
In Defense of PDDL Axioms

Sylvie Thiébaux

Computer Sciences Laboratory, The Australian National University,
Knowledge Representation & Reasoning Program, National ICT Australia,

Canberra, ACT 0200, Australia

Jörg Hoffmann

Max-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany

Bernhard Nebel

Institut für Informatik, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany

Abstract

There is controversy as to whether explicit support for PDDL-like axioms and derived pred-
icates is needed for planners to handle real-world domains effectively. Many researchers
have deplored the lack of precise semantics for such axioms, while others have argued that
it might be best to compile them away. We propose an adequate semantics for PDDL ax-
ioms and show that they are an essential feature by proving that it is impossible to compile
them away if we restrict the growth of plans and domain descriptions to be polynomial.
These results suggest that adding a reasonable implementation to handle axioms inside the
planner is beneficial for the performance. Our experiments confirm this suggestion.
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1 Introduction

It is not uncommon for planners to support derived predicates, whose truth in the
current state is inferred from that of some basic predicates via some axioms under
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the closed world assumption. While basic predicates may appear as effects of ac-
tions, derived ones may only be used in preconditions, effect contexts and goals.
Planners that support such constructs include the partial order planner UCPOP (Bar-
rett et al., 1995), the HTN planner SHOP (Nau et al., 1999), and the heuristic search
planner GPT (Bonet and Geffner, 2001; Bonet and Thiébaux, 2003), to cite but a
few. The original version of PDDL (McDermott, 1998), the International Planning
Competition language, also featured such axioms and derived predicates. However,
these were never (yet) used in competition events, and did not survive PDDL2.1,
the extension of the language to temporal planning (Fox and Long, 2003).

We believe that the lack of axioms impedes the ability to elegantly and concisely
represent real-world domains. Such domains typically require checking complex
conditions which are best built hierarchically, from elementary conditions on the
state variables to increasingly abstract ones. Without axioms, preconditions and ef-
fect contexts quickly become unreadable, or postconditions are forced to include
supervenient properties which are just logical consequences of the basic ones.
Sometimes things get even worse as extra actions need to be introduced or action
descriptions need to be propositionalised to fit a particular problem instance.

Moreover, axioms provide a natural way of capturing the effects of actions on com-
mon real world structures such as paths or flows, e.g. electricity flows, chemical
flows, traffic flows, etc. 1 For instance, one benchmark used in the 2004 compe-
tition (see also below) is a deterministic version of the power supply restoration
problem (PSR) described by Thiébaux and Cordier (2001). Given a network con-
sisting of power sources, electric lines and switches, an important aspect of the
problem is to determine which are the lines currently fed by the various sources,
and how feeding is affected when opening or closing switches. Computing and up-
dating “fed” following a switching operation requires traversing the possible paths
of network. There is no intuitive way to do this in the body of a PDDL action, while
a recursive axiomatisation of “fed” from the current positions (open or closed) of
the switches is relatively straightforward (Bonet and Thiébaux, 2003).

The most common criticism of the original PDDL axioms was that their semantics
was ill-specified. In particular, the organisers of the 2002 International Planning
Competition objected that 2 the conditions under which the truth of the derived
predicates could be uniquely determined were unclear. We remedy this by provid-
ing a clear semantics for PDDL axioms while remaining consistent with the original
description by McDermott (1998). In particular, we identify conditions that are suf-
ficient to ensure that the axioms have an unambiguous meaning, and explain how
these conditions can efficiently be checked.

Another common view is that axioms are a non-essential language feature which

1 In that respect, PDDL axioms offer advantages over the use of purely logical axioms as
in the original version of STRIPS (Lifschitz, 1986).
2 Personal communications.
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it might be better to compile away than to deal with explicitly, compilation offer-
ing the advantage of enabling the use of more efficient, simple, standard planners
without specific treatment (Gazen and Knoblock, 1997; Garagnani, 2000; David-
son and Garagnani, 2002). We bring new insight to this issue. We give evidence that
axioms add significant expressive power to PDDL. We take “expressive power” to
be a measure of how succinctly domains and plans can be expressed in a formalism
and use the notion of compilability to analyse that (Nebel, 2000). As it turns out,
axioms are an essential feature because it is impossible to compile them away. We
prove that any compilation scheme involves either a worst-case exponential blow-
up in the size of the domain description, or a worst-case exponential blow-up in
the length of the shortest plans. Note that these are essential weaknesses. Exponen-
tially sized domain descriptions are clearly prohibitive for efficient planning. As for
exponentially sized plans in the compilation, from a plan execution point of view
these don’t hurt since one can back-translate the plan into a plan for the original
task, and execute that shorter plan. However, exponentially longer plans will seri-
ously impede, likely be prohibitive for, the performance of any automated planner
trying to solve the compiled planning tasks.

If we allow for exponential growth, then compilations become possible. We spec-
ify one such transformation, which, unlike those previously published (Gazen and
Knoblock, 1997; Garagnani, 2000; Davidson and Garagnani, 2002), works without
restriction on the presence of negated derived predicates in the domain description.
However, as said above our results suggest that it might be much more efficient to
deal with axioms inside the planner than to compile them away. In fact, our ex-
periments with FF (Hoffmann and Nebel, 2001) suggest that adding even a simple
implementation of axioms to a planner clearly outperforms the original version of
the planner run on the compilation.

Derived predicates and axioms were (in a slightly simpler version than what we
consider in this paper) re-introduced into PDDL2.2 (Edelkamp and Hoffmann,
2004), the language for the 2004 International Planning Competition (IPC-4). The
discussion that led to this decision, taken by the IPC-4 advisory committee in July
2003, was largely driven by the results we present in this paper (a short version of
the paper appeared at IJCAI’03). IPC-4 featured two benchmark domains that were
formulated with the help of derived predicates, namely the PSR problem mentioned
above as well as a PROMELA domain dealing with the detection of errors in com-
munication protocols. Both domains are treated in the experimental section of this
paper.

The paper is structured as follows. Section 2 provides the syntax and semantics
of axioms, Section 3 contains our results on expressive power, Section 4 discusses
compilations, Section 5 describes our experiments, Section 6 concludes.
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2 Syntax and Semantics

This paper remains in the sequential planning setting. We start from the syntax
of PDDL2.1 level 1, i.e., PDDL with ADL actions as used in the 1998 and 2000
planning competitions (McDermott, 1998; Bacchus, 2000). Our syntax of PDDL

with axioms, or PDDLX , is given in Figure 1. The PDDL2.2 syntax largely adopts
this syntax.

<axiom-def> is the only addition to the original syntax. Let B andD be two sets
of predicate symbols with B ∩ D = ∅, called the set of basic and derived predicates,
respectively. Symbols in D are not allowed to appear in the initial state description
and in atomic effects of actions, but may appear in preconditions, effect contexts,
and goals. The domain description features a set of axioms A. These have the form
(: derived (d ?~x) (f ?~x)), where d ∈ D, and where f is a first-order formula built
from predicate symbols in B ∪ D and whose free variables are those in the vector
~x.

Intuitively, an axiom (: derived (d ?~x) (f ?~x)) means that when (f ?~x) is true at
the specified arguments in a given state, we should derive that (d ?~x) is true at those
arguments in that same state. Unlike traditional implications, these derivations are
not to be contraposed (the negation of f is not derived from the negation of d),
and what cannot be derived as true is false (closed world assumption). Because of
the closed world assumption, there is never any need to explicitly derive negative
literals, so the constraint that the consequent of axioms be positive literals does not
make us lose generality.

In our approach, as in previous work in planning (Barrett et al., 1995; McDermott,
1998; Bonet and Thiébaux, 2003), states are completely characterised by the val-
ues of the basic predicates, and derived predicates represent high-level properties
of states whose truth value is uniquely determined given the basic ones. While this
is a bit restrictive in postulating a strict distinction between basic and derived pred-
icates, it typically suffices to formulate the problems that are of interest to the plan-
ning community. The approach has the advantage of being practical, in the sense
that it only involves simple forms of reasoning in order to determine the successor
states. A whole body of formalisms in the field of reasoning about action provide
a more elaborate treatment of the ramification problem and allow a given predicate
to be both explicitly changed by actions or inferred from the changes (Winslett,
1988; Brewka and Hertzberg, 1993; Sandewall, 1994; McCain and Turner, 1995;
Lin, 1995; Gustafsson and Doherty, 1996).

