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Abstract

We introduce a state space search method that identifies dead-
end states, analyzes the reasons for failure, and learns to avoid
similar mistakes in the future. Our work is placed in classical
planning. The key technique are critical-path heuristics hC ,
relative to a set C of conjunctions. These recognize a dead-
end state s, returning hC(s) = ∞, if s has no solution even
when allowing to break up conjunctive subgoals into the ele-
ments ofC. Our key idea is to learnC during search. Starting
from a simple initial C, we augment search to identify unrec-
ognized dead-ends s, where hC(s) <∞. We design methods
analyzing the situation at such s, adding new conjunctions
into C to obtain hC(s) = ∞, thus learning to recognize s
as well as similar dead-ends search may encounter in the fu-
ture. We furthermore learn clauses φ where s′ 6|= φ implies
hC(s′) = ∞, to avoid the prohibitive overhead of comput-
ing hC on every search state. Arranging these techniques in
a depth-first search, we obtain an algorithm approaching the
elegance of clause learning in SAT, learning to refute search
subtrees. Our experiments show that this can be quite power-
ful. On problems where dead-ends abound, the learning reli-
ably reduces the search space by several orders of magnitude.

Introduction
The ability to analyze conflicts, and to learn clauses that
avoid similar mistakes in the future, is a key ingredient
to the success of SAT solvers (e. g. (Marques-Silva and
Sakallah 1999; Moskewicz et al. 2001; Eén and Sörensson
2003)). To date, there has been no comparable framework
for state space search. Part of the reason of course is that
conflicts, quintessential in constraint reasoning, play a much
less prevalent role in transition systems. Nevertheless, defin-
ing a “conflict” to be a dead-end state – a state not part of any
solution – conflicts are ubiquitous in many applications. For
example, bad decisions often lead to dead-ends in oversub-
scription planning (e. g. (Smith 2004; Gerevini et al. 2009;
Domshlak and Mirkis 2015)), in planning with limited re-
sources (e. g. (Haslum and Geffner 2001; Nakhost, Hoff-
mann, and Müller 2012; Coles et al. 2013)), and in single-
agent puzzles like Sokoban (e. g. (Junghanns and Schaeffer
1998)) or Solitaire card games (e. g. (Bjarnason, Tadepalli,
and Fern 2007)). In explicit-state model checking of safety
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properties (e. g. (Behrmann et al. 2002; Holzmann 2004;
Edelkamp, Lluch-Lafuente, and Leue 2004)), a dead-end is
any state from which the error property cannot be reached.

We introduce a state space search method that, at a high
level, shares many features with clause learning in SAT. Our
work is placed in classical planning, but in principle the ap-
proach applies to reachability checking in other transition
system models as well. It requires a state-variable based rep-
resentation, with transition rule models suitable for critical-
path heuristics. We briefly discuss this at the end of the pa-
per. The paper is aimed at being accessible to researchers not
only from planning, but also from related areas.

A dead-end in planning is a state from which the goal
cannot be reached. Dead-end detection has been given
some attention in probabilistic and non-deterministic plan-
ning (Kolobov, Mausam, and Weld 2012; Muise, McIlraith,
and Beck 2012), where computationally expensive methods
(e. g. using classical planning as a sub-procedure) may pay
off. But very little has been done about dead-end detection in
classical planning. Heuristic functions have been intensely
investigated, and most of them have the ability to recognize
dead-end states s, returning heuristic value h(s) =∞ if s is
unsolvable even in the relaxation underlying h. But this has
been treated as a by-product of estimating goal distance.

Recent work (Bäckström, Jonsson, and Ståhlberg 2013;
Hoffmann, Kissmann, and Torralba 2014) has started to
break with this tradition, introducing the concept of un-
solvability heuristics, dedicated to dead-end detection. An
unsolvability heuristic returns either ∞ (“dead-end”) or 0
(“don’t know”), and serves as an efficiently testable suf-
ficient criterion for unsolvability. Concrete unsolvability
heuristics have been designed based on state-space abstrac-
tions, specifically projections (pattern databases (Edelkamp
2001)) and merge-and-shrink abstractions (Helmert et al.
2014). The empirical results are impressive, especially for
merge-and-shrink which convincingly beats state-of-the-
art BDD-based planning techniques (Torralba and Alcázar
2013) on a suite of unsolvable benchmark tasks. Yet, com-
paring these techniques to conflict detection methods in
other areas, they are quite limited in that they are completely
disconnected from the actual search, establishing the un-
solvability heuristics once and for all in a pre-process. Can
we instead refine the unsolvability heuristic during search,
learning from the dead-ends encountered?



