, naturally we use the benchmark suites of the In-
ternational Planning Competition (IPC). We consider all IPC editions, 1998
– 2014, specifically the STRIPS benchmarks for satisficing planning (where
these distinctions are made). Yet more specifically, our learning techniques
are interesting only in domains that actually contain conflicts, i. e., dead-ends
unrecognized under h1. Therefore, from IPC’98 – IPC’08 we use the subset
of domains, as determined in Hoffmann’s [72, 92] analyses, where that is the
case. From IPC’11 and IPC’14, where a formal analysis has not yet been car-
ried out, we use those domains where DFS with h1 dead-end detection (with

39

either of the two children ordering methods) identifies at least one conflict,
i. e., where DFS backtracks out of a strongly connected component at least
once on at least one instance.

In addition to the competition benchmarks just described, we also con-
sider planning with resources (e. g. [93, 94, 27, 28, 29]), specifically so-called
resource-constrained planning [28] where the goal must be achieved sub-
ject to a limited resource budget. We use the benchmarks by Nakhost et
al. [28], which are controlled in that the minimum required budget bmin is
known, and the actual budget is set to W ∗ bmin, where the constrainedness
level W is a benchmark instance parameter. For constrainedness levels W
much larger than 1, resources are plenty and a plan is typically easy to find;
for constrainedness levels W much smaller than 1, resources are extremely
scarce and unsolvability is typically easy to prove; for constrainedness levels
W close to 1, resource-constrained planning is notoriously difficult. Intu-
itively, the constrainedness level controls the frequency and detection diffi-
culty of dead-ends, which is of obvious interest to our purposes here. For
the solvable case, we use the exact benchmark suites provided by Nakhost
et al. For the unsolvable case, we use those same benchmarks but with
W ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, not considered by Nakhost et al. (but previously
considered by Hoffmann et al. [36]).

All experiments were run on a cluster of Intel E5-2660 machines running
at 2.20 GHz, with runtime (memory) limits of 30 minutes (4 GB).

7.2. Dead-End Detection in Solvable Planning Tasks

We consider first the solvable case. We run the six variants of our tech-
nique described above: DFS without learning; DFS with learning using one
of the three refinement methods; and the DFS combinations with dead-end
detectors from UIPC’16, M&S respectively potential heuristics. We run these
algorithms with hFF children ordering, and compare them to DFS with ar-
bitrary children ordering. We furthermore compare them with search algo-
rithms using heuristic search as the baseline, specifically FD’s lazy-greedy
best-first search (GBFS) using hFF with a dual open queue for preferred op-
erators [79]. This is the canonical baseline algorithm for satisficing heuristic
search planning, and yields competitive performance while being reasonably
simple. We use M&S respectively potential heuristics for dead-end detection
in that baseline search. We use simulation-based dominance, strong stub-
born sets (SSS), respectively irrelevance pruning to prune the state space in
that baseline search.

40

GBFS hFF DFS hFF DFS hFF w/o Backtracking
Domain # Coverage Coverage Coverage Average Runtime

IPC Benchmarks
Airport 50 30 34 14 .33
Childsnack 20 1 0 0
Floortile 40 10 8 0
Freecell 80 77 78 63 2.65
Mprime 35 35 27 26 2.14
Mystery 30 20 16 13 .37
NoMprime 35 34 25 23 1.56
NoMystery 50 33 22 15 .30
Openstacks 100 100 100 100 98.28
ParcPrinter 50 50 50 50 .04
Pathways 60 46 46 44 1.00
PegSol 50 50 50 3 .01
Pipesworld-Tankage 50 40 37 35 78.15
Sokoban 50 32 40 2 .11
Thoughtful 20 13 9 9 1.65
Tidybot 20 13 13 13 60.05
TPP 30 30 30 30 2.88
Trucks 30 18 17 5 .01
Woodworking 50 8 40 40 257.94∑

850 640 642 485

Nakhost et al. [28] Benchmarks
NoMystery 210 63 27 7 .17
Rovers 210 1 8 2 .38
TPP 30 5 13 3 2.71∑

450 69 48 12∑
Total 1300 709 690 497

Table 1: Coverage results on solvable benchmarks, comparing the two base algorithms,
as well as DFS without backtracking, counting as solved only those tasks where the first
DFS search branch finds a goal state. Best results highlighted in boldface. Abbreviations:
“GBFS” FD greedy best-first search baseline using hFF and preferred operators; “DFS”
depth-first search using Tarjan’s algorithm for conflict identification, with children nodes
ordered using hFF.

We finally run offline learning with a size bound x to generate static
uC dead-end detectors. We use these in both, DFS without learning for
direct comparison to our techniques, and in the GBFS baseline search for
direct comparison to the other static dead-end detectors. We experiment
with N = 2 as that was the best size bound in prior work on partial delete
relaxation heuristics, and we experiment with N = 32 as a larger yet still
reasonable setting.

The main base algorithm our learning methods start from, DFS with
hFF children ordering, is quite different from the GBFS hFF baseline. So we
start with a brief experiment comparing these two, without learning. Con-
sider Table 1. We see that the two base algorithms have complementary
strengths in different domains. Sometimes the differences are drastic, most
notably in Sokoban, Woodworking, as well as resource-constrained Rovers

41

and TPP where DFS is much stronger; and Mprime, Mystery, NoMystery,
and Thoughtful where GBFS is much stronger. In total, these differences
cancel each other out though, and the two algorithms are on a similar level.
This is remarkable in itself, seeing as GBFS is widely used in heuristic search
planning while, to the authors’ knowledge, DFS has not been used at all in
this context yet. For our purposes here though, the main conclusion is that,
overall, performance is comparable so we are not a priori much disadvantag-
ing either side.

Table 1 also includes a variant of DFS disallowing backtracking. This
serves to point out the cases where, with hFF tie breaking, despite the pres-
ence of conflicts in principle, no learning will happen simply because a goal
state is found without ever encountering a conflict. As the table shows, this
happens to a surprising extent. In particular, this simplistic search procedure
is an extremely effective solver for ParcPrinter, Pathways, and TPP, where
it solves all instances solved by the common baseline (almost all, in case of
Pathways), but within split seconds or a few seconds at most. We conclude
from this that someone should put this algorithm into their portfolio at the
next planning competition. That aside, we continue with our own research
focus here, which is on those benchmarks where learning does indeed happen.

Table 2 shows coverage data. We will consider offline learning separately
below. For the resource-constrained domains, as the constrainedness level
has a large impact on performance for most algorithms, we show data for
each level separately. Note here that IPC Mprime, Mystery, and NoMystery
also are resource-constrained domains. However, their constrainedness levels
are not known or only partially known, so we do not separate these. (We
will however do so for the unsolvable resource-constrained benchmarks from
UIPC’16 below.)

Consider first the different refinement variants within DFS hFF, i. e., our
neighbors refinement (“Nei”) and path-cut refinement (“Pat”) methods vs.
the conflict refinement (“Con”) from prior work. There are large performance
differences in many domains, showing that the way we learn conjunctions is
important. In particular, conflict refinement has the lead, and a marginal
one at that, in only one case (IPC Trucks), showing that it is important to
target the conjunction learning to dead-end detection. Path-cut refinement
is best overall on the IPC, but neighbors refinement has a huge advantage in
the resource-constrained benchmarks so has best overall coverage.

Consider now the effect of learning vs. no learning (“No”). On the
resource-constrained domains, the improvement is consistently dramatic, with

42

Base DFS DFS hFF DFS hFF comb. UIPC’16: Base +
GBFS MSa Pot Detection Pruning

Domain (W) # hFF No Nei No Nei Pat Con N NP N NP MSa Pot Sim SSS Irr

IPC Benchmarks
Airport 50 30 35 30 34 24 21 21 17 17 24 23 18 38 12 35 34
Childsnack 20 1 0 0 0 1 1 1 1 1 0 0 0 0 3 0 4
Floortile 40 10 6 0 8 4 37 27 4 4 4 4 15 15 8 12 13
Freecell 80 77 78 72 78 71 72 69 50 50 71 71 51 76 51 77 80
Mprime 35 35 18 19 27 28 27 27 17 17 27 30 18 30 25 30 34
Mystery 30 20 14 20 16 26 23 23 20 20 24 26 19 28 15 25 18
NoMprime 35 34 17 19 25 29 27 26 11 11 27 26 11 34 18 34 29
NoMystery 50 33 18 29 22 38 36 32 28 32 30 33 28 33 35 33 32
Openstacks 100 100 100 100 100 98 100 100 32 29 66 49 30 66 50 90 58
ParcPrinter 50 50 25 38 50 50 50 50 50 10 50 10 50 50 50 50 50
Pathways 60 46 8 10 46 46 46 46 46 46 46 46 46 46 47 44 44
PegSol 50 50 50 41 50 41 30 12 41 41 48 23 50 50 50 50 50
Pipesworld-Tankage 50 40 17 14 37 35 35 34 8 8 17 17 8 16 16 40 30
Sokoban 50 32 42 11 40 9 6 3 10 8 9 9 42 35 5 42 48
Thoughtful 20 13 5 1 9 9 9 9 5 5 10 7 5 7 8 7 8
Tidybot 20 13 8 8 13 13 13 13 0 0 13 13 0 12 0 12 0
TPP 30 30 24 23 30 30 30 30 30 30 30 30 30 30 20 30 25
Trucks 30 18 11 6 17 9 16 17 10 10 9 9 18 16 18 16 18
Woodworking 50 8 6 6 40 40 40 40 13 13 28 28 8 7 49 22 50∑

(IPC) 850 640 482 447 642 601 619 580 393 352 533 454 447 589 480 649 625

Nakhost et al. [28] Benchmarks
NoMystery(1.0) 30 2 0 10 1 12 7 4 19 7 3 7 20 0 26 1 8
NoMystery(1.1) 30 3 0 10 0 12 8 5 17 8 3 8 20 1 20 2 9
NoMystery(1.2) 30 5 0 7 4 14 13 9 18 10 7 10 21 1 26 2 16
NoMystery(1.3) 30 6 0 7 5 13 9 7 15 11 5 7 23 3 27 3 25
NoMystery(1.4) 30 12 0 5 3 17 13 9 11 16 8 10 24 5 29 10 25
NoMystery(1.5) 30 12 0 6 5 17 13 9 10 15 6 10 24 5 29 9 29
NoMystery(2.0) 30 23 0 8 9 19 18 14 12 17 11 15 28 7 30 16 30∑

210 63 0 53 27 104 81 57 102 84 43 67 160 22 187 43 142

Rovers(1.0) 30 0 0 19 0 23 9 8 7 17 23 23 6 0 15 0 0
Rovers(1.1) 30 0 0 16 0 23 12 13 7 19 22 21 5 0 15 0 2
Rovers(1.2) 30 0 0 19 0 18 7 9 5 19 18 18 1 0 14 0 2
Rovers(1.3) 30 0 0 17 0 20 7 6 8 17 20 20 2 0 16 0 1
Rovers(1.4) 30 0 0 19 1 19 8 7 8 18 19 19 4 0 16 0 3
Rovers(1.5) 30 0 0 19 1 21 12 8 10 19 21 21 5 0 15 0 6
Rovers(2.0) 30 1 0 17 6 21 16 15 12 18 21 21 11 0 23 0 10∑

210 1 0 126 8 145 71 66 57 127 144 143 34 0 114 0 24

TPP(1.0) 5 0 0 0 1 1 0 0 1 1 1 0 0 0 2 0 1
TPP(1.1) 5 0 0 0 0 2 0 0 1 2 0 0 1 0 3 0 3
TPP(1.2) 5 0 0 0 2 3 3 3 3 3 0 0 2 0 3 0 3
TPP(1.3) 5 2 0 0 2 5 3 3 4 4 0 0 4 0 4 2 4
TPP(1.4) 5 3 0 0 3 5 4 5 5 5 0 0 4 0 4 2 4
TPP(1.5) 5 0 0 0 5 5 5 5 5 5 0 0 5 0 5 0 2∑

30 5 0 0 13 21 15 16 19 20 1 0 16 0 21 4 17∑
Nakhost et al. 450 69 0 179 48 270 167 139 178 231 188 210 210 22 322 47 183∑
Total 1300 709 482 626 690 871 786 719 571 583 721 664 657 611 802 696 808

Table 2: Coverage results on solvable benchmarks, comparison to the state of the art.
Best results highlighted in boldface. Abbreviations: “Base” baseline; “GBFS” FD’s lazy-
greedy dual-queue best-first search; “DFS” depth-first search using Tarjan’s algorithm for
conflict identification; “DFS hFF” DFS ordering children by hFF value; “DFS hFFcomb.”
combination (N/NP, see below) with another dead-end detector; “#” number of instances;
“No” no learning; “Nei” neighbors refinement; “Pat” path-cut refinement; “Con” conflict
refinement; “N” combination using neighbors refinement only; “NP” combination using
neighbors refinement if applicable, else path-cut refinement; “MSa” approximate merge-
and-shrink abstraction; “Pot” potential heuristic; “Sim” simulation dominance pruning;
“SSS” strong stubborn sets pruning; “Irr” irrelevance pruning.