In sum, axioms are essentially (function free) logic program statements (Lloyd,
1984). For example, from the basic predicate on and the predicate holding in
Blocks World, we can define the predicate clear, as follows:

(:derived (clear ?x)
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Fig. 1 Syntax of PDDLX

<domain> ::= (define (domain <name>)
[<constant-def>]
[<predicates-def>]
[<axiom-def>*]
<action-def>*)

<constants-def> ::= (:constants <name>+)
<predicate-def> ::= (:predicates <skeleton>+)
<skeleton> ::= (<predicate> <variable>*)
<predicate> ::= <name>
<variable> ::= ?<name>
<axiom-def> ::= (:derived <skeleton> <formula>)
<formula> ::= <atomic-formula>
<formula> ::= (not <formula>)
<formula> ::= (and <formula> <formula>+)
<formula> ::= (or <formula> <formula>+)
<formula> ::= (imply <formula> <formula>)
<formula> ::= (exists (<variable>+) <formula>)
<formula> ::= (forall (<variable>+) <formula>)
<atomic-formula> ::= (<predicate> <term>*)
<ground-atomic-formula> ::= (<predicate> <name>*)
<term> ::= <name>
<term> ::= <variable>
<action-def> ::= (:action <name>

:parameters (<variable>*)
<action-def body>)

<action-def body> ::= [:precondition <formula>]
:effect <eff-formula>

<eff-formula> ::= <one-eff-formula>
<eff-formula> ::= (and <one-eff-formula>

<one-eff-formula>+)
<one-eff-formula> ::= <atomic-effs>
<one-eff-formula> ::= (when <formula> <atomic-effs>)
<one-eff-formula> ::= (forall (<variable>+) <atomic-effs>)
<one-eff-formula> ::= (forall (<variable>+)

(when <formula> <atomic-effs>))
<atomic-effs> ::= <literal>
<atomic-effs> ::= (and <literal> <literal>+)
<literal> ::= <atomic-formula>
<literal> ::= (not <atomic-formula>)
<task> ::= (define (task <name>)

(:domain <name>)
<object declaration>
<init>
<goal>)

<object declaration> ::= (:objects <name>*)
<init> ::= (:init <ground-atomic-formula>*)
<goal> ::= (:goal <formula>)
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(and (not (holding ?x))
(forall (?y) (not (on ?y ?x))))))

Another classic is above, the transitive closure of on, e.g.:

(:derived (above ?x ?y)
(or (on ?x ?y)

(exists (?z) (and (on ?x ?z)
(above ?z ?y)))))

or equivalently:

(:derived (above ?x ?y)
(or (on ?x ?y)

(exists (?z) (and (above ?x ?z)
(above ?z ?y)))))

The formal semantics below will of course enforce that the result is not affected by
the order in which atomic formulae appear in the antecedent.

In a planning context, it is natural and convenient to restrict attention to so-called
stratified axiom sets. By disallowing negation “through recursion”, stratified logic
programs avoid unsafe use of negation and have an unambiguous, well-understood
semantics (Apt et al., 1988). The idea behind stratification is that some derived
predicates should first be defined in terms of the basic ones possibly using nega-
tion, or in terms of themselves (allowing for recursion) but without using negation.
Next, more abstract predicates can be defined building on the former, possibly us-
ing their negation, or in terms of themselves but without negation, and so on. Thus,
a stratified axiom set is partitionable into strata, in such a way that the negation nor-
mal form 3 (NNF) of the antecedent of an axiom defining a predicate belonging to
a given stratum uses arbitrary occurrences of predicates belonging to strictly lower
strata and positive occurrences of predicates belonging to the same stratum. Basic
predicates may be used freely.

Definition 1 An axiom set A is stratified iff there exists a partition (stratification)
of the set of derived predicates D into (non-empty) subsets {Di, 1 ≤ i ≤ n} such
that for every di ∈ Di and every axiom (: derived (di ?~x) (f ?~x)) ∈ A:

(1) if dj ∈ Dj appears in NNF(f ?~x), then j ≤ i,
(2) if dj ∈ Dj appears negated in NNF(f ?~x), then j < i.

For instance, Figure 2 shows a blocks world domain description with 4 opera-
tors. The basic predicates are B = {on, ontable}, and the derived ones are D =
{above, holding, clear, handempty}. The axiomatisation of handempty and that
of clear use the negation of holding. The axiom set is stratified and a possible

3 In a formula in NNF, negation occurs only in literals.
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Fig. 2 Blocks World with Derived Predicates
(define (domain bw-axioms)
(:requirements :strips)
(:predicates (on-table ?x) (on ?x ?y) ;basic predicates

(holding ?x) (above ?x ?y) (clear ?x) (handempty)) ; derived predicates

(:derived (holding ?x)
(and (not (on-table ?x))(not (exists (?y) (on ?x ?y)))))

(:derived (above ?x ?y)
(or (on ?x ?y)

(exists (?z) (and (on ?x ?z) (above ?z ?y)))))

(:derived (clear ?x)
(and (not (holding ?x))

(not (exists (?y) (on ?y ?x)))))

(:derived (handempty) (forall (?x) (not (holding ?x))))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (handempty))
:effect (not (on-table ?ob)))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect (on-table ?ob))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (on ?ob ?underob))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (handempty))
:effect (not (on ?ob ?underob)))

)

stratification is D1 = {above, holding}, D2 = {clear, handempty}.

Note that any stratification {Di, 1 ≤ i ≤ n} of D induces a stratification {Ai, 1 ≤
i ≤ n} of A in the obvious way: Ai = {(: derived (di ?~x) (fi ?~x)) ∈ A |
di ∈ Di}. Note also that when no derived predicate occurs negated in the NNF

of the antecedent of any axiom, a single stratum suffices. Several planning papers
have considered this special case (Gazen and Knoblock, 1997; Garagnani, 2000;
Davidson and Garagnani, 2002), in particular PDDL2.2 (Edelkamp and Hoffmann,
2004) restricts the use of axioms to this case.

Working through the successive strata, applying axioms in any order within each
stratum until a fixed point is reached and then only proceeding to the next stratum,
always leads to the same final fixed point independently of the chosen stratification
(Apt et al., 1988, p. 116). It is this final fixed point which we take to be the meaning
of the axiom set.

We now spell out the semantics formally. Since we have a finite domain and no
functions, we identify the objects in the domain with the ground terms (constants)
that denote them, and states with finite sets of ground atoms, i.e., ground atomic
formulae. More precisely, a state is taken to be a set of ground basic atoms: the
derived ones will be treated as elaborate descriptions of the basic state. In order
to define the semantics, however, we first need to consider an extended notion of
“state” consisting of a set S of basic atoms and an arbitrary set D of atoms in the
derived vocabulary. The modeling conditions for an extended state 〈S,D〉 are just
the ordinary ones of first order logic, as though there were no relationship between

7



S and D. Where ?~x denotes a vector of variables and ~t denotes a vector of ground
terms, we define:

Definition 2

〈S,D〉 |= (b ~t) for b ∈ B iff (b ~t) ∈ S
〈S,D〉 |= (d ~t) for d ∈ D iff (d ~t) ∈ D
〈S,D〉 |= (not f) iff 〈S,D〉 6|= f

〈S,D〉 |= (and f1 f2) iff 〈S,D〉 |= f1 and 〈S,D〉 |= f2

〈S,D〉 |= (or f1 f2) iff 〈S,D〉 |= f1 or 〈S,D〉 |= f2

〈S,D〉 |= (forall (?~x) (f ?~x)) iff 〈S,D〉 |= (f ~t) for all ~t
〈S,D〉 |= (exists (?~x) (f ?~x)) iff 〈S,D〉 |= (f ~t) for some ~t

Then, applying axiom a ≡ (: derived (d ?~x) (f ?~x)) in an extended state 〈S,D〉
results in the set [[a]](S,D) of further derived atoms:

Definition 3 [[a]](S,D) =
{

(d ~t) | 〈S,D〉 |= (f ~t), ~t is ground
}

Given this, we associate stratum Ai with the function [[A]]i which maps a given
basic state S to the set of ground derived atoms derivable from S and from the ax-
ioms at strata Ai and lower. This function is recursively defined as the least fixed
point attainable by applying the axioms in Ai starting from the extended state con-
sisting of S and of the set of ground derived atoms returned at the previous stratum
by the function [[A]]i−1. The stratified axiom setA denotes the function [[A]] = [[A]]n:

Definition 4 Let {Ai, 1 ≤ i ≤ n} be an arbitrary stratification for a stratified
axiom set A. For each state S, let:

[[A]]0(S) = ∅, and for all 1 ≤ i ≤ n

[[A]]i(S) =
⋂{
D |

⋃
a∈Ai

[[a]](S,D) ∪ [[A]]i−1(S) ⊆ D
}

Then [[A]](S) is defined as [[A]]n(S).

Note that, in the definition of [[A]]i(S), the set D itself is an argument of [[a]](S,D),
forcing D to be closed under the applications of the axioms a ∈ Ai. The definition
states that D is the smallest set (

⋂
) containing [[A]]i−1(S) and closed under these

axioms.

Finally, given a stratified axiom set A, we write S |=
A
f to indicate that a formula f

composed of both basic and derived predicates holds in state S:

Definition 5 S |=
A
f iff 〈S, [[A]](S)〉 |= f
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This modeling relation is used when applying an action in state S to check pre-
conditions and effect contexts, and to determine whether S satisfies the goal. This
is the only change introduced by the axioms into the semantics of PDDL and com-
pletes our statement of the semantics. The rest carries over verbatim from (Bacchus,
2000).