Recent research on classical planning heuristics has laid
the basis for answering this question in the affirmative,
through critical-path heuristics hC relative to a setC of con-
junctions that can be chosen freely.

Critical-path heuristics lower-bound goal distance
through the relaxing assumption that, to achieve a conjunc-
tive subgoal G, it suffices to achieve the most costly atomic
conjunction contained in G. In the original critical-path
heuristics hm (Haslum and Geffner 2000), the atomic
conjunctions are all conjunctions of size ≤ m, where m is
a parameter. As part of recent works (Haslum 2009; 2012;
Keyder, Hoffmann, and Haslum 2014), this was extended
to arbitrary sets C of atomic conjunctions. Following
Hoffmann and Fickert (2015), we denote the generalized
heuristic with hC . A well-known and simple result is that,
for sufficiently large m, hm delivers perfect goal distance
estimates (simply set m to the number of state variables).
As a corollary, for appropriately chosen C, hC recognizes
all dead-ends. Our idea thus is to refine C during search,
based on the dead-ends encountered.

We start with a simple initialization of C, to the set of
singleton conjunctions. During search, components Ŝ of un-
recognized dead-ends, where hC(s) < ∞ for all s ∈ Ŝ, are
identified (become known) when all their descendants have
been explored. We show how to refine hC on such compo-
nents Ŝ, adding new conjunctions into C in a manner guar-
anteeing that, after the refinement, hC(s) =∞ for all s ∈ Ŝ.
The refined hC has the power to generalize to other dead-
ends search may encounter in the future, i. e., refining hC on
Ŝ may lead to recognizing also other dead-end states s′ 6∈ Ŝ.
In our experiments, this happens at massive scale.1

It is known that computing critical-path heuristics over
large sets C is (polynomial-time yet) computationally ex-
pensive. Recomputing hC on all search states often results
in prohibitive runtime overhead. We tackle this with a form
of clause learning inspired by Kolobov et al.’s (2012) Sixth-
Sense. For a dead-end state s on which hC was just refined,
we learn a minimal clause φ by starting with the disjunction
of facts p false in s, and iteratively removing p while pre-
serving hC(s) =∞. When testing whether a new state s′ is
a dead-end, we first evaluate the clauses φ, and invoke the
computation of hC(s′) only in case s′ satisfies all φ.

Arranging these techniques in a depth-first search, we ob-
tain an algorithm approaching the elegance of clause learn-
ing in SAT: When a subtree is fully explored, the hC-
refinement and clause learning (1) learns to refute that sub-
tree, (2) enables backjumping to the shallowest non-refuted
ancestor, and (3) generalizes to other similar search branches
in the future. Our experiments show that this can be quite
powerful. On planning with limited resources, relative to the
same search but without learning, our technique reliably re-
duces the search space by several orders of magnitude.

Some proofs are moved out of the main text. They are
available in an appendix.

1Note that this ability to generalize is a major difference to well-
explored methods refining a value function based on Bellman value
updates during search (e. g. (Korf 1990; Reinefeld and Marsland
1994; Barto, Bradtke, and Singh 1995; Bonet and Geffner 2006)).

Background
We use the STRIPS framework for classical planning, where
state variables (facts) are Boolean, and action precondi-
tions/effects are conjunctions of literals (only positive ones,
for preconditions). We formulate this in the common fact-
set based fashion. A planning task Π = 〈F ,A, I,G〉 con-
sists of a set of facts F , a set of actions A, an initial state
I ⊆ F , and a goal G ⊆ F . Each a ∈ A has a precondi-
tion pre(a) ⊆ F , an add list add(a) ⊆ F , and a delete
list del(a) ⊆ F . (Action costs are irrelevant to dead-end
detection, so we assume unit costs throughout.)

In action preconditions and the goal, the fact set is inter-
preted as a conjunction; we will use the same convention for
the conjunctions in the set C, i. e., the c ∈ C are fact sets
c ⊆ F . The add and delete lists are just instructions which
facts to make true respectively false. A state s, in particular
the initial state I , is a set of facts, namely those true in s (the
other facts are assumed to be false). This leads to the follow-
ing definition of the state space of a task Π = 〈F ,A, I,G〉,
as a transition system ΘΠ = 〈S, T , I,SG〉. S is the set of
states, i. e., S = 2F . The transitions T ⊆ S × A × S
are the triples (s, a, s[[a]]) where a is applicable to s, i. e.,
pre(a) ⊆ s, and s[[a]] := (s \ del(a)) ∪ add(a). I is the
task’s initial state, SG ⊆ S is the set of goal states, i. e.
those s ∈ S where G ⊆ s. A plan for state s is a transition
path from s to some t ∈ SG ; a plan for Π is a plan for I. A
dead-end is a state for which no plan exists.