43

some minor exceptions in TPP. On the IPC benchmarks, the picture is much
more mixed. On Airport, Freecell, PegSol, Pipesworld-Tankage, Sokoban,
and Trucks, the learning has a detrimental effect. We will analyze in some
detail below why that is so. On Tidybot and Woodworking, as well as Par-
cPrinter, Pathways, and TPP for the DFS hFF variants, the learning has no
impact at all. That is mostly because DFS does not identify many conflicts
here, so the learning is seldom, or never, invoked (we also get back to this
in more detail below). On the other domains, improvements are possible.
These are most pronounced in Floortile for path-cut and conflict refinement;
in Mystery, NoMprime, and NoMystery for neighbors refinement; and in Par-
cPrinter and Pathways for neighbors refinement in DFS without hFF children
ordering.

Overall, compared to the baselines without learning (including also GBFS),
on the IPC the learning is detrimental, as the size of its losses outweighs that
of its gains. On the resource-constrained domains, the picture is very dif-
ferent, with a substantial and consistent win over the baselines. The only
exception is NoMystery with W = 2.0, where fuel is relatively plentiful and
the baseline does not struggle with unrecognized dead-ends as much as it
does with constrainedness levels closer to 1.0.

Ordering children nodes in DFS by hFF (“DFS hFF”) outperforms arbi-
trary children ordering (“DFS”) dramatically overall, and almost consistently
across domains. Therefore, from now on, we consider hFF children ordering
exclusively. We will do so not only for the solvable case, but also for un-
solvable benchmarks, where hFF children ordering does not have as large an
impact, but is never worse and sometimes helps (intuitively because DFS
is drawn towards more relevant dead-end situations, learning more relevant
knowledge). Henceforth, whenever we say “DFS” we mean “DFS with hFF

children ordering”.
Consider next the UIPC’16 algorithms. On the IPC benchmarks, com-

pared to their GBFS baseline, only strong stubborn sets pruning (“SSS”)
improves overall coverage, and only SSS and irrelevance pruning (“Irr”) have
higher overall coverage than our methods (DFS hFF with neighbors refine-
ment respectively path-cut refinement). The strengths of these two methods
lie in being less risky, not deteriorating the baseline as much, especially in
Openstacks and Pipesworld-Tankage; and in the improvements they yield in
Airport, Sokoban, and (for irrelevance pruning) Woodworking. The strong
cases for our methods are Floortile where DFS with path-cut refinement, and
also with conflict refinement, vastly outperforms all competitors; NoMystery

44

where DFS with neighbors refinement performs best; Openstacks, Tidybot,
and TPP, where the learning methods incur less overhead than many of the
UIPC’16 methods; as well as Woodworking where the DFS baseline is much
better than the GBFS baseline, and there is no learning overhead.

On the resource-constrained benchmarks, the picture is again much clearer.
Potential heuristics (“Pot”) and SSS are basically useless. Irrelevance prun-
ing, merge-and-shrink (“MSa”), and especially simulation-based dominance
pruning (“Sim”) excel in NoMystery. In the other two domains, our learn-
ing methods tend to be superior. In Rovers, DFS with neighbors refinement
(“Nei”) vastly outperforms all UIPC’16 competitors. Similarly in TPP, ex-
cept for simulation-based dominance which does equally well in coverage
(though typically a lot worse in runtime, on commonly solved instances). In
terms of overall coverage, DFS with neighbors refinement is the clear winner.
Other algorithms perform better in one part (IPC vs. Nakhost et al.) of the
benchmark set, but DFS with neighbors refinement is most consistently good
overall.

Consider finally the combinations of neighbors-refinement DFS with merge-
and-shrink respectively potential heuristics. For merge-and-shrink, this ba-
sically does not work well here. The DFS hFF component dominates the
combined methods consistently, the only notable exception being NoMys-
tery with small values of W where the “N” combination does better. Yet
merge-and-shrink alone does still a lot better there so this is not a valuable
result. There is no case where a combination outperforms both its compo-
nents. (As we shall see below, matters are quite different on the unsolvable
benchmarks.)

For the combination with potential heuristics, the picture is similar,
though not quite as bleak. The “N” combination outperforms the DFS hFF

component on PegSol, where the potential heuristic prevents most (but not
all) of the loss compared to the DFS baseline. The “N” combination does
better than both of its components on Thoughtful (though by only 1 instance
relative to the DFS component).

Figure 3 provides a view on the search space sizes under our different DFS
learning techniques, i. e., no learning vs. the three different refinement meth-
ods. We use neighbors refinement, the strongest method, as the comparison
baseline.

Consider first the comparison to no learning, Figure 3 (a). On the IPC
benchmarks, in line with the above, we see that the learning is risky, improv-
ing performance in some cases but deteriorating it in many others. On the

45

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

(a) (b) (c)

Figure 3: DFS search space size (number of states visited) on solvable benchmarks, with
different learning techniques. We compare neighbors refinement on the y-axis to (a) no
learning, (b) path-cut refinement, respectively (c) conflict refinement on the x-axis. Un-
solved benchmark instances are shown as ∞. Data points for IPC instances are shown in
red, those for resource-constrained instances are shown in orange.

resource-constrained benchmarks, on the other hand, the benefits of learn-
ing are dramatic. Most benchmark instances are not solved at all without
learning. On those that are solved, we get search space reductions of several
orders of magnitude. Observe that the only reason for this is generalization,
i. e., refinements of uC on states s leading to pruning on states other than
s. Without generalization, the search spaces would be identical, including
tie-breaking. Generalization is what lifts a hopeless planner (DFS with h1

dead-end detection) to a planner competitive with the state of the art in
resource-constrained planning.

In the comparison Figure 3 (b) between neighbors refinement and path-
cut refinement, we see that the methods either perform very similarly, or
are highly complementary (with one of the two methods failing to solve the
task).

The comparison Figure 3 (c) between neighbors refinement and conflict
refinement provides further evidence that tailoring the refinement method to
dead-end detection is typically beneficial. In the vast majority of cases where
learning takes place (where conflicts are identified by search), neighbors re-
finement leads to better generalization, and thus to smaller search spaces,
than conflict refinement.

We close this subsection by a consideration of offline learning, a perfor-
mance analysis, and ablation studies. Table 3 shows the data, covering these
topics in parts (A), (B), and (C) respectively.

Consider first part (A) of the table, and within that part consider first
the IPC benchmarks. With N = 2, though not with N = 32, the offline

46

(A) Online vs. Offline Learning (B) Analysis (C) Ablation (Nei)
Coverage DFS Nei Coverage

Base DFS Offline, DFS Offline, GBFS All CI, No
GBFS N = 2 N = 32 N = 2 N = 32 CI Slo Pru DFS DOS

Domain (W) # hFF No Nei Pat Con Pat Con Pat Con Pat Con Pat Con # N S Cl NoCl Cl NoCl

IPC Benchmarks
Airport 50 30 34 24 21 21 33 34 27 33 29 35 27 33 10 12.7 1.2 24 24 24 24
Childsnack 20 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1
Floortile 40 10 8 4 37 27 8 8 7 8 10 15 10 15 4 78.2 6.2 4 4 4 4
Freecell 80 77 78 71 72 69 78 78 74 78 77 78 75 77 8 2.9 1.0 71 71 72 72
Mprime 35 35 27 28 27 27 22 27 11 27 29 30 19 30 2 20.2 1.8 28 28 28 28
Mystery 30 20 16 26 23 23 15 16 13 15 17 21 14 21 13 5.1 316.1 26 26 25 25
NoMprime 35 34 25 29 27 26 20 25 13 25 27 34 15 34 6 2.2 1.1 29 29 29 29
NoMystery 50 33 22 38 36 32 22 22 20 22 31 28 26 28 23 4.2 180.8 38 37 36 37
Openstacks 100 100 100 98 100 100 99 68 93 53 100 68 92 53 0 98 100 99 99
ParcPrinter 50 50 50 50 50 50 48 50 45 50 47 50 46 50 0 50 50 50 50
Pathways 60 46 46 46 46 46 46 46 10 46 44 46 8 46 2 2.1 1.2 46 46 46 46
PegSol 50 50 50 41 30 12 50 50 50 50 49 50 49 50 38 29.7 1.7 41 42 37 40
Pipesworld-Tankage 50 40 37 35 35 34 36 37 30 37 39 40 32 39 1 24.6 1.0 35 36 38 39
Sokoban 50 32 40 9 6 3 38 40 22 40 30 42 26 42 7 59.8 2.8 9 9 12 12
Thoughtful 20 13 9 9 9 9 9 9 9 9 13 8 13 8 0 9 9 9 9
Tidybot 20 13 13 13 13 13 12 13 3 12 12 13 5 12 0 13 13 13 13
TPP 30 30 30 30 30 30 30 30 30 28 30 30 29 28 0 30 30 30 30
Trucks 30 18 17 9 16 17 17 17 14 16 18 18 16 15 4 63.1 2.6 9 9 9 9
Woodworking 50 8 40 40 40 40 38 40 31 40 8 8 4 8 0 40 40 33 33∑

(IPC) 850 640 642 601 619 580 621 610 502 589 611 614 507 589 119 601 603 595 600

Nakhost et al. [28] Benchmarks
NoMystery(1.0) 30 2 1 12 7 4 1 1 1 1 3 2 3 2 12 1.2 114.0 12 10 10 7
NoMystery(1.1) 30 3 0 12 8 5 0 0 0 0 7 3 6 3 12 12 11 12 11
NoMystery(1.2) 30 5 4 14 13 9 4 4 3 4 12 5 11 5 14 1.4 16.2 14 14 14 12
NoMystery(1.3) 30 6 5 13 9 7 5 5 5 5 19 6 17 6 12 3.3 79.5 13 11 12 11
NoMystery(1.4) 30 12 3 17 13 9 3 3 3 3 23 12 21 12 17 1.4 19.2 17 14 16 14
NoMystery(1.5) 30 12 5 17 13 9 5 5 5 5 23 12 20 12 16 1.5 17.8 17 15 16 14
NoMystery(2.0) 30 23 9 19 18 14 9 9 8 9 29 23 29 20 14 1.6 31.1 19 19 19 19∑