Algorithm 1 Stratification
1. function STRATIFY(D, A)
2. R← ORDER(D, A)
3. if ∀i ∈ D R[i, i] 6= 2 then
4. return EXTRACT(D, R)

5. else fail

6. function ORDER(D, A)
7. for each i ∈ D do
8. for each j ∈ D do
9. R[i, j]← 0

10. for each (: derived (j ?~x) (f ?~x)) ∈ A do
11. for each i ∈ D do
12. if i occurs negatively in NNF(f ?~x) then
13. R[i, j]← 2

14. else if i occurs positively in NNF(f ?~x) then
15. R[i, j]← MAX(1, R[i, j])

16. for each j ∈ D do
17. for each i ∈ D do
18. for each k ∈ D do
19. if MIN(R[i, j], R[j, k]) > 0 then
20. R[i, k]← MAX(R[i, j], R[j, k], R[i, k])

21. return R

22. function EXTRACT(D, R)

23. stratification← ∅, remaining ← D, level← 1

24. while remaining 6= ∅ do
25. stratum← ∅
26. for each j ∈ remaining do
27. if ∀i ∈ remaining R[i, j] 6= 2 then
28. stratum← stratum ∪ {j}
29. remaining ← remaining \ stratum
30. stratification← stratification ∪ {(level, stratum)}
31. level← level + 1

32. return stratification

Practically, given a domain description it must be tested if the axiom set is stratified.
If so, a stratification needs to be computed. Both the test and the computation of the
stratification can be done in polynomial time in the size of the domain description,
using for instance Algorithm 1.
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The computation done in Algorithm 1 is reminiscent of that of the transitive closure
of a relation. The algorithm starts by calling the function ORDER which analyses
the axioms to build a 4 |D| × |D| matrix R such that R[i, j] = 2 when it follows
from the axioms that predicate i’s stratum must be strictly lower than predicate
j’s stratum, R[i, j] = 1 when i’s stratum must be lower than j’s stratum but not
necessarily strictly, and R[i, j] = 0 when there is no constraint between the two
strata. R is initialised with 0 everywhere (lines 7-9). Then, R is filled with the
values encoding the status (strict or not) of the base constraints, i.e., those obtained
by direct examination of the axioms (lines 10-15). Finally, the consequences of
the base constraints are computed, similarly as one would compute a transitive
closure (lines 16-20). From the constraint that i’s stratum should be lower than
j’s stratum and the constraint that j’s stratum should be lower than k’s stratum
(i.e., MIN(R[i, j], R[j, k]) > 0, see line 19), follows the constraint that i’s stratum
should be lower than k’s stratum. If either of the two former constraints are strict,
(i.e. R[i, j] = 2 or R[j, k] = 2), the latter is strict too (i.e. R[i, k] = 2). It may
also be the case that the latter constraint has already been discovered and proven
strict during an earlier iteration. Therefore, the correct status of that constraint is
computed by taking the maximum of R[i, j], R[j, k] and the previous R[i, k] (line
20).

There exists a stratification iff the strict relation encoded in R is irreflexive, that is
iff R[i, i] 6= 2 for all i ∈ D (line 3). In that case, the stratification corresponding to
the smallest pre-order consistent withR (i.e. predicates are put in the lowest stratum
consistent with R), is extracted from R using the function EXTRACT. EXTRACT

iterates over the set of predicates remaining to be allocated to strata, until this set
is empty. At each iteration, the next stratum is built (lines 25-28) by examining
remaining predicates in turn, selecting those whose ancestors in R have all been
allocated to previous strata. I.e., the current stratum consists of those remaining
predicates j such that R[i, j] 6= 2 for all remaining predicates i. Then the selected
predicates are removed from remaining, the current stratum is incorporated to the
stratification, and the level of the next stratum to build is increased (lines 29-31).
This process terminates in less than |D| iterations, and the stratification is returned.

3 Axioms Add Significant Expressive Power

It is clear that axioms add something to the expressive power of PDDL. In order
to determine how much power is added, we will use the compilability approach
(Nebel, 2000), which is based on results from the area of knowledge compilation
(Cadoli and Donini, 1997). Basically, what we want to determine is how succinctly

4 By | · | we denote the cardinality of a set.
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a planning task can be represented if we compile the axioms away. 5 Furthermore,
we want to know how long the corresponding plans in the compiled planning task
will become.

As we will show, it is impossible to compile away axioms, provided we require that
the domain description and the plan length both grow only polynomially. There is,
of course, the question of what the main source of expressive power in this case is
and how one could get around the problem. One way of answering this question
would be to vary systematically the expressivity of the axiom language and of the
operator language and then determine compilability between every pair of planning
formalisms. This has been done, e.g., for variants of propositional STRIPS, where no
axioms were allowed (Nebel, 2000). In the present case, however, such an analysis
would certainly be much too extensive and we are, moreover, mainly interested
in answering the question of how much expressivity axioms add to the existing
planning formalism PDDL. For this reason, we will only consider what restrictions
on the axiom language lead to.

In detail, we will consider the following three variants of axiom languages:

(1) the full axiom language as defined in Section 2;
(2) the axiom language restricted to function-free logic-programming rules with-

out negation (which is also called DATALOG);
(3) the axiom language restricted to non-recursive DATALOG.

These variations address the following questions:

(1)→(2): Is the capability of using arbitrary quantification and Boolean connectors
important? In particular, is negation in axioms significant?

(2)→(3): What role does recursion in axioms play?

In the following, we take a PDDLX planning domain description to be a tuple
∆ = 〈B,D, A,O〉, where B is the set of basic predicates, D is the set of derived
predicates, A is a stratified axiom set as in Definition 1, and O is a set of action de-
scriptions (with the mentioned restriction that atomic effects cannot contain predi-
cates in D). A PDDLX planning instance or task is a tuple Π = 〈∆, C, I,G〉, where
∆ is the domain description, C is the set of constant symbols, and I and G are the
initial state (a set of ground basic atoms) and goal descriptions (a formula), respec-
tively. The result of applying an action in a (basic) state and what constitutes a valid
plan (sequence of actions) for a given planning task are defined in the usual way
(Bacchus, 2000), except that the modelling relation of Definition 5 is used in place
of the usual one. By a PDDL domain description and planning instances we mean
those without any axioms and derived predicates, i.e., a PDDL domain description
has the form 〈B, ∅, ∅, O〉.

5 Similar techniques have been used to measure the relative succinctness of logical repre-
sentation formalisms by Cadoli et al. (1996) and Gogic et al. (1995).
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We use compilation schemes (Nebel, 2000) to translate PDDLX domain descrip-
tions to PDDL domain descriptions. Such schemes are functions that translate do-
main descriptions between planning formalisms without any restriction on their
computational resources but the constraint that the target domain should be only
polynomially larger than the original. 6

Definition 6 A compilation scheme from X to Y is a tuple of functions f =
〈fδ, fc, fi, fg〉 that induces a function F from X -instances Π = 〈∆, C, I,G〉 to
Y-instances F (Π) as follows:

F (Π) =〈fδ(∆), C ∪ fc(∆), I ∪ fi(C,∆),G ∧ fg(C,∆)〉

and satisfies the following conditions:

(1) there exists a plan for Π iff there exists a plan for F (Π),
(2) and the size of the results of fδ, fc, fi, and fg is polynomial in the size of their

argument ∆.

In addition, we measure the size of the corresponding plans in the target formal-
ism. 7

Definition 7 If a compilation scheme f has the property that for every plan P solv-
ing an instance Π, there exists a plan P ′ solving F (Π) such that ||P ′|| ≤ ||P ||+ k
for a positive integer k, we say that the compilation scheme f preserves plan size
exactly. If we can guarantee that ||P ′|| ≤ c×||P ||+k for positive integer constants
c and k, then we say f preserves plan size linearly, and if ||P ′|| ≤ p(||P ||, ||Π||) for
some polynomial p, then we say f preserves plan size polynomially.

From a practical point of view, one can regard compilability preserving plan size
exactly as an indication that the planning formalism we use as the target formal-
ism is at least as expressive as the source formalism. In other words, the additional
language features in the source formalism can be regarded as syntactic sugar. If a
linear blowup is required, then the compilation process might already be a prob-
lem since planning algorithms are usually exponential in the length of the plan. If
a linear growth is not sufficient and a polynomial blowup measured in the size of
the domain description and the original plan length is required, it might be already
infeasible to use the compilation technique. This may be taken as an indication that
the source formalism is more expressive than the target formalism—since it indi-
cates that a planning algorithm for the target formalism would be forced to generate
significantly longer plans for compiled instances, making it probably infeasible to

6 We use here a slightly modified definition of compilability, which incorporates the set of
constant symbols C. Furthermore, we have simplified the definition by not allowing general
transformations of the initial and goal state but simple extensions of the respective state
descriptions.
7 The size of an instance, domain description, plan, etc. is denoted by || · ||.
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solve such instances. If plans are required to grow even super-polynomially, then
the increase of expressive power must be dramatic. Incidentally, such exponential
growth of plan size is necessary to compile axioms away.