Viewing ΘΠ as a directed graph over states, given a subset
S ′ ⊆ S of states, by ΘΠ|S′ we denote the subgraph induced
by S ′. If there is a path in ΘΠ|S′ from s to t, then we say
that t is reachable from s in ΘΠ|S′ .

A heuristic is a function h : S → N+
0 ∪ {∞}. Following

Hoffmann et al. (2014), we define an unsolvability heuris-
tic, also dead-end detector, as a function u : S 7→ {0,∞}.
The interpretation of u(s) = ∞ will be “dead-end”, that of
u(s) = 0 will be “don’t know”. We require that u(s) = ∞
only if s really is a dead-end: States flagged as dead-ends
will be pruned by the search, so the dead-end detector must
be sound (no false positives). The dead-end detector may,
on the other hand, return u(s) = 0 even though s is ac-
tually a dead-end (false negatives possible). This is neces-
sarily so: obtaining a perfect dead-end detector (one that
returns u(s) = ∞ if and only if s is a dead-end) incurs
solving the input planning task in the first place. Our cen-
tral idea in this work is to refine an (initially simple) dead-
end detector during search, in a manner recognizing more
dead-ends. Namely, we say that a dead-end s is recognized
if u(s) =∞, and that s is unrecognized otherwise.

The family of critical-path heuristics, which underly
Graphplan (Blum and Furst 1997) and were formally in-
troduced by Haslum and Geffner (2000), estimate goal dis-
tance through the relaxation assuming that, from any goal
set of facts (interpreted as a fact conjunction that needs to
be achieved), it suffices to achieve the most costly subgoal
(sub-conjunction): intuitively, the most costly atomic sub-
goal, left intact by the underlying relaxation. The family is
parameterized by the set of atomic subgoals considered. The
traditional formulation uses all subgoals of size at most m,



where m ∈ N is the parameter and the heuristic function
is denoted hm. As recently pointed out by Hoffmann and
Fickert (2015) though, there is no need to restrict the atomic
subgoals in this manner. One can use an arbitrary set C of
fact conjunctions as the atomic subgoals.

Formally, for a fact set G and action a, define the regres-
sion ofG over a asR(g, a) := (G\add(a))∪pre(a) in case
that add(a)∩G 6= ∅ and del(a)∩G = ∅; otherwise, the re-
gression is undefined and we write R(G, a) = ⊥. By A[G]
we denote the set of actions where R(G, a) 6= ⊥. Let C be
any set of conjunctions. The generalized critical-path heuris-
tic hC(s) is defined through hC(s) := hC(s,G) where

hC(s,G) =

{0 G ⊆ s
1 + mina∈A[G] h

C(s,R(G, a))G ∈ C
maxG′⊆G,G′∈C h

C(s,G′) else
(1)

Note here that we overload hC to denote both, a function
of state s in which case the estimated distance from s to
the global goal G is returned, and a function of state s and
subgoal G in which case the estimated distance from s to G
is returned. We will use this notation convention throughout.

Intuitively, Equation 1 says that, if a subgoal G is already
true then its estimated cost is 0 (top case); if a subgoal is
atomic then we we need to support it with the best possible
action, whose cost is computed recursively (middle case); if
a subgoal is not atomic then we estimate its cost through that
of the most costly atomic subgoal (bottom case). It is easy
to see that hC generalizes hm, as the special case where C
consists of all conjunctions of size ≤ m.

As we are interested only in dead-end detection, not
goal distance estimation, we will consider not hC but the
critical-path unsolvability heuristic, denoted uC , defined
by uC(s) := ∞ if hC(s) = ∞, and uC(s) := 0 otherwise.
Note that uC(s) =∞ occurs (only) due to empty minimiza-
tion in the middle case of Equation 1, i. e., if every possibil-
ity to achieve the global goal G incurs at least one atomic
subgoal not supported by any action.

Similarly as for hm, uC can be computed (solving Equa-
tion 1) in time polynomial in |C| and the size of Π. It is
known that, in practice, hm is reasonably fast to compute
for m = 1, consumes substantial runtime for m = 2, and is
mostly infeasible for m = 3. The behavior is similar when
using arbitrary conjunction sets C, in the sense that large C
causes similar issues as hm for m > 1. As hinted, we will
use a clause-learning technique to alleviate this.