210 63 27 104 81 57 27 27 25 27 116 63 107 60 97 104 94 99 88

Rovers(1.0) 30 0 0 23 9 8 0 0 0 0 1 0 1 0 23 23 20 22 20
Rovers(1.1) 30 0 0 23 12 13 0 0 0 0 2 0 2 0 23 23 18 20 16
Rovers(1.2) 30 0 0 18 7 9 0 0 0 0 1 0 1 0 18 18 16 17 14
Rovers(1.3) 30 0 0 20 7 6 0 0 0 0 2 0 1 0 20 20 17 18 16
Rovers(1.4) 30 0 1 19 8 7 1 1 1 1 1 0 1 0 19 2.3 12.8 19 17 18 16
Rovers(1.5) 30 0 1 21 12 8 1 1 1 1 2 0 1 0 21 3.8 29.8 21 17 20 16
Rovers(2.0) 30 1 6 21 16 15 6 6 3 6 9 1 8 1 19 3.4 96.8 21 19 20 17∑

210 1 8 145 71 66 8 8 5 8 18 1 15 1 143 145 124 135 115

TPP(1.0) 5 0 1 1 0 0 1 1 0 0 0 0 0 0 1 54.8 115.1 1 0 0 0
TPP(1.1) 5 0 0 2 0 0 0 0 0 0 0 0 0 0 2 2 1 1 0
TPP(1.2) 5 0 2 3 3 3 2 2 1 0 2 0 2 0 3 1.5 111.4 3 3 3 3
TPP(1.3) 5 2 2 5 3 3 2 2 0 0 4 2 3 0 5 2.0 326.1 5 3 4 3
TPP(1.4) 5 3 3 5 4 5 3 3 2 0 4 3 3 0 4 7.1 31.1 5 5 5 5
TPP(1.5) 5 0 5 5 5 5 5 5 5 0 5 0 3 0 3 1.7 5.7 5 5 5 5∑

30 5 13 21 15 16 13 13 8 0 15 5 11 0 18 21 17 18 16∑
Nakhost et al. 450 69 48 270 167 139 48 48 38 35 149 69 133 61 258 270 235 252 219∑
Total 1300 709 690 871 786 719 669 658 540 624 760 683 640 650 377 871 838 847 819

Table 3: (A) Comparison between offline and online learning methods, (B) performance
analysis, (C) ablation studies, on solvable benchmarks. Best results within each of (A)
and (C) highlighted in boldface. Abbreviations: “All” results over all instances covered;
“D.I., No” results over instances where at least one conflict is identified by search, and
that are commonly covered by DFS Nei and DFS No; “N = 2” offline C-learning with
size bound 2, then DFS without learning; “N = 32” like N = 2 but with size bound 32;
“CI #” number of instances where at least one conflict is identified by search; “Slo N”
slowdown relative to h1, in terms of the geometric mean over the size increase factor N ;
“Red S” geometric mean over the search space size reduction factor of DFS Nei relative
to DFS No; “DOS” depth-oriented search, using an open list favoring deep states; “Cl”
with clause learning; “NoCl” without clause learning. Other abbreviations as before.

47

methods are, generally, superior on these benchmarks compared to the same
refinement methods when used online. This is, however, simply because
having a small size bound means to be less risky. The offline methods,
especially N = 2, avoid the dramatic performance losses in Airport, PegSol,
and Sokoban (N = 32 is more risky, e. g. in Openstacks). However, the
risk reduction also comes with a benefits reduction (“no risk no fun”) on
those domains where the online variants excel, most notably Floortile and
NoMystery. Indeed, the offline-learning DFS variants never beat the coverage
of the DFS no-learning baseline (“DFS No”), whereas the online learning
variants beat it in 6 domains.

On the resource-constrained benchmarks, matters are very clear-cut. The
baselines are weak, and online learning improves them vastly. The same is not
true for offline-learning DFS, which never improves over the baseline at all.
Offline-learning GBFS is more successful, improving over the GBFS baseline
in almost all cases with path-cut refinement. But it becomes competitive
with online-learning DFS only in NoMystery for large values of W .

Consider now part (B) of Table 3, which shows data supporting a perfor-
mance analysis with respect to the three prerequisites for online learning to
work well: (1) conflict identification, i. e., the ability of forward search to find
conflicts and thus enable the learning in the first place; (2) effective learning,
i. e., the ability of recognizing dead-ends with small conjunction sets C; (3)
strong generalization, i. e., the ability of uC to detect states s′ it was not
trained on. Part (B) of Table 3 captures (1) in terms of the “CI #” data, the
number of instances on which at least one conflict was identified, and hence
some learning was done. It captures (2) in terms of the “Slo N” data, the size
of the representation underlying the uC computation, as a multiple of that
for singleton conjunctions; i. e., the slowdown relative to h1. It captures (3)
in terms of the “Red S” data, the search space size reduction factor relative
to using only h1 for dead-end detection.

On commonly solved instances, the slowdown and search reduction factors
are directly comparable, and a performance advantage should be expected,
roughly, when the former exceeds the latter. Indeed, this is a good indicator
in our data here. The domains with large reduction yet small slowdown are
IPC Mystery and NoMystery, as well as all resource-constrained domains,
where indeed neighbors refinement vastly improves the coverage of DFS.
Conversely, small reductions yet large slowdowns occur in Airport, Floortile,
Freecell, Mprime, PegSol, Pipesworld-Tankage, Sokoban, and Trucks. Ex-
cept for Mprime, these are precisely the cases where neighbors refinement is

48

detrimental. In Mprime, neighbors refinement actually (slightly) improves
coverage. Another unclear case is NoMprime, where neighbors refinement
significantly improves coverage, yet the slowdown is larger than the reduc-
tion. In both these cases, there are only few commonly solved instances
where at least one conflict is identified, which may contribute to the unclear
picture. Similarly in Childsnack, where coverage is improved from 0 to 1
so there is no common instance basis to use for comparison. In all other
domains – Openstacks, ParcPrinter, Pathways, Thoughtful, Tidybot, TPP,
and Woodworking – the lack of advantages through learning are due to a
lack of ability (1), with no or hardly any conflicts being identified by forward
search.

10−1 100 101 102 103 ∞10−1

100

101

102

103

∞

10−1 100 101 102 103 ∞10−1

100

101

102

103

∞

10−1 100 101 102 103 ∞10−1

100

101

102

103

∞

(a) (b) (c)

Figure 4: Runtime comparisons. (a) DFS (y-axis) vs. DOS (x-axis). (b) DFS with clause
learning (y-axis) vs. without clause learning (x-axis). (c) DOS with clause learning (y-axis)
vs. without clause learning (x-axis).

Let us finally consider the ablation study, Table 3 part (C), fixing neigh-
bors refinement but varying the search algorithm – DFS vs. DOS (depth-
oriented search, cf. Section 4) – as well as switching clause learning on/off.
(The data for DFS with clause learning is identical to that in column “DFS
Nei”; we repeat it here for convenience.) On the IPC benchmarks, both
DFS and clause learning, as opposed to DOS and no clause learning, have
little impact on coverage. On the resource-constrained benchmarks though,
both clearly and significantly improve coverage. Overall, they are useful
algorithm improvements. Figure 4 provides further evidence towards this
through a per-instance runtime comparison.

7.3. Proving Unsolvability

We now consider the unsolvable case. We again run the six variants of
our technique (with early termination, i. e., not generating unsolvability cer-
tificates). We run offline learning without a size bound to prove unsolvability

49

directly on the initial state; and we run offline learning with size bound N to
generate static uC dead-end detectors. We use N ∈ {2, 32} like above, and
we use the resulting static dead-end detectors in DFS without learning.

We run blind forward search as a simple reference baseline. We run
search with h1 as a canonical dead-end detector. We run all the competing
algorithms described above, i. e., search with alternate dead-end detectors,
search with admissible pruning techniques, as well as the other UIPC’16
techniques including BDD-based symbolic search etc. The admissible prun-
ing techniques are run along with h1, which is more competitive than blind
search.

Table 4 shows coverage data (as before, we will consider offline learning
separately below). Compared to DFS without learning, all refinement meth-
ods result in a performance boost on resource-constrained domains, where
conflict learning is key, especially with constrainedness levels close to 1 where
conflicts abound. On the non-resource UIPC’16 benchmarks though, this
kind of learning simply does not work well. It helps only, for some configu-
rations, in Diagnosis and DocTransfer. We will analyze the reasons below.

Compared to the baselines, DFS without learning has basically the same
coverage as search with h1, which makes sense as both use the same dead-
end detector throughout. Blind search is consistently outclassed except in
BagBarman where it is state of the art (the pattern database heuristic does
not detect any dead-ends in this domain, so defaults to blind search).

Comparing the different refinement variants within our DFS framework,
they behave similarly overall, though there are remarkable differences in in-
dividual domains, namely Bottleneck, Diagnosis, DocTransfer, and PegSol.
On resource-constrained domains, neighbors refinement is clearly superior,
followed by path-cut refinement and the conflict refinement from prior work.

Consider now the UIPC’16 algorithms. Potential heuristics clearly domi-
nate on the non-resource UIPC’16 benchmarks, outclassing the competition
(including our techniques), beat only on BagBarman, Diagnosis, and Doc-
Transfer. On resource-constrained domains, on the other hand, potential
heuristics are very weak. The next-best techniques from UIPC’16 are approx-
imate merge-and-shrink, PDBs, and red-black state space search, with rea-
sonable results on non-resource domains, and with strong results on resource-
constrained ones. Strong stubborn sets pruning does not yield any benefits
here. Dominance pruning and property-directed reachability work well on
resource-constrained domains, yet still worse than the other competitors.
The latter applies also to resource-variable detection. Irrelevance pruning is

50

Base DFS DFS combined UIPC’16 Algorithms
with Detection Pruning Other

MSa Pot h1 and

Domain (W) # Bli h1 No Nei Pat Con N NP N NP MSp MSa PDB Pot Sim SSS Irr BDD PDR Res Sta RB

UIPC’16 Non Resource-Constrained Benchmarks
BagBarman 20 12 4 4 0 0 0 0 0 0 0 0 1 12 4 2 4 4 8 0 0 0 0
BagGripper 25 5 3 3 3 3 3 2 3 2 0 2 3 3 3 0 3 0 7 0 0 0 1
BagTransport 29 6 6 6 5 5 6 5 5 24 12 1 6 7 24 7 5 6 7 0 0 10 1
Bottleneck 50 18 40 42 18 26 28 18 18 50 36 10 40 38 50 0 40 0 0 42 0 0 50
CaveDiving 25 7 7 7 5 4 4 5 6 5 5 3 7 8 7 7 7 6 7 5 0 0 5
ChessBoard 23 5 5 5 2 1 1 2 2 23 5 2 5 5 23 5 6 4 9 1 0 0 4
Diagnosis 20 6 7 7 9 5 12 6 7 9 9 5 4 4 4 0 7 11 0 7 0 0 10
DocTransfer 20 5 7 6 4 5 8 8 9 4 3 5 10 12 7 15 6 11 10 0 0 0 3
PegSol 24 24 24 24 14 12 4 14 14 20 14 24 24 24 22 24 24 24 24 0 0 0 22
PegSolRow5 15 5 5 5 4 3 2 4 4 15 9 3 4 5 15 5 5 2 4 3 0 0 6
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 10
Tetris 20 5 5 5 5 5 5 5 5 20 0 5 5 10 20 0 5 5 5 0 0 0 0∑