In order to investigate the compilability between PDDL and PDDLX , we will analyse
restricted planning problems such as the 1-step planning problem and the polyno-
mial step planning problem. The former is the problem of whether there exists a
1-step plan to solve a planning task, the latter is the problem whether there exists
a plan polynomially sized (for some fixed polynomial) in the representation of the
domain description. Furthermore, we will often restrict the form of the right-hand
side of axioms to a particularly simple form, namely, conjunctions of atoms, where
all variables not appearing on the left-hand side of the axiom are implicitly exis-
tentially quantified. Such axioms are syntactically identical to DATALOG programs
and for this reason we will call such axioms to be in DATALOG form. If the axioms
contain negation, we say that they are in DATALOG¬ form. It is now a well-known
fact from database theory that first-order queries can be rewritten into DATALOG¬

programs, which are linear in the size of the original formula (Abiteboul et al.,
1995). For this reason, we can concentrate in the following on stratified axioms in
DATALOG¬ form as the most expressive axiom language.

Theorem 1 The 1-step planning problem for PDDLX is EXPTIME-complete, even
if all axioms are in pure DATALOG form.

Proof. EXPTIME-hardness follows from EXPTIME-completeness of pure DATA-
LOG entailment (Dantsin et al., 2001, Theorem 4.5). EXPTIME membership fol-
lows because the evaluation of the precondition and the goal formula can be done
in PSPACE (Vardi, 1982) and the evaluation of axioms in stratified DATALOG¬ can
be done in EXPTIME, which follows from EXPTIME-completeness of entailment
in stratified DATALOG¬ programs (Dantsin et al., 2001, Theorem 5.1).

If we now consider PDDL planning tasks, it turns out that the planning problem is
considerably easier, even if we allow for polynomial length plans. While in general
STRIPS planning (and hence PDDL planning) is EXPSPACE-hard when variables
are permitted (Erol et al., 1995), the restriction to plans of polynomially many steps
leads to PSPACE-completeness. 8

Theorem 2 The polynomial step planning problem for PDDL is PSPACE-complete.

Proof. PSPACE-hardness follows from the fact that the evaluation of quantified
formulas (such as precondition and goal formulas) is already PSPACE-hard (Vardi,

8 One should note that this result is unrelated to Bylander’s PSPACE-completeness result
for propositional planning. While Bylander’s result is about arbitrarily long plans for op-
erators that do not contain object variables, our result is about polynomially long plans for
operators that contain variables.
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1982).

Membership in PSPACE can be shown as follows. In order to solve the polynomial
step planning problem, we can guess a polynomially sized plan and guess instan-
tiations of the free variables in all operators. This can clearly be done using only
polynomial space.

Now we can verify that the guessed plan solves the problem using only polynomial
space. By iterating over each ground atom, we check that the goals are satisfied,
checking recursively that the operators in the plan were executable and that the
right atoms were generated (or deleted). This clearly takes only polynomial space.
So the entire verification can be carried out in polynomial space.

From these two theorems it follows immediately that it is very unlikely that there
exists a polynomial time compilation scheme from PDDLX to PDDL preserving plan
size polynomially. Otherwise, it would be possible to solve all problems requiring
exponential time in polynomial space, which is considered as quite unlikely. How-
ever, as argued by Nebel (2000), if we want to make claims about expressiveness,
then we should not take the computational resources of the compilation scheme into
account but allow for computationally unconstrained transformations. Interestingly,
even allowing for such unconstrained compilation schemes we get a similar result.

In order to prove this, we will use an idea similar to the one Kautz and Selman
(1992) used to prove that approximations of logical theories of a certain size are
not very likely to exist. In order to do so, we will describe all linearly bounded
alternating Turing machine acceptance problem instances up to a certain size by
one fixed PDDLX domain description.

An alternating Turing machine (ATM) M is a tuple 〈Q,Σ,Γ,#, δ, q0, U, A〉, where
Q is a finite set of states, Σ is the input alphabet, Γ ⊃ Σ is the tape alphabet,
# ∈ Γ − Σ is the blank symbol, δ : (Q × Γ) → 2(Q×Γ×{L,R,S}) is the transition
function, q0 ∈ Q is the initial state, U ⊆ Q is the set of universal states, and
A ⊆ Q is the set of accepting states. All non-accepting, non-universal states are
called existential. Such a machine is in an accepting configuration if

• the state is an accepting state,
• the state is an existential state and there exists a successor configuration that is

an accepting configuration, or
• the state is a universal state and all successor configurations are accepting con-

figurations.

A linearly bounded ATM (or LBATM) is an ATM whose tape head is not allowed
to leave the space occupied by the input string. The LBATM acceptance problem is
now the problem of deciding for a given LBATM and a given string, whether the
string is accepted. This problem is EXPTIME-complete (Chandra et al., 1981).
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In addition to the LBATM problem we need the notion of advice-taking Turing ma-
chines and of non-uniform complexity classes to prove our claim. An advice-taking
Turing machine is a Turing machine with an advice oracle, which is a (not neces-
sarily computable) function a(·) from positive integers to bit strings. On inputw the
machine loads the bit string a(||w||) and then continues as usual. Note that the ora-
cle derives its bit string only from the length of the input and not from the contents
of the input. An advice is said to be polynomial if the oracle string is polynomially
bounded by the instance size. Further, if X is a complexity class defined in terms
of resource-bounded machines, e.g., P, NP or PSPACE, then X/poly (also called
non-uniform X) is the class of problems that can be decided on machines with the
same resource bounds and polynomial advice.

Theorem 3 Unless EXPTIME = PSPACE, there is no compilation scheme from
PDDLX (even restricted to pure DATALOG axioms) to PDDL preserving plan size
polynomially.

Proof. Consider LBATM instances I = 〈w,M〉, with w ∈ {0, 1}∗ and M being
a LBATM with Σ = {0, 1}. We measure the size of these instances by taking the
maximum of the length of w and the number of states in M . As a next step, we
specify a family of PDDLX planning domains ∆n. These are constructed in a way
such that they can be used to decide the LBATM problem up to size n by solving
the 1-step planning problem for 〈∆n, C, II , g〉, where C = {0, 1,#, U, E, A, L, R, S},
II describes the LBATM instance and can be computed from I in polynomial time,
and g is some constant predicate. The numbers in C stand for elements of the input
alphabet, # stands for the blank symbol, the symbols U, E, A are used to denote, uni-
versal, existential, and accepting states, respectively, and L, R, S are used to denote
head movement, i.e., L for left, R for right, and S for stationary.

The basic predicates of the PDDLX instance we are constructing are:

• (celli ?s) describing that the ith tape cell of the input contains ?s, with i = 0
denoting the leftmost cell,
• (typeq ?t) describing the type ?t of state q, with q = 0 denoting the initial state,
• (transq,q′ ?s ?s′ ?m) describing one entry of the transition table corresponding

to δ(q, ?s) 3 〈q′, ?s′, ?m〉, and
• (notransq,q′ ?s ?s′ ?m) describing that the transition table does not contain an

entry 〈q′, ?s′, ?m〉 at δ(q, ?s).

Using these basic predicates, every LBATM instance with input size less or equal
n can be described.

In addition, we use the following derived predicates:

• (accq,i ?x0 . . .?xn−1) describing an accepting configuration with tape contents
?x0 . . .?xn−1, state q (0 ≤ q ≤ n− 1), and head position i (0 ≤ i ≤ n− 1),
• (okq,i,q′,s′,m ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1) describing that the successor con-
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figuration resulting from 〈q′, s′,m〉 for given state q and input ?s′ is either an
accepting configuration or it is not reachable (i.e., 〈q′, s′,m〉 6∈ δ(q, ?s)),
• (g) is the goal atom which is added by the only operator in our domain descrip-

tion.

Now we have for every state q and head position i the following rule accounting for
accepting states:

(: derived (accq,i ?x0 . . .?xn−1) (typeq A))

Additionally, for every tuple 〈q, q′, i〉 we have the following rules:

For 1 ≤ i ≤ n− 1, we have left-movement rules:
(: derived (accq,i ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(typeq E)

(transq,q′ ?s ?s
′ L)

(accq′,i−1 ?x0 . . .?xi−1 ?s′ ?xi+1 . . .?xn−1)))

For 0 ≤ i ≤ n− 2, we have right-movement rules:
(: derived (accq,i ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(typeq E)

(transq,q′ ?s ?s
′ R)

(accq′,i+1 ?x0 . . .?xi−1 ?s′ ?xi+1 . . .?xn−1)))

For 0 ≤ i ≤ n− 1, we have stay rules:
(: derived (accq,i ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(typeq E)

(transq,q′ ?s ?s
′ S)

(accq′,i ?x0 . . .?xi−1 ?s′ ?xi+1 . . .?xn−1)))

In words, we consider a configuration with an existential state as accepting if there
exists a successor configuration that is accepting.