For appropriately chosen m, hm returns the exact goal
distance, and therefore, for appropriately chosen C, hC rec-
ognizes all dead-ends. But how to choose C? This ques-
tion has been previously addressed only in the context of
partial delete-relaxation heuristics (Haslum 2012; Keyder,
Hoffmann, and Haslum 2014; Hoffmann and Fickert 2015),
which are basically built on top of hC . All known methods
learn C prior to search, by iteratively refining a relaxed plan
for the initial state. Once this refinement process stops, the
same set C is then used throughout the search. This makes
sense for goal distance estimation, as modifying C during
search would yield a highly volatile, potentially detrimental,
heuristic. When using C for dead-end detection, this diffi-
culty disappears. Consequently, we learn C based on infor-
mation that becomes available during search.

An Illustrative Example
We give an example walkthrough to illustrate the over-
all search process, and how the learning (1) refutes com-
pleted parts of the search, (2) leads to backjumping, and
(3) generalizes to other similar search branches. This
can be shown in a simple transportation task with fuel
consumption. Consider Figure 1 (left). The planning task
Π = 〈F ,A, I,G〉 has facts tA, tB, tC encoding the
truck position, f0, f1, f2 encoding the remaining fuel, and
p1A, p1B, p1C, p1t, p2A, p2B, p2C, p2t encoding the posi-
tions of the two packages. There are actions to drive from
X to Y , given remaining fuel Z, consuming 1 fuel unit;
to load package X at Y ; and to unload package X at Y .
These actions have the obvious preconditions and add/delete
lists, e. g., drive(A,B, 2) has precondition {tA, f2}, add
list {tB, f1} and delete list {tA, f2}. The initial state is
I = {tA, f2, p1B, p2C}. The goal is G = {p1C, p2B}.

The task is unsolvable because we do not have sufficient
fuel. To determine this result, a standard state space search
needs to explore all action sequences containing at most two
drive actions. In particular, the search needs to explore two
very similar main branches, driving first to B vs. driving
first to C. Using our methods, the learning on one of these
branches immediately excludes the other branch.

Say we run a depth-first search. Our setC of conjunctions
is initialized to the singletons C = {{p} | p ∈ F}. Given
this, uC(s) = ∞ iff h1(s) = ∞. As regression over single-
ton subgoals ignores the delete lists, this is equivalent to the
goal being (delete-)relaxed-reachable. Simplifying a bit, the
reader may think of this as “ignoring fuel consumption” in
what follows. From I, the goal is relaxed-reachable, and we
get uC(I) = 0. So I is not detected to be a dead-end, and we
expand it, generating s1 (drive to B) and s2 (drive to C) in
Figure 1 (right). From these states, too, the goal is relaxed-
reachable so uC(s1) = uC(s2) = 0. Say we expand s2 next,
generating s3 (load p1) and s4 (drive back to A). We get
uC(s3) = 0 similarly as before. But we have uC(s4) = ∞
because, in s4, there is no fuel left so the goal has now be-
come relaxed-unreachable (in fact, s4 is trivial to recognize
as a dead-end because it has no applicable actions). Search
proceeds by expanding s3, generating a transition back to s1

(unload p1), and generating s5 (drive back to A). Like s4,
s5 is recognized to be a dead-end, uC(s5) = ∞. Thus the
descendants of s3 have been fully explored, and s3 now be-
comes a known, yet unrecognized, dead-end. In other words:
search has encountered a conflict.

We call the learning process on s3, the aim being to ana-
lyze the conflict at s3, and refine C in a manner recognizing
s3. This process, as we will show later on when explaining
the technical details, ends up selecting the single conjunc-
tion c = {tA, f1}. We set C := C ∪ {c}, thus refining our
dead-end detector uC . This yields uC(s3) =∞: On the one
hand, c is required to achieve the goal (regressing from the
goal fact p1C yields the subgoal tC, regressing from which
yields the subgoal c). On the other hand, uC(s3, c) = ∞,
i. e., c is detected by uC to be unreachable from s3, because
regressing from c yields the subgoal f2. (When using sin-
gleton conjunctions only, this is overlooked because each
element of c, i. e. tA respectively f1 on its own, is reachable



A
B

C
{tA,f2,p1B,p2C}

I 0

{tB,f1,p1B,p2C}
s1 0 ∞

{tC,f1,p1B,p2C}
s2 0 ∞

{tB,f1,p1t,p2C}
s3 0 ∞

{tA,f0,p1B,p2C}
s4 ∞

{tA,f0,p1t,p2C}
s5 ∞

Figure 1: Our illustrative example (left) and the search space using our methods (right).