291 108 123 124 79 79 83 79 83 182 103 70 119 138 189 75 122 83 91 58 0 10 112

UIPC’16 Resource-Constrained Benchmarks
NoMystery (0.4) 5 2 2 2 3 4 3 5 5 5 5 5 5 5 5 5 2 0 5 3 5 4 4
NoMystery (0.85) 5 0 0 0 2 2 2 2 2 0 2 2 2 2 0 2 0 0 2 1 2 2 2
NoMystery (0.99) 5 0 0 0 2 1 0 1 2 0 2 2 1 2 0 2 0 1 2 0 1 2 2
NoMystery (0.999) 5 0 0 0 2 0 0 1 2 0 2 2 1 2 0 2 0 1 2 0 1 2 2
Rovers (0.99) 20 4 7 7 12 11 8 10 12 12 12 15 9 12 6 11 7 7 13 10 14 8 19
TPP (0.5) 15 9 10 9 14 12 9 15 15 14 13 14 14 15 14 11 9 9 15 4 15 0 9
TPP (0.99) 15 6 6 6 5 3 3 9 6 5 5 10 9 10 4 6 5 6 9 1 14 0 6∑

70 21 25 24 40 33 25 43 44 36 41 50 41 48 29 39 23 25 48 19 52 18 44∑
UIPC’16 361 129 148 148 119 112 108 122 127 218 144 120 160 186 218 114 145 108 139 77 52 28 156

Nakhost et al. [28] Resource-Constrained Benchmarks
NoMystery (0.5) 30 14 25 25 30 30 30 30 30 30 30 30 30 30 29 30 25 12 30 29 30 30 27
NoMystery (0.6) 30 2 15 15 30 28 27 30 30 20 29 30 30 30 12 30 15 8 30 28 30 30 27
NoMystery (0.7) 30 0 5 7 29 23 21 29 30 5 26 30 29 30 2 28 6 6 30 22 28 30 29
NoMystery (0.8) 30 0 0 0 26 18 11 26 28 2 18 30 26 30 0 21 0 7 30 17 25 30 30
NoMystery (0.9) 30 0 0 0 14 10 7 24 25 1 14 29 24 30 0 13 0 3 25 8 18 29 29∑

150 16 45 47 129 109 96 139 143 58 117 149 139 150 43 122 46 36 145 104 131 149 142

Rovers (0.5) 30 1 3 5 30 30 29 30 30 30 30 30 29 30 1 24 4 3 29 26 20 6 30
Rovers (0.6) 30 0 2 2 30 26 27 25 30 30 30 29 25 28 0 19 2 0 26 26 16 4 30
Rovers (0.7) 30 0 0 0 30 25 26 23 30 30 30 29 23 19 0 9 0 0 21 26 12 0 30
Rovers (0.8) 30 0 0 0 29 24 24 21 30 29 29 24 21 13 0 5 0 0 13 21 8 0 30
Rovers (0.9) 30 0 0 0 24 17 20 13 26 24 24 16 13 6 0 1 0 0 9 16 7 0 30∑

150 1 5 7 143 122 126 112 146 143 143 128 111 96 1 58 6 3 98 115 63 10 150

TPP (0.5) 5 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 2 3 5 0 5 0 1
TPP (0.6) 5 0 1 1 5 3 3 5 5 4 2 5 5 5 4 5 0 1 5 0 5 0 0
TPP (0.7) 5 0 0 0 2 2 0 3 5 1 1 5 3 5 1 4 0 0 3 0 5 0 0
TPP (0.8) 5 0 0 0 1 0 0 0 0 1 1 1 1 4 1 2 0 0 1 0 5 0 0
TPP (0.9) 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5 0 0∑

25 2 5 5 13 10 8 13 15 11 9 16 14 20 11 16 2 4 14 0 25 0 1∑
Nakhost et al. 325 19 55 59 285 241 230 264 304 212 269 293 264 266 55 196 54 43 257 219 219 159 293∑
Total 686 148 203 207 404 353 338 386 431 430 413 413 424 452 273 310 199 151 396 296 271 187 449

Table 4: Coverage results (number of instances proved unsolvable) on unsolvable bench-
marks, comparison to the state of the art. Best results highlighted in boldface. Abbrevi-
ations: “Bli” blind search; “h1” search with h1 dead-end detection; “MSp” perfect merge-
and-shrink abstraction; “PDB” pattern database heuristic; “BDD” BDD-based search in
Sympa; “PDR” property-directed reachability; “Res” resource-variable detection; “Star”
star-topology decoupled search; “RB” red-black state space search. Other abbreviations
as before.

51

typically detrimental here, with benefits only in Diagnosis and DocTransfer.
Comparing the UIPC’16 algorithms to our techniques, there is no strong

case for conflict learning on the non-resource domains. On the resource-
constrained domains though, our techniques, especially neighbors refinement,
are competitive. On the Nakhost et al. benchmarks, DFS with neighbors re-
finement is second in overall coverage only to approximate merge-and-shrink
and red-black state space search, both completely unrelated algorithms. It
beats approximate merge-and-shrink in Rovers, and it beats red-black state
space search in TPP.

In difference to the solvable benchmarks discussed above, on the unsolv-
able benchmarks combinations of our learning methods with other dead-end
detectors exhibit considerable synergy. This is most pronounced for the “NP”
combination with merge-and-shrink, using neighbors refinement or path-cut
refinement depending on the situation. This combination outperforms its
components in each of the Nakhost et al. domains, and it has the best over-
all coverage on these domains, of all the algorithms tested here.

For the other combinations, the synergy is weaker. The only case where
the combination outperforms its components is “N” with merge-and-shrink
in UIPC’16 TPP with W = 0.5. Across domains, though, almost all combi-
nations exhibit more consistent strength than their components. Indeed, all
combinations except “N” with merge-and-shrink dominate their components
in overall coverage.

Similarly to our discussion of solvable benchmarks above, we next provide
a view of search space sizes under our different DFS learning techniques, with
neighbors refinement as the comparison baseline. Figure 5 gives the data.

The main conclusions are very similar to those we made for solvable
planning tasks (cf. Figure 3). The comparison to no learning in (a) shows
that learning is often detrimental on the non-resource UIPC’16 benchmarks,
yet has dramatic benefits on the resource-constrained ones. Remember that
the only reason for this is generalization. Search space size reduction factors
provide an impressive view on how dramatic the improvements are. Over
those instances commonly solved by both configurations in Figure 5 (a), the
minimum/geometric mean/maximum reduction factors on the Nakhost et
al. domains are 6.7/436.5/37561.5 for NoMystery; 65.0/1286.6/69668.1 for
Rovers; and 190.0/711.9/1900.5 for TPP. That is, we get reductions of 2-3
orders of magnitude on average, and even the minimum reductions are of 1-2
orders of magnitude.

The comparison between refinement methods in Figure 5 (b) and (c)

52

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

(a) (b) (c)

Figure 5: DFS search space size (number of states visited) on unsolvable benchmarks,
with different learning techniques. We compare neighbors refinement on the y-axis to (a)
no learning, (b) path-cut refinement, respectively (c) conflict refinement on the x-axis.
Unsolved benchmark instances are shown as ∞. Data points for non-resource UIPC’16
instances are shown in red, those for resource-constrained instances are shown in orange.

yields, like on the solvable benchmarks, the conclusion that neighbors re-
finement and path-cut refinement either perform very similarly or are highly
complementary, and that tailoring the refinement method to dead-end detec-
tion is typically beneficial.

Table 5 shows the data for (A) offline learning, (B) performance analysis,
and (C) ablation studies. Consider first part (A) of the table. Regarding
unbounded offline learning, where unsolvability is proved without search on
the initial state, the data shows that this has very little merit compared to
online learning. Each of path-cut refinement and conflict refinement is almost
consistently dominated by the respective online learning method, the only
noteworthy exceptions being BagTransport, PegSol, and NoMystery. Com-
paring to neighbors refinement which is not available in the offline context,
the only strong cases for offline refinement are BagTransport for offline path-
cut refinement, and Diagnosis for offline conflict refinement. In all cases, the
online learning approaches are superior in overall coverage.

For bounded offline learning, i. e., static uC dead-end detectors, the pic-
ture changes dramatically on the non-resource UIPC’16 benchmarks. This is,
however, simply due to the size bound, which avoids the slowdown incurred
by learning too many conjunctions – all the bounded offline learning con-
figurations are dominated consistently here by DFS without any learning at
all. Furthermore, on the resource-constrained benchmarks, the bounded of-
fline learning configurations are dominated, typically outperformed, by their
online learning counterparts. The single exception to the latter is the UIPC
TPP domain with W = 0.99, where the static dead-end detectors do better.

53

(A) Online vs. Offline Learning (B) Analysis (C) Ablation (Nei)
Coverage DFS Nei Coverage

Base DFS Offline All CI, No
N = ∞ N = 2 N = 32 CI Slo Pru DFS DOS

Domain (W) # Bli h1 No Nei Pat Con Pat Con Pat Con Pat Con # N S Cl NoCl Cl NoCl

UIPC’16 Non Resource-Constrained Benchmarks
BagBarman 20 12 4 4 0 0 0 0 0 4 4 0 4 0 0 0 0 0
BagGripper 25 5 3 3 3 3 3 0 0 2 2 0 0 0 3 3 3 3
BagTransport 29 6 6 6 5 5 6 9 4 5 6 3 6 0 5 5 5 5
Bottleneck 50 18 40 42 18 26 28 26 28 40 42 36 42 14 29.6 1.9 18 18 18 18
CaveDiving 25 7 7 7 5 4 4 3 1 7 7 6 7 5 23.5 8.3 5 6 6 7
ChessBoard 23 5 5 5 2 1 1 1 1 5 5 4 5 2 169.7 2.1 2 2 2 2
Diagnosis 20 6 7 7 9 5 12 4 12 5 7 5 7 9 2.9 10.4 9 9 9 9
DocTransfer 20 5 7 6 4 5 8 5 5 6 6 6 6 4 17.3 5.7 4 4 5 5
PegSol 24 24 24 24 14 12 4 14 4 24 24 24 24 14 123.7 1.8 14 14 14 14
PegSolRow5 15 5 5 5 4 3 2 4 3 5 5 4 5 2 43.5 4.0 4 4 4 4
SlidingTiles 20 10 10 10 10 10 10 0 0 10 10 10 10 0 10 10 10 10
Tetris 20 5 5 5 5 5 5 0 0 5 5 5 5 0 5 5 5 5∑

291 108 123 124 79 79 83 66 58 118 123 103 121 79 80 81 82

UIPC’16 Resource-Constrained Benchmarks
NoMystery (0.4) 5 2 2 2 3 4 3 5 4 2 2 2 2 3 1.6 76.0 3 3 3 3
NoMystery (0.85) 5 0 0 0 2 2 2 2 2 0 0 0 0 2 2 2 2 2
NoMystery (0.99) 5 0 0 0 2 1 0 0 1 0 0 0 0 2 2 2 2 2
NoMystery (0.999) 5 0 0 0 2 0 0 0 1 0 0 0 0 2 2 2 2 2
Rovers (0.99) 20 4 7 7 12 11 8 3 7 7 7 6 7 12 4.0 690.9 12 12 12 12
TPP (0.5) 15 9 10 9 14 12 9 12 9 10 9 10 9 14 4.6 24.4 14 14 14 14
TPP (0.99) 15 6 6 6 5 3 3 3 2 5 6 5 6 5 60.6 43.6 5 5 5 5∑