The semantics of universal configurations is described with the following rules for
every tuple 〈q, i〉:

(: derived (accq,i ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(typeq U)

(and
(okq,i,0,0,L ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,0,1,L ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,0,0,R ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,0,1,R ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)
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(okq,i,0,0,S ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,0,1,S ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)
...

(okq,i,n−1,0,L ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,n−1,1,L ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,n−1,0,R ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,n−1,1,R ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,n−1,0,S ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(okq,i,n−1,1,S ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1))))

For each tuple 〈q, i, q′, s′〉, we have now the following set of rules:

(: derived (okq,i,q′,s′,m ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(notransq,q′ ?s s
′ m))

(: derived (okq,i,q′,s′,L ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(transq,q′ ?s s

′ L)

(accq′,i−1 ?x0 . . .?xi−1 s′ ?xi+1 . . .?xn−1)))

(: derived (okq,i,q′,s′,R ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(transq,q′ ?s s

′ R)

(accq′,i+1 ?x0 . . .?xi−1 s′ ?xi+1 . . .?xn−1)))

(: derived (okq,i,q′,s′,S ?x0 . . .?xi−1 ?s ?xi+1 . . .?xn−1)

(and
(transq,q′ ?s s

′ S)

(accq′,i ?x0 . . .?xi−1 s′ ?xi+1 . . .?xn−1)))

Now the only operator we need is the following:

(: action a
: parameters (?x0 . . .?xn−1)
: precondition

(and
(cell0 ?x0)
(cell1 ?x1)

...
(celln−1 ?xn−1)
(acc0,0 ?x0 . . .?xn−1))

: effect (g))

Let I = 〈w,M〉 be an LBATM instance of size n. Let II be the initial planning state
describing M and w using the basic predicates. It is then clear that the constructed
PDDLX instance Πn = 〈∆n, C, II , g〉 has a successful 1-step plan if and only if w
is accepted by M .
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Let us now assume that there exists a compilation scheme from PDDLX to PDDL

preserving plan size polynomially. Such a scheme could be used to derive a polyno-
mial advice for an advice-taking Turing machine in the following way. Let I be an
LBATM instance of size n, then the compilation of ∆n to a PDDL domain structure
∆′n can be used as the polynomial advice. The advice-taking Turing machines reads
the instance, loads the advice ∆′n, computes II and then decides polynomial-step
PDDL plan existence, which can be done in PSPACE because of Theorem 2. This,
however, implies, that all of EXPTIME can be decided in PSPACE/poly, which by
the results of Karp and Lipton (1982) implies that EXPTIME = PSPACE.

This result strongly suggests that compilation approaches that try to compile gen-
eral axioms away are most probably doomed to failure. Either the domain descrip-
tions or the plans will be blown up exponentially, which means that current auto-
mated planning techniques will most probably fail on such compiled instances. As
a matter of fact, our experiments described in Section 5 seem to confirm this.

Furthermore, the result also indicates that not all of the expressive power of the
axiom language is necessary in order to get such a strong result. Simple DATALOG

(without negation) suffices to achieve the result.

However, if we restrict our axiom sets to be non-recursive, stratified DATALOG¬,
things change. A set of axioms is called non-recursive if it has a stratification such
that each predicate occurs in its defining stratum only on the left-hand side of ax-
ioms. As it is well known, entailment for such kind of axiom sets is PSPACE-
complete (Dantsin et al., 2001, Theorem 5.3). Hence, the arguments in the proofs
of Theorem 1 and Theorem 3 do not work any longer. Moreover, it is also obvious
how to construct a polynomial-time compilation scheme that preserves plan length
polynomially in the size of the original plan and the domain description.

It is much less clear, however, whether a compilation scheme preserving plan size
linearly or exactly would be possible. The reason is that simply replacing derived
predicates by their definitions could result in an exponentially large formula. using
results from database theory, however, lead to the desired compilation scheme.

Theorem 4 There exists a polynomial-time compilation scheme from PDDLX to
PDDL preserving plan size exactlty, provided the axioms are in DATALOG¬ form
and non-recursive.

Proof. We can translate each derived predicate that is used in a precondition or goal
formula in polynomial time into a first-order query with only a linear increase in
size.

This follows from the statement in the proof of the complexity of evaluating rela-
tional algebra programs (Vardi, 1982, Theorem 9) that relational algebra programs
can be translated into first-order queries that are only linearly sized in the original
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program. A construction how to do that can be found in a paper by Vorobyov and
Voronkov (1997).

This construction needs equality, which we do not have. However, one can easily
introduce an extensional equality relation by extending the initial state with atoms
(EQ x y) for all constants x and y.

In other words, it is recursion that makes axioms so powerful. If we disallow recur-
sion, then axioms are simply syntactic sugar and can be compiled away.

Another variation that would be worthwhile to analyse is propositional PDDL and
PDDLX . We will not do that here, but just note that there exists an obvious compi-
lation scheme that preserves plan length polynomially. Furthermore, it seems very
unlikely that there exists a compilation scheme that preserves plan length linearly.
The reason is that evaluating propositional, stratified DATALOG¬ (even without re-
cursion) is PTIME-complete (Dantsin et al., 2001, Theorem 5.5), while evaluating
Boolean expressions is in LOGSPACE (Lynch, 1977).

4 Compilations with Exponential Results

While it is impossible to find a succinct equivalent PDDL planning instance that
guarantees short plans, it is possible to come up with a poly-size instance which
may have exponentially longer plans in the worst case. Such compilation schemes
have been described by e.g. Gazen and Knoblock (1997) and Garagnani (2000)
under severe restrictions on the use of negated derived predicates.

Specifically, the former scheme (Gazen and Knoblock, 1997) translates an axiom
(: derived (d ?~x) (f ?~x)) into an extra “axiom” operator with parameters (?~x)
having the axiom’s antecedent (f ?~x) as precondition and its consequent (d ?~x)
as effect. It also augments those of the (original) operators which affect any pred-
icate present in the axiom’s antecedent with the effect (forall ?~x (not(d ?~x)))
deleting all ground instances of the consequent. This scheme, when appropriately
generalised to a set of axioms by repeatedly examining the impact of axioms on
the set of operators until a fix point is reached — this generalisation is not dis-
cussed in (Gazen and Knoblock, 1997) — gives the possibility to the planner of
inferring positive derived literals needed in a plan. However, it does not force
the planner to establish the actual truth of any of the derived predicates. For this
reason, serious problems arise if negated derived predicates appear anywhere in
the planning task. For instance consider the PDDLX task B = {a}, D = {b},
O = {(: action op : parameters () : effect (a))}, A = {(: derived(b)(a))},
C = ∅, I = ∅, G = (and (a) (not b)). This task is not solvable because estab-
lishing a also establishes b via the axiom. Yet, the scheme yields a compiled task
solvable by the plan (op), because nothing forces the planner to execute the axiom
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action after op to derive that b actually holds. This remains true even if negation is
compiled away as per the method of Gazen and Knoblock (1997).

The latter scheme (Garagnani, 2000), is further restricted to DATALOG axioms, and
suffers from the same worst-case plan length and from the same problems in the
presence of negated derived predicates. However, whereas the Gazen Knoblock
scheme deletes at once all ground instances of a derived predicate as soon as one
ground instance of that predicate is put at risk by the performance of an action,
Garagnani’s scheme keeps track of which ground derived atoms really need to be
deleted. New predicates are introduced to record the instances of applications of the
axiom operators. The ground instances of these predicates can be used to identify
which antecedents have led to which consequences at given steps in the plan, so that
if one of these antecedents is deleted, all and only its consequences can be identified
and removed from the state. These removals are implemented as conditional effects
in the original operators.

An interesting contrasting approach is that of Davidson and Garagnani (2002).
They propose to compile DATALOG axioms solely into conditional effects of ex-
isting operators, which means that the resulting plans will have exactly the same
length. However, as is implied by Theorem 3, the domain description suffers a
super-polynomial growth. More precisely, non-recursive axioms are compiled away
using backward chaining, that is by substituting, in preconditions, their definition
for the derived predicates until none remains. Recursive axioms are compiled away
by using forward chaining to find the consequences of predicates in effect descrip-
tions and asserting these consequences as additional conditional effects.

We now specify a generally applicable compilation scheme producing poly-size in-
stances, which we will use as a baseline in our performance evaluation. In contrast
to the schemes mentioned above, it complies with the stratified semantics specified
in Section 2 while dealing with negated occurrences of derived predicates anywhere
in the planning task. Figure 3 shows the domain description that results from ap-
plying this scheme to the Blocks World domain in Figure 2, and is meant to help
the reader understand what follows.