from s3.) In other words, adding c to C lets uC recognize
that a single fuel unit is not enough to solve s3. For the same
reasons, uC(s1) = ∞, so that, as advertized, uC now (1)
refutes the search space below s3. Observe that this will also
(2) cause the search to backjump across s1 to I.2

We next call the clause learning on s3. This is optional in
theory, as the clauses we learn are weaker dead-end detectors
than uC . They are much more efficiently testable though,
and are crucial in practice. The clause learning process min-
imizes “the commitments made by the conflict state”. For
s3, this detects that the position of p2 is irrelevant to the un-
solvability of s3, that having 0 fuel does not help, and that it
does not help if p1 is anywhere other than C. We thus learn
the clause φ = tA ∨ tC ∨ f2 ∨ p1C, which any non-dead-
end state must satisfy. Observe that s1 6|= φ, so we can now
recognize s1 as a dead-end without having to invoke uC(s1).

The only open state left is s2. Yet, re-evaluating uC on s2,
we find that, now, uC(s2) = ∞. This is due to very simi-
lar reasoning as on s3. The new conjunction c = {tA, f1}
is required to achieve the goal (regressing, now, from the
other goal fact p2B), yet is unreachable from s2 because
it requires the subgoal f2. In other words, (3) the knowl-
edge learned on the previous branch, in the form of the
reasoning encapsulated by the extended conjunctions set
C = {{p} | p ∈ F}∪{c}, generalizes to the present branch.
(Note that s2 |= φ, so here dead-end detection using the
clauses is strictly weaker than uC .)

With s2 pruned, there are no more open nodes, and un-
solvability is proved without ever exploring the option to
drive to C first. We could at this point continue, running the
learning process on the now known-yet-unrecognized dead-
end I: if we keep running our search on an unsolvable task,
then uC eventually learns to refute the initial state itself.

We now explain these algorithms in detail. We cover the
identification of conflicts during search, conflict analysis &
refinement for uC , and clause learning, in this order.

Identifying Conflicts
Our method applies to search algorithms using open &
closed lists (A∗, greedy best-first search, . . . ). Depth-first
search, which we use in practice, is a special case with par-
ticular properties, discussed at the end of this section.

2This would happen here anyway as s1 has no open children,
which furthermore was necessary to identify the conflict at s3. For
an example with non-trivial backjumping, say we have packages
p1, . . . , pn all initially at B and with goal C, and one can unload a
package only at its goal location. Then our method expands a single
sequence of loading actions below s1, learns the same conjunction
c (as well as a clause of the form tA∨ tC ∨ f2∨ piC, see next) at
the bottom, and backjumps all the way to I. Similar situations can
be constructed for non-symmetric packages.

Consider the top half of Algorithm 1, a generic forward
search using dead-end pruning at node generation time. We
assume here some unsolvability heuristic u that can be re-
fined on dead-ends. The question we tackle is, how to iden-
tify the conflicts in the first place? In a complete manner,
guaranteeing to identify all known dead ends, i. e., all states
the search has already proved to be dead-ends?

A simple attempt towards answering these questions is,
“if all successors of s are already known to be dead-ends,
then s is known to be a dead-end as well”. This would lead to
a simple bottom-up dead-end labeling approach. However,
this is incomplete, due to cycles: if states s1 and s2 are dead-
ends but have outgoing transitions to each other, then neither
of the two will ever be labeled. Our labeling method thus
involves a complete lookahead to currently reached states.

Let us spell this out in detail. First, when is a dead-end
“known” to the search? By definition, state s is a dead-end
iff no state t reachable from s is a goal state. Intuitively,
the search “knows” this is so, i. e. the search has proved this
already, iff all these states t have already been explored. We
thus define “known” dead-ends as follows:
Definition 1. Let Open and Closed be the open and closed
lists at some point during the execution of Algorithm 1.
Let s ∈ Closed be a closed state, and let R[s] := {t |
t reachable from s in ΘΠ|Open∪Closed}. We say that s is a
known dead-end ifR[s] ⊆ Closed .

We apply this definition to closed states only because, if s
itself is still open, then trivially its descendants have not yet
been explored andR[s] 6⊆ Closed .