70 21 25 24 40 33 25 25 26 24 24 23 24 40 40 40 40∑
UIPC’16 361 129 148 148 119 112 108 91 84 142 147 126 145 119 120 121 122

Nakhost et al. [28] Resource-Constrained Benchmarks
NoMystery (0.5) 30 14 25 25 30 30 30 30 30 25 25 30 25 29 2.6 433.5 30 30 30 30
NoMystery (0.6) 30 2 15 15 30 28 27 30 28 17 15 23 15 30 3.0 355.6 30 30 30 30
NoMystery (0.7) 30 0 5 7 29 23 21 25 22 10 7 14 7 29 9.9 724.5 29 29 29 29
NoMystery (0.8) 30 0 0 0 26 18 11 21 10 0 0 7 0 26 26 24 25 25
NoMystery (0.9) 30 0 0 0 14 10 7 12 6 0 0 2 0 14 14 14 14 13∑

150 16 45 47 129 109 96 118 96 52 47 76 47 129 127 128 127

Rovers (0.5) 30 1 3 5 30 30 29 27 28 20 5 25 5 29 1.3 2460.2 30 30 30 30
Rovers (0.6) 30 0 2 2 30 26 27 25 26 16 2 23 2 29 1.2 254.5 30 30 30 30
Rovers (0.7) 30 0 0 0 30 25 26 22 26 10 0 14 0 30 30 30 30 30
Rovers (0.8) 30 0 0 0 29 24 24 13 17 4 0 10 0 29 29 27 28 27
Rovers (0.9) 30 0 0 0 24 17 20 8 9 1 0 6 0 24 24 24 24 24∑

150 1 5 7 143 122 126 95 106 51 7 78 7 143 141 142 141

TPP (0.5) 5 2 4 4 5 5 5 5 5 3 4 4 4 5 6.6 710.3 5 5 5 5
TPP (0.6) 5 0 1 1 5 3 3 3 2 1 1 2 1 5 29.5 718.6 5 5 5 5
TPP (0.7) 5 0 0 0 2 2 0 2 0 0 0 1 0 2 2 2 2 2
TPP (0.8) 5 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1
TPP (0.9) 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0∑

25 2 5 5 13 10 8 11 7 4 5 7 5 13 13 13 13∑
Nakhost et al. 325 19 55 59 285 241 230 224 209 107 59 161 59 285 281 283 281∑
Total 686 148 203 207 404 353 338 315 293 249 206 287 204 404 401 404 403

Table 5: (A) Comparison between offline and online learning methods, (B) performance
analysis, (C) ablation studies, on unsolvable benchmarks. Best results within each of (A)
and (C) highlighted in boldface. Abbreviations: “N = ∞” offline C-learning without
size bound, proving unsolvability on the initial state; “CI” instances where at least one
conflict is identified by search prior to exhausting the search space. Other abbreviations
as before (see captions of Tables 3 and 4).

54

Overall, the picture is quite clearly in favor of search with online learning.
Consider now part (B) of Table 5, showing data assessing the depen-

dency of our techniques on (1) conflict identification, (2) effective learning,
and (3) strong generalization. Regarding (1), on the resource-constrained
benchmarks, unsurprisingly, the “D.I. #” data shows that conflicts are iden-
tified on (almost) every instance. From the other benchmarks though, on
half of the domains ability (1) is not given, i. e., no or not enough learning
can take place. Namely, in all Bag* domains, in SlidingTiles, and in Tetris,
no conflicts are identified at all; in PegSolRow5 it is almost that bad. In
SlidingTiles and Tetris, this is simply because all actions are invertible, so
the state space is strongly connected, and the first conflict is identified only
after the entire state space is already explored. In the Bag* domains, in
the rare cases where a conflict is identified, the learning is ineffective and
prevents the search from terminating successfully.

Regarding (2) and (3), consider the “Slo N” and “Red S” columns. We
should expect good performance if the value for “Red S” (search reduction
factor) is larger than that for “Slo N” (per-node slowdown factor), on com-
monly solved instances. On the resource-constrained benchmarks, this is
consistently the case. On the non-resource UIPC, the only domain where
the reduction exceeds the slowdown is Diagnosis, precisely the only domain
where neighbors refinement improves coverage relative to the baseline. In all
other domains where ability (1) is given, the slowdown is much larger than
the reduction, to a particularly striking extent in Bottleneck, ChessBoard,
and PegSol, precisely the domains where neighbors refinement is most detri-
mental.

10−1 100 101 102 103 ∞10−1

100

101

102

103

∞

10−1 100 101 102 103 ∞10−1

100

101

102

103

∞

10−1 100 101 102 103 ∞10−1

100

101

102

103

∞

(a) (b) (c)

Figure 6: Runtime comparisons. (a) DFS (y-axis) vs. DOS (x-axis). (b) DFS with clause
learning (y-axis) vs. without clause learning (x-axis). (c) DOS with clause learning (y-axis)
vs. without clause learning (x-axis).

Let us finally consider the ablation study, Table 5 part (C). The differ-

55

ent configuration settings have little impact on coverage here. DFS does a
little worse than DOS on the non-resource UIPC, but a little better on the
resource-constrained benchmarks; similarly for clause learning vs. no clause
learning. As Figure 6 shows, however, both DFS and clause learning are
useful algorithm improvements, that rarely hurt runtime performance, while
improving it in the most challenging cases.

7.4. Generating Unsolvability Certificates

Let us finally consider the generation of unsolvability certificates. An
unsolvability certificate must (1) be verifiable in its size; must (2) be feasible
to compute; and (3) is useful only if it is compact, i. e., loosely speaking,
it it is much smaller than the state space itself. Conjunction sets C where
uC(I) =∞ qualify for (1). But how feasible is it to compute them, and how
compact are they?

All our online learning variants guarantee to terminate with uC(I) =∞,
provided the early termination option is switched off. In difference to the
previous section, we now consider that setting. For comparison, we run the
two unbounded offline learning variants. Table 6 shows the data.

We consider DFS with neighbors refinement, the overall most effective
refinement method. Our main interest lies in comparing this online learning
method to offline learning. We include both refinement methods applicable
to the latter purpose. We include a comparison to DFS with (neighbors
refinement and) early termination, not producing an unsolvability certificate,
to assess the overhead incurred by the final refinement step when the search
space is already empty. We include the baselines only for reference.

Consider first coverage, part (A) of the table, measuring how effective the
three different strategies are at producing unsolvability certificates. Neigh-
bors refinement is clearly best overall, and it consistently dominates on the
resource-constrained benchmarks. On the non-resource benchmarks though,
the offline methods are competitive, path-cut refinement even better overall,
with substantial advantages in BagTransport, Bottleneck, and Diagnosis.

Observe that, with early termination, neighbors refinement “beats” the
offline methods on the non-resource UIPC, while without early termination
it does not. The advantage of neighbors refinement without early termina-
tion here mainly stems from the SlidingTiles and Tetris domains, which is
simply due to the aforementioned fact that no learning takes place here (cf.
Table 5). So the superiority of DFS with early termination here is one of

56

(A) Coverage (B) Geomean |C| (C) Ratio |C|/|S|
Base DFS Offline Commonly Covered Commonly Covered w/ Bli

w/o Cer w/ Cer N = ∞ DFS Offline DFS Offline

Domain (W) # Bli h1 Nei Nei Pat Con Nei Pat Con Nei Pat Con

UIPC’16 Non Resource-Constrained Benchmarks
BagBarman 20 12 4 0 0 0 0
BagGripper 25 5 3 3 0 0 0
BagTransport 29 6 6 5 2 9 4 509.0 13156.0 3152.0 1 : 12.6 2.1 : 1 1 : 2.0
Bottleneck 50 18 40 18 18 26 28 829.7 144.5 19.8 1 : 24.0 1 : 137.6 1 : 1003.2
CaveDiving 25 7 7 5 6 3 1 66.0 15.0 85.0 1 : 1.5 1 : 6.4 1 : 1.1
ChessBoard 23 5 5 2 2 1 1 1463.0 9220.0 691.0 2.8 : 1 17.4 : 1 1.3 : 1
Diagnosis 20 6 7 9 8 4 12 26.8 392.5 1274.0 1 : 11006.4 1 : 751.3 1 : 231.5
DocTransfer 20 5 7 4 5 5 5 7417.0 515.0 17.0 1 : 1121.7 1 : 16154.9 1 : 489404.4
PegSol 24 24 24 14 14 14 4 386.0 901.6 747.9 1.2 : 1 2.8 : 1 2.3 : 1
PegSolRow5 15 5 5 4 4 4 3 – – – – – –
SlidingTiles 20 10 10 10 0 0 0
Tetris 20 5 5 5 0 0 0∑

291 108 123 79 59 66 58

UIPC’16 Resource-Constrained Benchmarks
NoMystery (0.4) 5 2 2 3 3 5 4 509.2 737.7 598.8 1 : 23218.1 1 : 16176.1 1 : 13587.5
NoMystery (0.85) 5 0 0 2 2 2 2 3534.4 103531.7 9378.2
NoMystery (0.99) 5 0 0 2 2 0 1
NoMystery (0.999) 5 0 0 2 2 0 1
Rovers (0.99) 20 4 7 12 12 3 7 85.7 3888.6 184.3 1 : 9107.5 1 : 211.6 1 : 4914.1
TPP (0.5) 15 9 10 14 14 12 9 416.3 413.7 819.9 1 : 79.9 1 : 77.1 1 : 40.7
TPP (0.99) 15 6 6 5 5 3 2 2399.4 4993.0 3411.4 1 : 11.6 1 : 5.6 1 : 8.2∑

70 21 25 40 40 25 26∑
UIPC’16 361 129 148 119 99 91 84

Nakhost et al. [28] Resource-Constrained Benchmarks
NoMystery (0.5) 30 14 25 30 30 30 30 216.1 390.8 379.8 1 : 25760.0 1 : 22387.7 1 : 23410.2
NoMystery (0.6) 30 2 15 30 30 30 28 516.9 1304.3 939.8 1 : 86197.8 1 : 25389.4 1 : 53497.4
NoMystery (0.7) 30 0 5 29 29 25 22 1180.6 2957.6 2804.8
NoMystery (0.8) 30 0 0 26 26 21 10 2694.1 5648.3 4260.0
NoMystery (0.9) 30 0 0 14 14 12 6 3262.3 12782.0 10929.4∑

150 16 45 129 129 118 96

Rovers (0.5) 30 1 3 30 30 27 28 105.1 121.7 90.9 1 : 596338.5 1 : 67191.2 1 : 280623.0
Rovers (0.6) 30 0 2 30 30 25 26 211.3 181.4 166.7
Rovers (0.7) 30 0 0 30 30 22 26 406.1 800.3 427.4
Rovers (0.8) 30 0 0 29 29 13 17 588.4 460.9 265.5
Rovers (0.9) 30 0 0 24 24 8 9 963.1 502.9 755.5∑

150 1 5 143 143 95 106

TPP (0.5) 5 2 4 5 5 5 5 1914.8 4023.9 2490.9 1 : 1855.8 1 : 249.8 1 : 680.2
TPP (0.6) 5 0 1 5 5 3 2 2742.0 3214.1 3270.9
TPP (0.7) 5 0 0 2 3 2 0
TPP (0.8) 5 0 0 1 1 1 0
TPP (0.9) 5 0 0 0 0 0 0∑

25 2 5 13 14 11 7∑
Nakhost et al. 325 19 55 285 286 224 209∑
Total 686 148 203 404 385 315 293

Table 6: Results for generating unsolvability certificates C on unsolvable benchmarks,
comparing online learning with DFS and neighbors refinement to offline learning with path-
cut respectively conflict refinement. Best results among these three strategies highlighted
in boldface. (A) coverage, i. e., number of instances for which a certificate was generated.
(B) Geometric mean of certificate size C. (C) Compactness relative to state space size; an
entry “1 : x” means that, in the geometric mean, |C| is x times smaller than |S|, an entry
“x : 1” means that, in the geometric mean, |C| is x times larger than |S|. In PegSolRow5
there is no data as, on the commonly covered instances, h1(I) =∞ so nothing needs to be
done. Abbreviations: “w/o Cer” without certificate, i. e., DFS run with early termination
option; “w/o Cer” with certificate i. e., DFS run without early termination option. Other
abbreviations as before.