Theorem 5 There exists a polynomial time compilation scheme f = 〈fδ, fc, fi, fg〉,
such that for every PDDLX domain description ∆ = 〈B,D, A,O〉:

• ||fc(∆)|| = 0,
• ||fi(C,∆)|| = c1 for some constant c1,
• ||fg(C,∆)|| = c2 for some constant c2,
• fδ(∆) = 〈B′, ∅, ∅, O′〉 is a PDDL domain with |B′ |≤|B| +3 |D| +2 and with
||O′|| ≤ p(||O||, ||A||) for some polynomial p.

Proof. Figure 4 shows the PDDL instances induced by f. f computes a stratification
{Ai, 1 ≤ i ≤ n} of the set of axioms A, as explained in Section 2, where in stratum
i, each axiom ai,j is of the form (: derived (di,j ?~xi,j) (fi,j ?~xi,j)) for 1 ≤ j ≤|Ai|. f

20



Fig. 3 Blocks World with Derived Predicates Compiled Away
(define (domain blocksworld-compiled)
(:requirements :strips)
(:predicates (on-table ?x) (on ?x ?y) (holding ?x) (above ?x ?y) (clear ?x) (handempty)

(fixed-0) (fixed-1) (fixed-2) (done-1) (done-2) (new))

(:action stratum-1
:precondition (and (fixed-0) (not (fixed-1)))
:effect (and (done-1)

(forall (?x)
(when (and (not (holding ?x))

(not (on-table ?x))
(not (exists (?y) (on ?x ?y))))

(and (holding ?x)
(new))))

(forall (?x ?y)
(when (and (not (above ?x ?y))

(or (on ?x ?y)
(exists (?z) (and (on ?x ?z) (above ?z ?y)))))

(and (above ?x ?y)
(new))))))

(:action fixpoint-1
:parameters ()
:precondition (done-1)
:effect (and (when (not (new)) (fixed-1))

(not (new))
(not (done-1))))

(:action axiom-2
:precondition (and (fixed-1) (not (fixed-2)))
:effect (and (done-2)

(forall (?x)
(when (and (not (clear ?x))

(not (holding ?x))
(not (exists (?y) (on ?y ?x))))

(and (clear ?x)
(new))))

(when (and (not (handempty))
(forall (?x) (not (holding ?x))))

(and (handempty)
(new)))))

(:action fixpoint-2
:parameters ()
:precondition (done-2)
:effect (and (when (not (new)) (fixed-2))

(not (new))
(not (done-2))))

(:action pickup
:parameters (?ob)
:precondition (and (fixed-2) (clear ?ob) (on-table ?ob) (handempty))
:effect (and (not (on-table ?ob))

(not (fixed-1)) (not (fixed-2))
(not (done-1)) (not (done-2))
(forall (?x) (not (holding ?x)))
(forall (?x ?y) (not (above ?x ?y)))
(forall (?x) (not (clear ?x)))
(not (handempty))))

(:action putdown
:parameters (?ob)
:precondition (and (fixed-1)(holding ?ob))
:effect (and (on-table ?ob)

(not (fixed-1)) (not (fixed-2))
(not (done-1)) (not (done-2))
(forall (?x) (not (holding ?x)))
(forall (?x ?y) (not (above ?x ?y)))
(forall (?x) (not (clear ?x)))
(not (handempty))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (fixed-2) (clear ?underob) (holding ?ob))
:effect (and (on ?ob ?underob)

(not (fixed-1)) (not (fixed-2))
(not (done-1)) (not (done-2))
(forall (?x) (not (holding ?x)))
(forall (?x ?y) (not (above ?x ?y)))
(forall (?x) (not (clear ?x)))
(not (handempty))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (fixed-2)(on ?ob ?underob) (clear ?ob) (handempty))
:effect (and (not (on ?ob ?underob))

(not (fixed-1)) (not (fixed-2))
(not (done-1)) (not (done-2))
(forall (?x) (not (holding ?x)))
(forall (?x ?y) (not (above ?x ?y)))
(forall (?x) (not (clear ?x)))
(not (handempty))))

)
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Fig. 4 PDDL instances induced by f
1. (: predicates ; all predicates in B ∪ D
2. (done1) . . . (donen)

3. (fixed0) . . . (fixedn)

4. (new))

for each i ∈ {1, . . . , n}
5. (: action stratumi
6. : parameters ()

7. : precondition (and (fixedi−1) (not (fixedi)))

8. : effect (and (donei)

9. (forall (?~xi,1)

10. (when (and (fi,1 ?~xi,1) (not (di,1 ?~xi,1)))

11. (and (di,1 ?~xi,1) (new))))

12. . . .

13. (forall (?~xi,|Ai|)

14. (when (and (fi,|Ai| ?~xi,|Ai|) (not (di,|Ai| ?~xi,|Ai|)))

15. (and (di,|Ai| ?~xi,|Ai|) (new))))))

16. (: action fixpointi
17. : parameters ()

18. : precondition (donei)

19. : effect (and (when (not(new)) (fixedi))

20. (not(new))

21. (not (donei))))

for each o ∈ O

22. (: action NAME(o)

23. : parameters PARAMETERS(o)

24. : precondition (and PRECONDITION(o) (fixedk))

25. : effect (and EFFECT(o)

26. (not (fixedm)) . . . (not (fixedn))

27. (not (donem)) . . . (not (donen))

28. (forall (?~xm,1) (not (dm,1 ?~xm,1)))

29. . . .

30. (forall (?~xn,|An|) (not (dn,|An| ?~xn,|An|)))))

Where k = max({i | some di,j occurs in PRECONDITION(o)} ∪ {0}) and
m = min({i | a predicate in some fi,j is modified in EFFECT(o)} ∪ {n+1})

31. (: init I ∪ (fixed0))

32. (: goal (and G (fixedk)))

Where k = max({i | some di,j occurs in G} ∪ {0})

encodes each stratum as an extra action stratumi (see lines 5-15 in Figure 4) which
applies all axioms ai,j at this stratum in parallel, records that this was done (donei)
and whether anything new (new) was derived in doing so. Each ai,j is encoded
as a universally quantified and conditional effect of stratumi—see lines 9-15. To
ensure that the precedence between strata is respected, stratumi is only applicable
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when the fixed point for the previous stratum has been reached (i.e. when fixedi−1)
and the fixed point for the current stratum has not (i.e. when (not (fixedi)))—
see line 7. f encodes the fixpoint computation at each stratum i using an extra
action fixpointi, which is applicable after a round of one or more applications
of stratumi (i.e., when donei is true), asserts that the fixed point has been reached
(i.e. fixedi) whenever nothing new has been derived during this last round, and
resets new and donei for the next round—see lines 16-21. Next, the precondition
and effect of each action description o ∈ O are augmented as follows (see lines
22-30). Let 0 ≤ k ≤ n be the highest stratum of any derived predicate appearing
in the precondition of o, or 0 if there is no such predicate. Before applying o, we
must make sure that the fixed point for that stratum has been computed by adding
fixedk to the precondition. Similarly, let 1 ≤ m ≤ n + 1 be the lowest stratum
such that some predicate in the antecedent of some axiom in Am is modified in the
effect of o, or n + 1 if there is none. After applying o, we may need to re-compute
the fixed points for the strata above m, that is, the effect must reset fixed, done,
and the value of all derived propositions, at strata m and above. Finally, fixed0

holds initially, and the goal requires fixedk to be true, where 0 ≤ k ≤ n is the
highest stratum of any derived predicate appearing in G or 0 if there is no such
predicate 9 —see lines 31-32.

The fact that f preserves domain description size polynomially, and the bounds
given in theorem 5, follow directly from the construction. Let ∆ = 〈B,D, A,O〉 be
a PDDLX instance. We have fi(C,∆) = (fixed0) and so ||fi(C,∆)|| is a constant.
fg(C,∆) = (fixedk) for some 0 ≤ k ≤ n and so ||fg(C,∆)|| is a constant. fδ(∆)
is the PDDL domain description 〈B′, ∅, ∅, O′〉, where B′ = B ∪ D ∪ {(fixedi) |
0 ≤ i ≤ n} ∪ {(donei) | 1 ≤ i ≤ n} ∪ {(new)} and O′ = {stratumi | 1 ≤ i ≤
n}∪{fixpointi | 1 ≤ i ≤ n}∪{o′ | o′ is the augmentation of some o ∈ O via f}.
So |B′|=|B| + |D| +2n+ 2 and since |D|≤ n, then |B′|≤|B| +3 |D| +2. Obviously,
the size of each fixpointi action description is bounded by a constant, that of each
stratumi is linear in ||Ai||, and the size of each other action description is only
augmented by a quantity linear in ||A||. Therefore, the total size of O′ is bounded
by some polynomial in ||A|| and ||O||.

It remains to demonstrate the correctness of the compilation scheme, i.e., that there
is a plan for a PDDLX instance Π iff there is a plan for the PDDL instance F (Π) de-
fined via f. The direction from right to left follows from the following observation:

(I) Let Σ be a reachable state in F (Π), such that Σ contains fixedk for
0 ≤ k ≤ n. Let S be the basic atoms in Σ (ground instances of predicates in B).
Let D be the derived atoms in Σ up to stratum k (ground instances of predicates

di,j ∈ D with 1 ≤ i ≤ k). Then D = [[A]]k(S).