It is easy to see that the concept of “known dead-end”
does capture exactly our intentions:
Proposition 1. Let s be a known dead-end during the exe-
cution of Algorithm 1. Then s is a dead-end.
Proof. Assume to the contrary that s = s0 → s1 · · · →
sn ∈ SG is a plan for s. Let i be the smallest index so
that si 6∈ Closed . Algorithm 1 stops upon expanding a goal
state, sn 6∈ Closed , so such i exists. Because s0 ∈ Closed ,
i > 0. But then, si−1 has been expanded; and as si is not a
dead-end state, u(si) 6=∞; so si necessarily is contained in
Open . Therefore,R[s] 6⊆ Closed in contradiction.

Vice versa, if R[s] 6⊆ Closed , then some descendants of
s have not yet been explored, so the search does not know
whether or not s is a dead-end.

So how to identify the known dead-ends during search?
One could simply re-evaluate Definition 1 on every closed
state after every state expansion. As one would expect, this
can be done much more effectively. Consider the bottom part
of Algorithm 1, i. e., the CheckAndLearn(s) procedure.

We maintain state labels (Boolean flags) indicating the
known dead ends. At first, no state is labeled. In the top-level
invocation of CheckAndLearn(s), s cannot yet be labeled,



Algorithm 1: Generic forward search algorithm with
dead-end identification and learning.

Procedure ForwardSearch(Π)
Open := {I}, Closed := ∅;
while Open 6= ∅ do

select s ∈ Open;
if G ⊆ s then

return path from I to s;

Closed := Closed ∪ {s};
for all a ∈ A applicable to s do

s′ := s[[a]];
if s′ ∈ Closed then

continue;

if u(s′) =∞ then
continue;

Open := Open ∪ {s′};
CheckAndLearn(s);

return unsolvable;

Procedure CheckAndLearn(s)
/* loop detection */

if s is labeled as dead end then
return;

R[s] := {t | t reachable from s in ΘΠ|Open∪Closed};
ifR[s] ⊆ Closed then

label s;
/* refinement (conflict analysis) */

refine u s.t. u(t) =∞ for every t ∈ R[s];
/* backward propagation */

for every parent t of s do
CheckAndLearn(t);

as s was just expanded and only closed states are labeled.
The label check at the start of CheckAndLearn(s) is needed
only for loop detection in recursive invocations cf. below.

The definition of, and check on, R[s] correspond to Def-
inition 1. For t ∈ R[s], as t is reachable from s we have
R[t] ⊆ R[s] and thus R[t] ⊆ Closed . If the latter was true
already prior to expansion of s, then t is already labeled, else
t is now a new known dead-end (and will be labeled in the
recursion, see below). Some t may be recognized already,
u(t) =∞. If that is so for all t ∈ R[s], then there is nothing
to do and the refinement step is skipped. The refinement is
applied to known, yet unrecognized, dead-ends.

The recursion, backward propagation on the parents of s,
is needed to identify all dead-ends known at this time. Ob-
serve here that the ancestors of s are exactly those states
t whose reachability information may have changed when
expanding s.3 As s was open beforehand, any ancestor t is
not yet labeled: it had the open descendant s until just now.
A change to t’s label may be required only if s was newly
labeled. Hence the recursive calls are only needed for such
s, and |Closed | is an obvious upper bound on the number of

3Note the special case of ancestors t contained in R[s]. These
are exactly those t ∈ R[s] whereR[t] 6⊆ Closed before expanding
s, but R[t] ⊆ Closed afterwards. Such t will be labeled in the
recursion. We cannot label them immediately (along with s itself)
as some other ancestor of s may be connected to s only via such t.

recursive invocations, even if the state space contains cycles.
In short, we label known dead-end states bottom-up along

forward search transition paths, applying a full lookahead on
the current search space in each. This is sound and complete
relative to the dead-end information available during search:
Theorem 1. At the start of the while loop Algorithm 1, the
labeled states are exactly the known dead-ends.
Proof (sketch). Soundness, i. e., t labeled ⇒ t is a known
dead-end, holds because R[t] ⊆ R[s] ⊆ Closed at the
time of labeling. Completeness, i. e., t is a known dead-
end⇒ t labeled, holds because the recursive invocations of
CheckAndLearn(t) will reach all relevant states.

Reconsider Figure 1 (right). After expansion of s3, the
call to CheckAndLearn(s3) constructs R[s3] = {s3, s1},
and finds that R[s3] ⊆ Closed . Thus s3 is labeled, and u is
refined to recognize s3 and s1. Backward propagation then
calls CheckAndLearn(s1), the parent of s3. As we have the
special case of an ancestor t ∈ R[s], all states in R[s1] are
already recognized so the refinement step is skipped. The re-
cursive calls on the parents of s1, CheckAndLearn(s3) and
CheckAndLearn(I), find that s3 is already labeled, respec-
tively thatR[I] 6⊆ Closed , so the procedure terminates here.