57

search, not of learning. On the resource-constrained benchmarks, switching
early termination off does not have any adverse impact on coverage.

Consider now part (B) of Table 6, giving a view of absolute certificate
size (while (C) is relative to state space size). Online learning with neigh-
bors refinement is superior on the resource-constrained benchmarks, except
for Nakhost et al. Rovers (and one case of UIPC TPP), where the picture
is more mixed. On the non-resource UIPC benchmarks, the methods are
complementary, with differing strengths depending on the domain.

By definition, the relative performance of learning methods is the same
in parts (C) and (B). What’s remarkable in (C) is that the certificates found
often are extremely compact, several orders of magnitude smaller than the
state space itself. This is especially pronounced in the resource-constrained
benchmarks, but also happens in some of the other domains, most notably
in Bottleneck, Diagnosis, and DocTransfer.

8. Conclusion

Our work pioneers conflict-directed learning, of sound generalizable knowl-
edge, from conflicts – dead-end states – in forward state space search. The
basis are critical-path heuristic functions hC , that allow to consider an ar-
bitrary set C of atomic conjunctions, and that detect all dead-ends in the
limit. Our key technical contributions are search methods identifying con-
flict states, and refinement methods extending C so that hC recognizes these
states. The resulting technique is, in our humble opinion, quite elegant, and
suggests that the learning from “true” conflicts in state space search, not
necessitating a solution length bound, is worth the community’s attention.

Beauty contests aside, from a pragmatical point of view our techniques
certainly do not, as they stand, deliver an empirical breakthrough. They
require a rather specific kind of problem structure to work well, namely
structure that allows for (1) quick conflict identification, (2) effective learning,
and (3) strong generalization. This kind of problem structure is typical of
resource-constrained planning, as far as reflected by the current benchmarks
from that area. On other domains, as far as reflected by the competition
benchmarks, this structure is scarce, though it does sometimes appear.

An interesting question in this context is the relation between require-
ment (1) vs. a plan length bound. The two requirements are correlated in
that conflict identification will be easier on problems whose search paths are
typically short. Furthermore, if a bound is available, then manifold alternate

58

conflict analysis techniques can be used, simply via the correspondence to
constraint satisfaction.

However, having “typically” short search paths is a much weaker assump-
tion than having a globally valid length bound, in particular a bound that
is known a-priori before search begins. In the non-resource domains where
our techniques work well – Floortile, ParcPrinter, Pathways, Childsnack, Di-
agnosis, DocTransfer – it is completely unclear how an upper bound should
be derived. Even in the resource-constrained benchmarks, this is not obvi-
ous: not all actions consume resources, so some reasoning over the possible
non-consuming action subsequences would be required.

Regarding future work, ours is merely a first foray into forward search
conflict-learning techniques, and lots more remains to be explored. We hope
and expect our work to be the beginning of the story, not its end.

For conjunctions learning, important open questions pertain, e. g., to
ranking criteria allowing a more informed choice of which new conjunctions
to construct during refinement, as well as allowing to forget conjunctions
learned previously in case they did not prove useful for the search.

For clause learning, exciting questions pertain to extending its, as yet,
very limited role. Can we learn easily testable criteria that, in conjunction,
are sufficient and necessary for uC =∞, thus matching the pruning power of
uC itself? Can such criteria form building blocks for later learning steps, like
the clauses in SAT? Can we do some form of reasoning over clauses, deducing
new knowledge from the old one, given the action specifications?

Critical-path heuristics are merely one means for dead-end detection, and
an exciting big line of research is the design of refinement methods for other
dead-end detectors. Can we refine merge-and-shrink unsolvability heuristics
on the fly? What about potential heuristics? If so, how to make the most
out of the combination of all three methods?

Last but not least, one thing we would particularly like to see is the ex-
port of this (kind of) technique to game-playing and model checking, where
dead-end detection is at least as, probably more, important than in classical
planning. For hC refinement, this works “out of the box” modulo the appli-
cability of Equation 1, i. e., the definition of critical-path heuristics. As is,
this requires conjunctive subgoaling behavior. But more general logics (e. g.
minimization to handle disjunctions) should be manageable.

Acknowledgments. This work was partially supported by the German Re-
search Foundation (DFG), under grant HO 2169/5-1, “Critically Constrained

59

Planning via Partial Delete Relaxation”.

Appendix A. Proofs

Theorem 1. At the start of the while loop in Algorithm 1, the labeled states
are exactly the known dead-ends.

Proof. Soundness, i. e., t labeled =⇒ t is a known dead-end, follows imme-
diately from construction because at the moment a state t is labeled we have
R[t] ⊆ Closed , and once that condition is true obviously it remains true for
the remainder of the search.

Completeness, i. e., t is a known dead-end =⇒ t labeled, can be proved
by induction on the number of expansions. Assume that the claim holds
before a state s is expanded; we need to show that, for any states t that were
not known dead-ends before but are known dead-ends now, t will be labeled.
Call such t new-label states. Clearly, any new-label state must be an ancestor
of s. Therefore, a new-label state can exist only if, after the expansion,
R[s] ⊆ Closed : else, an open state is reachable from s, and transitively is
reachable from all ancestors of s. In the case whereR[s] ⊆ Closed , s is labeled
and so is every new-label state parent t of s, due to the recursive invocation
on t. It remains to show that each new-label state t will indeed be reached,
and thus labeled, during the reverse traversal of the search space induced by
the recursive invocations of CheckAndLearn. This is a direct consequence of
the following two observations: (1) each ancestor t of s has not been labeled
dead end so far, and (2) for each new-label state t, the search space contains
a path of new-label states t = t0, t1, . . . , tn = s. The first observation follows
immediately from the algorithm: since t is an ancestor of s, t must have been
expanded at some point (which means that t could not have been labeled
dead end before its expansion), and t could not have been labeled dead end
during any previous call to CheckAndLearn because at least one open state
was reachable from t during any such call. The second observation follows
immediately from R[t] ⊆ Closed : (as above) t is an ancestor of s, i. e., the
search space contains a path t = t0, t1, . . . , tn = s, and due to the transitivity
of reachability, for every 1 ≤ i < n, R[ti] ⊆ Closed . Obviously, for every
1 ≤ i ≤ n, s is also reachable from ti, meaning that ti must be a new-label
state, too. Since CheckAndLearn will traverse at least one such path from t
to s in reverse order, t will indeed be labeled eventually.

60

Theorem 2. Let C be any set of atomic conjunctions. Let s be a state with
hC(s) < h∗(s). Then:

(i) The execution of PathCutRefine(G, hC(s)) is well defined, i. e., (a) in
any call PathCutRefine(G, n) there exists c ∈ C so that c ⊆ G and
hC(s, c) ≥ n; and (b) if n = 0, then G 6⊆ s.

(ii) If X is the set of conjunctions resulting from PathCutRefine(G, hC(s)),
then hC∪X(s) > hC(s).

Proof.

(i) (a) follows directly from Equation 1. Initially, there must be some
c ∈ C so that c ⊆ G and hC(s, c) = hC(s,G) (last case of Equation
1). Consider a recursive call PathCutRefine(G, n). Let G′, n′ be the
arguments of the call to PathCutRefine that caused the recursion, let
a be the corresponding action, and let c′ ⊆ G′ be the conjunction
selected in PathCutRefine(G′, n′). Due to the selection of c′, we have
hC(s, c′) = hC(s,G′) = n′ = n + 1; and because c′ ⊆ G′, we also have
R(c′, a) ⊆ R(G′, a) = G. Hence, by definition of hC , hC(s,G) ≥ n, i. e.
there is a conjunction c ∈ C, c ⊆ G so that hC(s, c) ≥ n.

For (b), assume for contradiction that there is a call PathCutRefine(G, 0)
where G ⊆ s. Let an, . . . , a1 be the actions that label the recursion path
down to the call PathCutRefine(G, 0). It is easy to show by induction
that 〈a1, . . . , an〉 is actually a plan for s. However, n is exactly hC(s),
which means that hC(s) = h∗(s), a contradiction to the assumption.

(ii) We show for every call PathCutRefine(G, n) and for the constructed
conflict x that hC∪X(s, x) > n when PathCutRefine(G, n) terminates.
In other words, when PathCutRefine(G, hC(s)) terminates, then we
have hC∪X(s) > hC(s), as desired. The proof is by induction on n.
For n = 0, the conflict x ⊆ G is chosen such that x 6⊆ s. Hence,
hC∪X(s, x) > 0 = n due to Equation 1. For the induction step, n > 0,
let x be the conflict that is constructed in the call PathCutRefine(G, n).
Since n > 0, there must be an atomic conjunction c ∈ C that is part
of x, c ⊆ x, and so that hC(s, c) ≥ n. If hC(s, c) > n, then clearly
hC(s, x) > n and the claim follows. So, assume that hC(s, c) = n,
and let a ∈ A[x] be an arbitrary achiever of x (i. e., R(x, a) 6= ⊥).
In case A[x] is empty, it directly follows that hC∪X(s, x) = ∞ > n

61

(Equation 1). Otherwise, distinguish between the cases a ∈ A[c] and
a 6∈ A[c]. If a 6∈ A[c], then, since c ⊆ x and x ∩ del(a) = ∅, i. e.
c ∩ del(a) = ∅, we have that add(a) ∩ c = ∅. Therefore, c ⊆ R(x, a)
and thus hC∪X(s, R(x, a)) ≥ n. On the other hand, if a ∈ A[c], then
we must have recurred on G′ = R(G, a) and n′ = n − 1. If x′ is the
conflict constructed in this call, then we know by induction hypothesis
that hC∪X(s, x′) > n′. Because of the selection of x, we ensured that
x′ ⊆ R(x, a), and as a consequence hC∪X(s, R(x, a)) > n′ = n−1. Since
a was chosen arbitrarily, this shows that hC∪X(s, x) > n.

Theorem 3. Let C be any set of atomic conjunctions. Let Ŝ be a set of
dead-end states, and let T̂ be its neighbors with the uC-recognized neighbors
property. Then:

(i) The execution of NeighborsRefine(G) is well defined, i. e., it is always
possible to extract an x as specified.

(ii) The execution of NeighborsRefine(G) terminates.

(iii) Upon termination of NeighborsRefine(G), uC∪X(s) = ∞ for every
s ∈ Ŝ.