9 The resulting fg does not strictly obey our simplified definition of compilation schemes,
which forbids it to look at G. The attentive reader may observe that using fixedn in place
of fixedk sets everything right, at the cost of some efficiency.
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In short, when fixedk is contained in a state in the compiled task, then the de-
rived predicates are correctly computed up to stratum k. With this, and the fixedk
conditions introduced by f as shown in Figure 4, a plan P for Π can be constructed
from a plan P ′ for F (Π) simply by skipping all stratumi and fixpointi actions in
P ′. All action preconditions in P , and the goal, will be satisfied due to the seman-
tics of the |=

A
relation. The other direction of the proof follows from this second

observation:

(II) Let Σ be a reachable state in F (Π), such that Σ contains fixedk for
0 ≤ k ≤ n. Then, for any k′, 0 ≤ k < k′ ≤ n, there is a sequence of stratumi and
fixpointi actions (k + 1 ≤ i ≤ k′) leading to a state Σ′ that contains fixedk′ .

With this, and observation (I), a plan P ′ for F (Π) can be constructed from a
plan P for Π by inserting an appropriate sequence of axiom fixpoint computations
(stratumi and fixpointi actions) in front of each action in P , and at the end of
P . One just needs to achieve, in order to satisfy an action precondition or the goal,
fixedk beforehand, where k is the highest stratum that the condition refers to.

The observations (I) and (II) follow directly from the construction of f. Observation
(I) can be seen by induction over k. For k = 0 there is nothing to show. For any
reachable state Σ′ that contains fixedk+1, there is a state Σ such that: Σ contains
fixedk; Σ contains no (ground instances of) derived predicates at stratum k+1; Σ′

is reached from Σ by applying stratumk+1 actions until a fixpoint occurs (where
the stratumk+1 actions are interleaved with fixpointk+1 actions, and, possibly,
augmented actions from O that can not affect the truth of derived predicates at
strata j ≤ k + 1). Observation (II) can be seen as follows. From a state Σ that
contains fixedk, one can get to a state Σ′ that contains fixedk+1 by: applying
the stratumk+1 action | Dk+1 | times, where Dk+1 denotes the ground instances
of derived predicates in stratum k + 1 (after that, all possible atoms at this stratum
are derived); applying fixpointk+1 (to delete new); applying stratumk+1 once (to
re-achieve donek+1); applying fixpointk+1 again (to achieve fixedk+1).

Plans P for PDDLX tasks Π and plans P ′ for compiled PDDL tasks F (Π) correspond
to each other modulo removal/insertion of stratum and fixpoint actions. The
number of such actions is worst-case exponential, i.e., there is no polynomial p
such that ||P ′|| ≤ p(||P ||, ||Π||) for all possible tasks Π and plans P . The worst-
case occurs when, initially and after each action from P , all derived predicates
need to be (re)computed and only one proposition is ever derived per application
of stratumi actions. Even if the planner is able to interleave as few fixpointi
actions as possible with the stratumi actions, this still leads to a plan of length
||P ′|| = ||P || + (||P || + 1)(

∑n
i=1(|Di | +3)) = ||P || + (||P || + 1)(3n+ |D |).

Observe that |D| is not polynomially bounded in |D| and |C| (|D| is exponential in
the arity of the derived predicates).
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5 Planning: With or Without Axioms?

The absence of a compilation scheme preserving plan size polynomially not only
indicates that axioms bring (much needed) expressive power, but it also suggests
that extending a planner to explicitly deal with axioms may lead to much better
performance than using a compilation scheme with the original version of the plan-
ner. To confirm this hypothesis, we extended the FF planner (Hoffmann and Nebel,
2001) with a straightforward implementation of axioms—we call this extension
FFX—and compared results obtained by FFX on PDDLX instances with those ob-
tained by FF+f, i.e. by FF on the PDDL instances produced via compilation with
f.

FFX transforms each axiom (: derived(d ?~x)(f ?~x)) into an operator with param-
eters (?~x), precondition (f ?~x) and effect (d ?~x), with a flag set to distinguish it
from a “normal” operator. During the relaxed planning process that FF performs to
obtain its heuristic function, the axiom actions are treated as normal actions and
can be chosen for inclusion in a relaxed plan. However, the heuristic value only
counts the number of normal actions in the relaxed plan. During the forward search
FF performs, only normal actions are considered; after each application of such an
action, the axiom actions are applied so as to obtain the successive fixed points
associated with the stratification computed by Algorithm 1.

Note that FFX differs from FF+f in the two ways regarding the special case treat-
ment of axiom actions in the heuristic function, and their special case treatment in
generating the search space. It is theoretically possible to obtain two versions of FF

that are halfway between FFX and FF+f, by dropping either of these two special case
treatments. We did not try this because the resulting planning methods do not make
much sense intuitively, due to mismatches between the search spaces and the used
heuristic functions. If one treats axiom actions in the search space like FFX does,
thereby avoiding state transitions that are only needed to take care of the values
of derived predicates, then it makes no sense to count axioms as normal actions in
the relaxed plan. The number of actions in the relaxed plan is supposed to estimate
the number of necessary state transitions (until the goal can be reached), so there
is no justification for including the axiom actions in the count. Doing so would
correspond to an unnecessary over-estimation. The other way round, say one treats
the semantics of axioms by introducing additional state transitions, as FF+f does.
Then it makes no sense to not take account of these additional transitions (axiom
actions) in the relaxed plans. This would lead to an unnecessary under-estimation.
In our experiments, we therefore focused only on FFX , in which both special case
treatments are switched on, and FF+f, in which they are both switched off.
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5.1 Blocks World

One domain we chose for our experiments is Blocks World (BW). In contrast to
most other common benchmarks, in BW there is a natural distinction between ba-
sic and derived predicates; in particular BW with 4 operators is the only common
benchmark domain we are aware of where the stratification of the axioms requires
more than one stratum. 10 We experimented with two versions of BW:

1op: The version with a single move operator. on is the only basic predicate, the
table being treated as a (special kind of) block. There is a single stratum consist-
ing of the clear and above derived predicates. Note that above is only used in
goal descriptions.

4ops: The version we used earlier as an example with the 4 operators pickup,
putdown, stack and unstack. The basic predicates are on and ontable, and
the derived ones are above and holding (stratum 1), as well as clear and
handempty (stratum 2) whose axiomatisations use the negation of holding.

For each of those versions, we considered 3 types of planning tasks:

strict: A PDDLX task is built from a given pair of BW states as follows. The first
state is taken to be the initial one, and the second is converted into an incom-
pletely specified goal description by writing “above” whereas one would nor-
mally have written “on” and omitting the mention of those blocks that would
normally have been on the table. 11

loose: A PDDLX task is built from a single BW state by taking it to be the initial
state and asking that any block which is on the table initially end up above all
those that were initially not.

one tower: This is the special case of those loose tasks for which the initial state
has only one tower. In their 1op versions, those tasks are one of the examples
considered by Davidson and Garagnani (2002).

For each combination {1op, 4ops} × {strict, loose}, we generated 30 random in-
stances of each size n (number of blocks), using the random BW states generator
provided by Slaney and Thiébaux (2001). For one tower tasks of a given size,

10 Moreover, as Hoffmann (2002) shows, BW with 4 operators is one of the more interesting
benchmark domains for heuristic planners such as FF (because relaxed-plan based heuristics
exhibit more complex behaviour in this domain than in many others such as, e.g., Logistics
or Grid).
11 Note that expressing the resulting goal using only on and ontable would be very awk-
ward. Without axioms to derive the value of “above”, one would need to distinguish all the
different cases when a block can be above another one. Without the use of quantifiers, this
requires exponential space for the exponentially many different cases. With quantifiers, the
size of the needed formula is still in the order of (number of goal “above” facts)∗ (number
of blocks in the task).
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Fig. 5 Experimental results for BW with 1 operator
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which are all identical up to a permutation of the blocks, a single instance suffices
per value of n. Figures 5 and 6 show the median run-time and median plan length
obtained by FFX and FF+f and as a function of n for each of the 6 combinations.
In all cases but 4ops strict, the median run-time of FFX shows a significant im-
provement over that of FF+f. For one tower tasks, the improvement is dramatic, as
FFX finds the optimal plans whose length is linear in n. With the strict and loose
tasks in contrast, the plans found by FFX are only an order of magnitude smaller
than those found by FF+f. Note that FF’s goal-ordering techniques were not used in
either versions of the program. Although extending these techniques to deal with
axioms is relatively straightforward, we have not invested any time yet in doing so.
Goal ordering has been shown to greatly improve the performance of FF on BW,
and due to the lack of it, FF’s behaviour in the above experiments is significantly
worse than reported in the literature (Hoffmann and Nebel, 2001).