Note in this example that, even though we run a depth-
first search (DFS), we require the open and closed lists. Oth-
erwise, we couldn’t prove s3 to be a dead-end: s3 has a tran-
sition to its parent s1, so it may have a solution via s1. Ex-
cluding that possibility requires the open and closed lists,
keeping track of the search space as a whole.4 Therefore,
the “depth-first” search herein uses Algorithm 1, ordering
the open list by decreasing distance from the initial state.

The key advantage of DFS in our setting is that, through
fully exploring the search space below a state, it quickly
identifies dead-ends. Experimenting with other search algo-
rithms, in many cases few dead-ends became known during
search, so not enough information was learned.

DFS is particularly elegant on acyclic state spaces, where
matters become easier and more similar to backtracking in
constraint-solving problems like SAT (whose search spaces
are acyclic by definition). Acyclic state spaces naturally oc-
cur, e. g., if every action consumes some budget or resource.
In DFS on an acyclic state space, state s becomes a known
dead-end exactly the moment its subtree has been com-
pleted, i. e., when we backtrack out of s. Thus, instead of the
complex CheckAndLearn procedure required in the general
case, we can simply refine u on s at this point. In particular,
we don’t need a closed list, and can use a classical DFS.

With respect to the use of a closed list for duplicate prun-
ing, observe that, as u learns to refute R[s] – in the DFS
acyclic case, exactly the subtree below s – u subsumes the
duplicate pruning afforded by a closed list. It will, typically,
surpass this pruning by far due to generalization. We thus
get duplicate pruning “for free” in the DFS acyclic case, and
in the general case we can remove R[s] from the closed list
without losing duplicate-pruning power.

4It may be worth considering functions u disallowing a state to
be solved via its parent, thus detecting dead-ends not at a global
level but at the scope of a state’s position in the search. It remains
a research question how such u can actually be obtained.



Conflict Analysis & Refinement for uC

We now tackle the refinement step in Algorithm 1, for the
dead-end detector u = uC . Given R[s] where all t ∈ R[s]
are dead-ends, how to refine uC to recognize all t ∈ R[s]?
The answer is rather technical, and the reader not interested
in details may skip forward to the next section.

Naturally, the refinement will add a set X of conjunctions
into C. A suitable refinement is always possible, i. e., there
existsX s.t. uC∪X(s) =∞ for all t ∈ R[s]. But how to find
such X? Our key to answering this question are the spe-
cific circumstances guaranteed by the CheckAndLearn(s)
procedure, namely what we will refer to as the recognized
neighbors property: (*) For every transition t → t′ where
t ∈ R[s], either t′ ∈ R[s] or uC(t′) = ∞. This is because
R[s] contains only closed states, so it contains all states t
reachable from s except for those where uC(t) = ∞. For
illustration, consider Figure 1: R[s3] = {s3, s1}, and (*) is
satisfied because the neighbor states s5 and s4 are already
recognized by uC (using the singleton conjunctions only).

Let Ŝ be any set of dead-ends with the recognized neigh-
bors property, i. e., for every transition s → t where s ∈ Ŝ,
either (a) t ∈ Ŝ or (b) uC(t) = ∞. We denote the set of
states t with (b), the neighbors, by T̂ (e. g. T̂ = {s4, s5} for
Ŝ = R[s3]). Similarly as in Equation 1, we use uC(s,G) to
denote the uC value of subgoal fact set G. We use h∗(s,G)
to denote the exact cost of achieving G from s.

Our refinement method assumes as input the uC informa-
tion for t ∈ T̂ , i. e., the values uC(t, c) for all t ∈ T̂ and
c ∈ C. We compute this at the start of the refinement pro-
cedure.5 Thanks to this information, in contrast to known
C-refinement methods like Haslum’s (2012), we do not re-
quire any intermediate recomputation of uC during the re-
finement. Instead, our method (Algorithm 2) uses the uC in-
formation for t ∈ T̂ to directly pick suitable conjunctions x
for the desired set X . The method is based on the following
characterizing condition for uC dead-end recognition:
Lemma 1. Let s be a state and letG ⊆ F . Then uC(s,G) =
∞ iff there exists c ∈ C such that:

(i) c ⊆ G and c 6⊆ s; and
(ii) for every a ∈ A[c], uC(s,R(c, a)) =∞.