Proof. (i) follows by induction on the recursion depth. For the induction
beginning, note that the selection of x ⊆ G = G in ExtractX is well-defined
because of the recognized neighbors property (*), and because Ŝ does not
contain a goal state. For the induction step, assume for contradiction that
ExtractX fails to select a conjunction x ⊆ G that satisfies the condition of
Lemma 2, where G = R(x′, a) is given as input, i. e., x′ is chosen as in Lemma
2, and a is an action from A[x′]. In other words, (i) there is a state s ∈ Ŝ
with G ⊆ s, or (ii) there is a state t ∈ T̂ so that for all conjunctions c0 ∈ C
with c0 ⊆ G, uC(t, c0) < ∞. It cannot be (i) because otherwise, it follows
from a ∈ A[x′] and R(x′, a) = G ⊆ s that s[[a]] is defined and x′ ⊆ s[[a]],
i. e., h∗(s, x′) <∞. This is a contradiction to the selection of x′. For (ii), let
c′0 ∈ C, c′0 ⊆ x′ be some conjunction with uC(t, c′0) =∞. Such a conjunction
must exist due to the selection of x′. Since uC(t, c′0) =∞, it directly follows
that c′0 6⊆ R(x′, a). However, c′0 ⊆ x′, so c′0 ⊆ add(a), and thus a ∈ A[c′0].
Now plugging in the definition of uC , we get from uC(t, R(x′, a)) < ∞ and

62

R(c′0, a) ⊆ R(x′, a) that uC(t, R(c′0, a)) <∞. In other words: uC(t, c′0) <∞.
This is clearly a contradiction to the selection of c′0. We conclude that there
must be a conjunction x ⊆ G that satisfies the conditions of Lemma 2.

For (ii) note that in every single recursion, a new conjunction x is added
to X. This is true because before going into recursion on some R(x, a), we
make sure that there does not exist x′ ∈ X so that x′ ⊆ R(x, a). Thus,
regardless of the selection of the conflict x′ ⊆ R(x, a) in the corresponding
call to ExtractX(R(x, a)), x′ cannot be contained in X. After selecting
the conflict x′, it is added to X. So X is extended by a new conflict in
each recursion. But since the overall number of conjunctions is bounded, it
immediately follows that the number of recursions is bounded.

To show (iii), we make use of the observation uC(s,G) =∞ iff hC(s,G) =
∞ for any set of facts G ⊆ F . Let s ∈ Ŝ be arbitrary, and let x ∈ X be a
conjunction with minimal hC∪X-value, i. e., let x ∈ X be so that for all x′ ∈
X: hC∪X(s, x) ≤ hC∪X(s, x′). Assume for contradiction that hC∪X(s, x) <
∞. Due to the construction of X, it must be x 6⊆ s, meaning that there
must be an action a ∈ A[x] with hC∪X(s, R(x, a)) < hC∪X(s, x) (definition
of hC∪X). However, the refinement algorithm ensures that X contains a
conjunction x′ ⊆ R(x, a): in the call to Refine where x is added to X, the
algorithm makes sure that for each action a ∈ A[x], either there is already
a conjunction x′ ∈ X so that x′ ⊆ R(x, a), or it calls Refine(R(x, a)) which
in turn adds a conjunction x′ ⊆ R(x, a) to X. But this is a contradiction
to the hC∪X minimality assumption: as there is a conjunction x′ ∈ X with
x′ ⊆ R(x, a), it is hC∪X(s, x′) ≤ hC∪X(s, R(x, a)) < hC∪X(s, x). This shows
that hC∪X(s, x) = ∞ for every x ∈ X, and for every state s ∈ Ŝ, and thus
uC(s) =∞ for every s ∈ Ŝ.

References

[1] R. Dechter, Enhancement schemes for constraint processing: Backjump-
ing, learning, and cutset decomposition, Artificial Intelligence 41 (1990)
273–312.

[2] P. Prosser, Hybrid algorithms for the constraint satisfaction problem,
Computational Intelligence 9 (1993) 268–299.

63

[3] J. Marques-Silva, K. Sakallah, GRASP: A search algorithm for propo-
sitional satisfiability, IEEE Transactions on Computers 48 (1999) 506–
521.

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engi-
neering an efficient SAT solver, in: Proceedings of the 38th Conference
on Design Automation (DAC-01), IEEE Computer Society, Las Vegas,
Nevada, USA, 2001.

[5] R. Dechter, D. Frost, Backjump-based backtracking for constraint sat-
isfaction problems, Artificial Intelligence 136 (2002) 147–188.

[6] N. Eén, N. Sörensson, An extensible sat-solver, in: Proceedings of the
6th International Conference Theory and Applications of Satisfiability
Testing (SAT’03), 2003, pp. 502–518.

[7] P. Beame, H. A. Kautz, A. Sabharwal, Towards understanding and har-
nessing the potential of clause learning, Journal of Artificial Intelligence
Research 22 (2004) 319–351.

[8] H. Kautz, B. Selman, Unifying SAT-based and graph-based planning,
in: M. Pollack (Ed.), Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI’99), Morgan Kaufmann, Stock-
holm, Sweden, 1999, pp. 318–325.

[9] J. Rintanen, K. Heljanko, I. Niemelä, Planning as satisfiability: parallel
plans and algorithms for plan search, Artificial Intelligence 170 (2006)
1031–1080.

[10] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis,
Artificial Intelligence 90 (1997) 279–298.

[11] D. Long, M. Fox, Efficient implementation of the plan graph in stan,
Journal of Artificial Intelligence Research 10 (1999) 87–115.

[12] S. Kambhampati, Planning graph as a (dynamic) CSP: Exploiting EBL,
DDB and other CSP search techniques in graphplan, Journal of Artificial
Intelligence Research 12 (2000) 1–34.

[13] A. R. Bradley, Sat-based model checking without unrolling, in: Pro-
ceedings of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’11), 2011, pp. 70–87.

64

[14] M. Suda, Property directed reachability for automated planning, Jour-
nal of Artificial Intelligence Research 50 (2014) 265–319.

[15] S. Minton, J. G. Carbonell, C. A. Knoblock, D. Kuokka, O. Etzioni,
Y. Gil, Explanation-based learning: A problem solving perspective,
Artificial Intelligence 40 (1989) 63–118.

[16] S. Kambhampati, S. Katukam, Y. Qu, Failure driven dynamic search
control for partial order planners: An explanation based approach, Ar-
tificial Intelligence 88 (1996) 253–315.

[17] S. Kambhampati, On the relations between intelligent backtracking and
failure-driven explanation-based learning in constraint satisfaction and
planning, Artificial Intelligence 105 (1998) 161–208.

[18] N. Bhatnagar, J. Mostow, On-line learning from search failures, Machine
Learning 15 (1994) 69–117.

[19] A. Kolobov, Mausam, D. S. Weld, Discovering hidden structure in fac-
tored MDPs, Artificial Intelligence 189 (2012) 19–47.

[20] R. E. Korf, Real-time heuristic search, Artificial Intelligence 42 (1990)
189–211.

[21] A. Reinefeld, T. A. Marsland, Enhanced iterative-deepening search,
IEEE Transactions on Pattern Analysis and Machine Intelligence 16
(1994) 701–710.

[22] A. G. Barto, S. J. Bradtke, S. P. Singh, Learning to act using real-time
dynamic programming, Artificial Intelligence 72 (1995) 81–138.

[23] B. Bonet, H. Geffner, Learning depth-first search: A unified approach to
heuristic search in deterministic and non-deterministic settings, and its
application to MDPs, in: D. Long, S. Smith (Eds.), Proceedings of the
16th International Conference on Automated Planning and Scheduling
(ICAPS’06), Morgan Kaufmann, Ambleside, UK, 2006, pp. 142–151.

[24] D. E. Smith, Choosing objectives in over-subscription planning,
in: S. Koenig, S. Zilberstein, J. Koehler (Eds.), Proceedings of the
14th International Conference on Automated Planning and Scheduling
(ICAPS’04), Morgan Kaufmann, Whistler, Canada, 2004, pp. 393–401.

65

[25] A. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Determin-
istic planning in the fifth international planning competition: PDDL3
and experimental evaluation of the planners, Artificial Intelligence 173
(2009) 619–668.

[26] C. Domshlak, V. Mirkis, Deterministic oversubscription planning as
heuristic search: Abstractions and reformulations, Journal of Artificial
Intelligence Research 52 (2015) 97–169.

[27] P. Haslum, H. Geffner, Heuristic planning with time and resources, in:
A. Cesta, D. Borrajo (Eds.), Proceedings of the 6th European Confer-
ence on Planning (ECP’01), Springer-Verlag, 2001, pp. 121–132.

[28] H. Nakhost, J. Hoffmann, M. Müller, Resource-constrained planning:
A monte carlo random walk approach, in: B. Bonet, L. McCluskey,
J. R. Silva, B. Williams (Eds.), Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS’12), AAAI
Press, 2012, pp. 181–189.

[29] A. J. Coles, A. Coles, M. Fox, D. Long, A hybrid LP-RPG heuristic
for modelling numeric resource flows in planning, Journal of Artificial
Intelligence Research 46 (2013) 343–412.

[30] A. Junghanns, J. Schaeffer, Sokoban: Evaluating standard single-agent
search techniques in the presence of deadlock, in: Proceedings of the
12th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, 1998, pp. 1–15.

[31] R. Bjarnason, P. Tadepalli, A. Fern, Searching solitaire in real time,
Journal of the International Computer Games Association 30 (2007)
131–142.

[32] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson,
W. Yi, Uppaal implementation secrets, in: Proceedings of the 7th
International Symposium on Formal Techniques in Real-Time and Fault
Tolerant Systems, 2002.

[33] G. Holzmann, The Spin Model Checker - Primer and Reference Manual,
Addison-Wesley, 2004.

66

[34] S. Edelkamp, A. Lluch-Lafuente, S. Leue, Directed explicit-state model
checking in the validation of communication protocols, International
Journal on Software Tools for Technology Transfer 5 (2004) 247–267.

[35] C. Bäckström, P. Jonsson, S. St̊ahlberg, Fast detection of unsolvable
planning instances using local consistency, in: M. Helmert, G. Röger
(Eds.), Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), AAAI Press, 2013, pp. 29–37.

[36] J. Hoffmann, P. Kissmann, Á. Torralba, “Distance”? Who Cares? Tai-
loring merge-and-shrink heuristics to detect unsolvability, in: T. Schaub
(Ed.), Proceedings of the 21st European Conference on Artificial Intel-
ligence (ECAI’14), IOS Press, Prague, Czech Republic, 2014.

[37] C. J. Muise, S. A. McIlraith, J. C. Beck, Improved non-deterministic
planning by exploiting state relevance, in: B. Bonet, L. McCluskey,
J. R. Silva, B. Williams (Eds.), Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS’12), AAAI
Press, 2012.

[38] A. Camacho, C. Muise, S. A. McIlraith, From FOND to robust prob-
abilistic planning: Computing compact policies that bypass avoidable
deadends, in: A. Coles, A. Coles, S. Edelkamp, D. Magazzeni, S. Sanner
(Eds.), Proceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS’16), AAAI Press, 2016.

[39] P. Haslum, H. Geffner, Admissible heuristics for optimal planning, in:
S. Chien, R. Kambhampati, C. Knoblock (Eds.), Proceedings of the
5th International Conference on Artificial Intelligence Planning Systems
(AIPS’00), AAAI Press, Menlo Park, Breckenridge, CO, 2000, pp. 140–
149.

[40] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence
129 (2001) 5–33.

[41] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253–302.

67

[42] S. Edelkamp, Planning with pattern databases, in: A. Cesta, D. Bor-
rajo (Eds.), Proceedings of the 6th European Conference on Planning
(ECP’01), Springer-Verlag, 2001, pp. 13–24.