In our BW experiments, we also considered the possibility of compiling the non-
recursive derived predicates away as suggested by Davidson and Garagnani (2002),
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Fig. 6 Experimental results for BW with 4 operators
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by simply substituting their definition for them wherever they occur until no occur-
rence remains. We did not experiment with compiling recursive derived predicates
as per their method because this requires significant implementation effort and the
authors were not able to provide us with an implementation at the time of writing
this paper. Instead, we considered two treatments of the recursive predicates: one
using axioms and running FFX and the other using compilation via f and running
the original FF. In 1op domains, the run-times obtained with the former, resp. the
latter, treatment are similar to those obtained by FFX , resp. by FF+f in Figure 5.
To be precise, the run-times for both planners are slightly larger than those in Fig-
ure 5 for 1op loose and 1 op one tower, and slightly lower for 1op strict. On the
other hand, in 4ops domains, both variants (i.e. regardless of whether the recursive
predicates were axiomatised or compiled away) were unable to cope with problems
larger than n = 4. This is due to the fact that substituting for the non-recursive
derived predicates easily results in operator descriptions with quite complex ADL

constructs. These make FF’s pre-processing infeasible, as it compiles the ADL con-
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structs away following Gazen & Knoblock [2001] (instantiating the operators, and
expanding all quantifiers in the formulae), and needs to create and simplify thou-
sands of first-order formulae even in comparatively small planning tasks. In the
1op case, preconditions are kept manageable because clear is the only derived
predicate and its definition in terms of on is relatively simple, while the 4ops case
suffices to make preconditions too challenging.

We did not experiment with the other published compilation schemes (Gazen and
Knoblock, 1997; Garagnani, 2000), as they are not applicable to the domains we
considered whose descriptions involve negated derived predicates.

5.2 Power Supply Restoration

Another domain we ran experiments on is the challenging Power Supply Restora-
tion (PSR) benchmark (Thiébaux and Cordier, 2001), which is derived from a real-
world problem in the area of power distribution. This problem deals with recon-
figuring a faulty power distribution system to resupply customers affected by the
faults. A power distribution system is viewed as a network of electric lines con-
nected by switches and fed via a number of power sources. When a power source
feeds a faulty line, the circuit-breaker fitted to this source opens to protect the rest
of the network from overloads. This leaves all the lines fed by the source with-
out power. The problem consists in planning a sequence of switching operations
(opening or closing switches and circuit-breakers) bringing the network into a con-
figuration where non-faulty lines are resupplied. The domain description requires a
number of complex, recursive, derived predicates to axiomatise the power flow, see
e.g. (Bonet and Thiébaux, 2003). We considered the version of the benchmark fea-
tured in the 4th International Planning Competition, IPC-4, in which the locations
of the faults and the current network configuration are completely known, and the
goal is to resupply a given set of lines. That version of the problem is somewhat
easier to solve than the version used in the experiments reported in Thiébaux et al.
(2003), in which the planner must additionally infer which lines are resuppliable
using extra derived predicates.

We used John Slaney’s RANDOMNET program 12 to generate, for each number n =
1 to 18 sources, 30 random networks with with 30% faulty lines and a maximum of
3 switches initially fed by each given source. We also considered the networks of
increasing difficulty described in (Bertoli et al., 2002; Bonet and Thiébaux, 2003):
basic, small-rural, simple, random, simplified-rural, and rural. The upper part
of Figure 7 compares the median run times and plan length for FFX and FF+f as
a function of n on the random instances, while the lower part reports run times
and plan length on the known instances. Again the improvement in performance
resulting from handling axioms explicitly is undeniable. In contrast to BW, the plan

12 http://rsise.anu.edu.au/˜jks/software/randomnet.tar.gz
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Fig. 7 Experimental results for PSR
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known instances

instance run-time (sec) plan length

network feeders lines faults FFX FF+f FFX FF+f

basic 2 5 1 0.02 0.08 5 36

small-rural 3 7 2 0.06 0.41 6 44

simple 3 7 2 0.07 0.53 7 50

random 3 9 3 0.20 1.65 7 61

simplified-rural 7 11 2 0.68 7.81 6 44

rural 7 26 2 9.67 469.11 6 76

length in PSR increases only slowly with n: with our parameters for the random
instances generation, it is around 5-10 actions for PDDLX instances, and around
30-60 for the compiled instances (the known instances exhibit similar figures). Yet
this makes all the difference between what is solvable in reasonable time and what
is not.

As was said earlier, PSR was also used as a benchmark in the IPC-4. The domain
versions and instance generation used were the same as we use here, i.e., IPC-4 fea-
tured the version with derived predicates and the version where they are compiled
away using f. Similarly to what we observed above for FFX and FF+f, the compet-
ing systems showed clearly better behaviour in the domain version using explicit
axioms, than the domain version where the axioms were compiled away via f. Sev-
eral planners were able to solve the entire suite of scaling instances using explicit
axioms. For just one of these planners, the designers chose to also run the planner
on the compiled instances, with the result that only some of the smallest instances
could be solved. The only other planner that was run on the compiled instances
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could solve instances up to about half of the largest size. 13

Another interesting lesson we learnt when trying to design a STRIPS version of PSR

for the competition is that compiling both derived predicates and ADL constructs
away is impractical. All of the 20 or so combinations of compilation schemes we
tried either led to domain descriptions of unmanageable size which could not rea-
sonably be stored on disk, or to plans of unmanageable length which no existing
domain-independent planner could generate. The problem is that compiling derived
predicates away generates complex conditional effects for which there is no com-
pilation scheme preserving plan length linearly Nebel (2000). Compilations into
“simple-ADL”, i.e., STRIPS + conditional effects (used by Fahiem Bacchus in IPC-
2), on the other hand, turned out to be feasible.

5.3 Promela

The last domain we experimented with is Stefan Edelkamp’s PROMELA domain
Edelkamp (2003). PROMELA, which is the input language of the model checker
SPIN Holzmann (1997), is designed to ease the specification of asynchronous com-
munication protocols which SPIN checks for errors. Given a suitable PDDL descrip-
tion of PROMELA and the automatic translation of a PROMELA description into a
planning task, the planner must generate an error trail similar to the counter exam-
ple SPIN would return in case of error.

The domain versions we considered are the IPC-4 domain featuring (non-recursive)
derived predicates and no fluents, and its compilation via f. We experimented with
the two types of PROMELA planning tasks used in the competition: dining philoso-
phers protocol tasks, and optical telegraph protocol tasks. The instances used were
the same as in the competition: for each number n of processes, we solved the (sin-
gle) corresponding competition instance and recorded the time and plan length for
FF and FFX .

The results are shown in Figure 8. They illustrate the best case for the compilation
scheme, namely a small linear increase in plan length – recall that none of the de-
rived predicates in PROMELA are recursive. The run-time figures show that, here,
even this best case materialises into an important increase in run-time. In the IPC-
4, derived predicates were not compiled away using f. Instead, changes to derived
predicates were incorporated manually and quite cleverly into the effects of nor-
mal actions, similarly as we normally do with clear, holding and handempty in
blocks world. Yet, the competing planners still showed much better performance
with the derived predicates version. In philosophers, several planners were able to

13 The competing teams were allowed to choose which domain versions they wanted to run
their planner on. So the lack of participation in the compiled suite strongly indicates that
nobody was able to obtain good results there.

31



Fig. 8 Experimental results for PROMELA
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solve the entire example suite of that domain version, whereas in the version with
compiled derived predicates the best planner (one of the planners that solved the
entire suite with explicit axioms) only scaled up to middle-sized instances. In tele-
graph the observations aren’t that easy to interpret, but still the only planner that
could solve a large fraction of the example instances competed in the suite with
explicit axioms.

Although the domains in our experiments/in the IPC-4 were by no means chosen to
show off the worst-case for our compilation scheme, they nevertheless illustrate its
drawbacks. The difference of performance we observe for FF is due to the facts that
compilation increases the branching factor, increases the plan length, and degrades
the informativity of the heuristic function.

6 Conclusion

As reflected by recent endeavours in the international planning competitions, there
is a growing (and, in our opinion, desirable) trend towards more realistic planning
languages and benchmark domains. In that context, it is crucial to determine which
additional language features are particularly relevant. The main contribution of this
paper is to give theoretical and empirical evidence of the fact that axioms are im-
portant, from both an expressivity and efficiency perspective. In addition, we have
provided a clear formal semantics for PDDL axioms, identified a general and easily
testable criterion for axiom sets to have an unambiguous meaning, and given a com-
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pilation scheme which is more generally applicable than those previously published
(and also more effective in conjunction with forward heuristic search planners like
FF).

Axioms have long been an integral part of action formalisms in the field of reason-
ing about action and change where, much beyond the inference of derived predi-
cates considered here, they form the basis for elegant solutions to the frame and
ramification problems, see e.g. (McCain and Turner, 1995). It is our hope that the
adoption of PDDL axioms will eventually encourage the planning community to
make greater use of these formalisms.
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