[43] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions:
What’s the difference anyway?, in: A. Gerevini, A. Howe, A. Cesta,
I. Refanidis (Eds.), Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), AAAI Press, 2009,
pp. 162–169.

[44] S. Richter, M. Westphal, The LAMA planner: Guiding cost-based any-
time planning with landmarks, Journal of Artificial Intelligence Research
39 (2010) 127–177.

[45] M. Helmert, P. Haslum, J. Hoffmann, R. Nissim, Merge & shrink
abstraction: A method for generating lower bounds in factored state
spaces, Journal of the Association for Computing Machinery 61 (2014).

[46] K. Dräger, B. Finkbeiner, A. Podelski, Directed model checking with
distance-preserving abstractions, in: A. Valmari (Ed.), Proceedings of
the 13th International SPIN Workshop (SPIN 2006), volume 3925 of
Lecture Notes in Computer Science, Springer-Verlag, 2006, pp. 19–34.

[47] M. Helmert, P. Haslum, J. Hoffmann, Flexible abstraction heuristics
for optimal sequential planning, in: M. Boddy, M. Fox, S. Thiebaux
(Eds.), Proceedings of the 17th International Conference on Automated
Planning and Scheduling (ICAPS’07), Morgan Kaufmann, Providence,
Rhode Island, USA, 2007, pp. 176–183.

[48] K. Dräger, B. Finkbeiner, A. Podelski, Directed model checking with
distance-preserving abstractions, International Journal on Software
Tools for Technology Transfer 11 (2009) 27–37.

[49] Á. Torralba, J. Hoffmann, P. Kissmann, MS-Unsat and Simulation-
Dominance: Merge-and-shrink and dominance pruning for proving un-
solvability, in: UIPC 2016 planner abstracts, 2016, pp. 12–15.

[50] F. Pommerening, J. Seipp, Fast downward dead-end pattern database,
in: UIPC 2016 planner abstracts, 2016, pp. 2–2.

68

[51] F. Pommerening, M. Helmert, G. Röger, J. Seipp, From non-negative
to general operator cost partitioning, in: B. Bonet, S. Koenig (Eds.),
Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), AAAI Press, 2015, pp. 3335–3341.

[52] J. Seipp, F. Pommerening, M. Helmert, New optimization functions for
potential heuristics, in: R. Brafman, C. Domshlak, P. Haslum, S. Zil-
berstein (Eds.), Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS’15), AAAI Press, 2015,
pp. 193–201.

[53] J. Seipp, F. Pommerening, S. Sievers, M. Wehrle, Fast downward aidos,
in: UIPC 2016 planner abstracts, 2016, pp. 28–38.

[54] M. Steinmetz, J. Hoffmann, Towards clause-learning state space search:
Learning to recognize dead-ends, in: D. Schuurmans, M. Wellman
(Eds.), Proceedings of the 30th AAAI Conference on Artificial Intel-
ligence (AAAI’16), AAAI Press, 2016.

[55] M. Steinmetz, J. Hoffmann, Clone: A critical-path driven clause learner,
in: UIPC 2016 planner abstracts, 2016, pp. 24–27.

[56] Á. Torralba, V. Alcázar, Constrained symbolic search: On mutexes,
BDD minimization and more, in: M. Helmert, G. Röger (Eds.), Proceed-
ings of the 6th Annual Symposium on Combinatorial Search (SOCS’13),
AAAI Press, 2013, pp. 175–183.

[57] Á. Torralba, Sympa: Symbolic perimeter abstractions for proving un-
solvability, in: UIPC 2016 planner abstracts, 2016, pp. 8–11.

[58] C. Domshlak, J. Hoffmann, M. Katz, Red-black planning: A new sys-
tematic approach to partial delete relaxation, Artificial Intelligence 221
(2015) 73–114.

[59] D. Gnad, M. Steinmetz, M. Jany, J. Hoffmann, I. Serina, A. Gerevini,
Partial delete relaxation, unchained: On intractable red-black planning
and its applications, in: J. Baier, A. Botea (Eds.), Proceedings of the 9th
Annual Symposium on Combinatorial Search (SOCS’16), AAAI Press,
2015.

69

[60] D. Gnad, M. Steinmetz, J. Hoffmann, Django: Unchaining the power of
red-black planning, in: UIPC 2016 planner abstracts, 2016, pp. 19–23.

[61] M. Wehrle, M. Helmert, Efficient stubborn sets: Generalized algorithms
and selection strategies, in: S. Chien, M. Do, A. Fern, W. Ruml (Eds.),
Proceedings of the 24th International Conference on Automated Plan-
ning and Scheduling (ICAPS’14), AAAI Press, 2014.

[62] Á. Torralba, J. Hoffmann, Simulation-based admissible dominance prun-
ing, in: Q. Yang (Ed.), Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI’15), AAAI Press/IJCAI, 2015,
pp. 1689–1695.

[63] Á. Torralba, P. Kissmann, Focusing on what really matters: Irrelevance
pruning in merge-and-shrink, in: L. Lelis, R. Stern (Eds.), Proceed-
ings of the 8th Annual Symposium on Combinatorial Search (SOCS’15),
AAAI Press, 2015, pp. 122–130.

[64] P. Haslum, Improving heuristics through relaxed search - an analysis of
TP4 and HSP*a in the 2004 planning competition, Journal of Artificial
Intelligence Research 25 (2006) 233–267.

[65] P. Haslum, hm(P) = h1(Pm): Alternative characterisations of the gen-
eralisation from hmax to hm, in: A. Gerevini, A. Howe, A. Cesta, I. Re-
fanidis (Eds.), Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS’09), AAAI Press, 2009, pp.
354–357.

[66] P. Haslum, Incremental lower bounds for additive cost planning prob-
lems, in: B. Bonet, L. McCluskey, J. R. Silva, B. Williams (Eds.), Pro-
ceedings of the 22nd International Conference on Automated Planning
and Scheduling (ICAPS’12), AAAI Press, 2012, pp. 74–82.

[67] E. Keyder, J. Hoffmann, P. Haslum, Improving delete relaxation heuris-
tics through explicitly represented conjunctions, Journal of Artificial
Intelligence Research 50 (2014) 487–533.

[68] M. Fickert, J. Hoffmann, M. Steinmetz, Combining the delete relax-
ation with critical-path heuristics: A direct characterization, Journal of
Artificial Intelligence Research 56 (2016) 269–327.

70

[69] E. Keyder, J. Hoffmann, P. Haslum, Semi-relaxed plan heuristics, in:
B. Bonet, L. McCluskey, J. R. Silva, B. Williams (Eds.), Proceedings of
the 22nd International Conference on Automated Planning and Schedul-
ing (ICAPS’12), AAAI Press, 2012, pp. 128–136.

[70] T. Bylander, The computational complexity of propositional STRIPS
planning, Artificial Intelligence 69 (1994) 165–204.

[71] J. Hoffmann, Local search topology in planning benchmarks: An empir-
ical analysis, in: B. Nebel (Ed.), Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI’01), Morgan Kauf-
mann, Seattle, Washington, USA, 2001, pp. 453–458.

[72] J. Hoffmann, Where ‘ignoring delete lists’ works: Local search topology
in planning benchmarks, Journal of Artificial Intelligence Research 24
(2005) 685–758.

[73] J. Hoffmann, M. Fickert, Explicit conjunctions w/o compilation: Com-
puting hFF(ΠC) in polynomial time, in: R. Brafman, C. Domshlak,
P. Haslum, S. Zilberstein (Eds.), Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS’15), AAAI
Press, 2015.

[74] N. J. Nilsson, Problem Solving Methods in Artificial Intelligence,
McGraw-Hill, 1971.

[75] P. Jiménez, C. Torras, An efficient algorithm for searching implicit
AND/OR graphs with cycles, Artificial Intelligence (????).

[76] B. Bonet, H. Geffner, Labeled RTDP: Improving the convergence of real-
time dynamic programming, in: E. Giunchiglia, N. Muscettola, D. Nau
(Eds.), Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS’03), Morgan Kaufmann, Trento, Italy,
2003, pp. 12–21.

[77] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM
Journal on Computing 1 (1972) 146–160.

[78] B. Bonet, H. Geffner, Faster heuristic search algorithms for planning
with uncertainty and full feedback, in: G. Gottlob (Ed.), Proceedings

71

of the 18th International Joint Conference on Artificial Intelligence (IJ-
CAI’03), Morgan Kaufmann, Acapulco, Mexico, 2003, pp. 1233–1238.

[79] M. Helmert, The Fast Downward planning system, Journal of Artificial
Intelligence Research 26 (2006) 191–246.

[80] M. Helmert, Concise finite-domain representations for PDDL planning
tasks, Artificial Intelligence 173 (2009) 503–535.

[81] D. Gnad, Á. Torralba, J. Hoffmann, M. Wehrle, Decoupled search for
proving unsolvability, in: UIPC 2016 planner abstracts, 2016, pp. 16–18.

[82] A. Valmari, Stubborn sets for reduced state space generation, in: Pro-
ceedings of the 10th International Conference on Applications and The-
ory of Petri Nets, 1989, pp. 491–515.

[83] R. E. Bryant, Graph-based algorithms for boolean function manipula-
tion, IEEE Transactions on Computers 35 (1986) 677–691.

[84] S. Edelkamp, M. Helmert, Exhibiting knowledge in planning problems to
minimize state encoding length, in: S. Biundo, M. Fox (Eds.), Proceed-
ings of the 5th European Conference on Planning (ECP’99), Springer-
Verlag, 1999, pp. 135–147.

[85] T. Balyo, M. Suda, Reachlunch entering the unsolvability ipc 2016, in:
UIPC 2016 planner abstracts, 2016, pp. 3–5.

[86] J. Seipp, M. Helmert, Counterexample-guided Cartesian abstraction re-
finement, in: D. Borrajo, S. Fratini, S. Kambhampati, A. Oddi (Eds.),
Proceedings of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS’13), AAAI Press, Rome, Italy, 2013, pp.
347–351.

[87] J. Seipp, M. Helmert, Diverse and additive cartesian abstraction heuris-
tics, in: S. Chien, M. Do, A. Fern, W. Ruml (Eds.), Proceedings of the
24th International Conference on Automated Planning and Scheduling
(ICAPS’14), AAAI Press, 2014.

[88] D. Gnad, J. Hoffmann, Beating LM-cut with hmax (sometimes): Fork-
decoupled state space search, in: R. Brafman, C. Domshlak, P. Haslum,
S. Zilberstein (Eds.), Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), AAAI Press, 2015.

72

[89] D. Gnad, J. Hoffmann, Red-black planning: A new tractability analysis
and heuristic function, in: L. Lelis, R. Stern (Eds.), Proceedings of
the 8th Annual Symposium on Combinatorial Search (SOCS’15), AAAI
Press, 2015.

[90] K. Korovin, M. Suda, iproverplan: A system description, in: UIPC
2016 planner abstracts, 2016, pp. 6–7.

[91] P. Haslum, Adapting h++ for proving plan non-existence, in: UIPC
2016 planner abstracts, 2016, pp. 1–1.

[92] J. Hoffmann, Analyzing search topology without running any search:
On the connection between causal graphs and h+, Journal of Artificial
Intelligence Research 41 (2011) 155–229.

[93] P. Laborie, M. Ghallab, Planning with sharable resource constraints,
in: S. Mellish (Ed.), Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence (IJCAI’95), Morgan Kaufmann, Montreal,
Canada, 1995, pp. 1643–1649.

[94] J. Koehler, Planning under resource constraints, in: H. Prade (Ed.),
Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI’98), Wiley, Brighton, UK, 1998, pp. 489–493.

73