Proof. ⇒: By definition of uC there must be a conjunction
c ∈ C so that c ⊆ G and uC(s, c) =∞. This in turn implies
that c 6⊆ s, and that uC(s,R(c, a)) =∞ for every a ∈ A[c].
⇐: As c ⊆ G, uC(s,G) ≥ uC(s, c). As c 6⊆ s,

uC(s, c) = mina∈A[G] u
C(s,R(G, a)). For every a ∈

A[G], uC(s,R(c, a)) =∞, so uC(s, c) =∞.

Given this, to obtain uC∪X(s) = uC∪X(s,G) = ∞ for
s ∈ Ŝ, we can pick some conjunction c ⊆ G but c 6⊆ s
(Lemma 1 (i)), and, recursively, pick an unreachable con-
junction c′ ⊆ R(c, a) for each supporting action a ∈ A[c]
(Lemma 1 (ii)). For that to be possible, of course, c must ac-
tually be unreachable, i. e., it must hold that h∗(s, c) = ∞.

5One could cache this information during search, but that turns
out to be detrimental. Intuitively, as new conjunctions are contin-
ually added to C, the cached uC information is “outdated”. Using
up-to-date C yields more effective learning.

Algorithm 2: Refining C for Ŝ with recognized neigh-
bors T̂ . C and X are global variables.

Procedure Refine(G)
x := ExtractX(G);
X := X ∪ {x};
for a ∈ A[x] where ex. s ∈ Ŝ s.t. uC(s,R(x, a)) = 0 do

if there is no x′ ∈ X s.t. x′ ⊆ R(x, a) then
Refine(R(x, a));

Procedure ExtractX(G)
x := ∅;
/* Lemma 2 (ii) */

for every t ∈ T̂ do
select c0 ∈ C s.t. c0 ⊆ G and uC(t, c0) =∞;
x := x ∪ c0;

/* Lemma 2 (i) */

for every s ∈ Ŝ do
if x ⊆ s then

select p ∈ G \ s; x := x ∪ {p};

return x;

But this is PSPACE-complete to decide. As we already
know that the states s ∈ Ŝ are dead-ends, for (i) we can
in principle use c := G, and for (ii) we can in principle use
c′ := R(c, a). But this trivial solution would effectively con-
struct a full regression search tree from G, selecting conjunc-
tions corresponding to the regressed states. We instead need
to find small subgoals that are already unreachable. This is
where the recognized neighbors property helps us.

Consider Algorithm 2. The top-level call of Refine is on
G := G, with the global variable X initialized to ∅. The pro-
cedure mirrors the structure of Lemma 1, selecting first an
unreachable conjunction x for the top-level goal, then doing
the same recursively for the regressed subgoals. The invari-
ant required for this to work is that G is Ŝ-unsolvable, i. e.,
h∗(s,G) = ∞ for all s ∈ Ŝ. This is true at the top level
where G = G, and is satisfied provided that the same in-
variant holds for the ExtractX procedure, i. e., if G is Ŝ-
unsolvable then so is the sub-conjunction x ⊆ G returned.
ExtractX(G) first loops over all neighbor states t, and

selects c0 ∈ C justifying that uC(t, G) = ∞. Observe that
such c0 always exists: For the top-level goal G = G, we
know by construction that uC(t, G) = ∞, so by the def-
inition of uC there exists c0 ⊆ G with uC(t, c0) = ∞.
For later invocations of ExtractX(G), we have that G =
R(x, a), where x was constructed by a previous invocation
of ExtractX(G). By that construction, there exists c′0 ∈ C
such that x ⊇ c′0 and uC(t, c′0) = ∞. Thus uC(t, x) = ∞,
so uC(t, G) = uC(t, R(x, a)) = ∞ and we can pick
c0 ⊆ R(x, a) = G with uC(t, c0) =∞ as desired.

The ExtractX(G) procedure accumulates the c0, across
the neighbor states t, into x. If the resulting x is not con-
tained in any s ∈ Ŝ then we are done, otherwise for each
affected s we add a fact p ∈ G \ s into x. Such p must exist
because G is Ŝ-unsolvable by the invariant. That invariant is
preserved, i. e., x itself is, again, Ŝ-unsolvable:



Lemma 2. Let Ŝ and T̂ be as above, and let x ⊆ F . If
(i) for every s ∈ Ŝ, x 6⊆ s; and

(ii) for every t ∈ T̂ , there exists c ∈ C such that c ⊆ x and
uC(t, c) =∞;

then h∗(s, x) =∞ for every s ∈ Ŝ.
Proof. Assume for contradiction that there is a state s ∈ Ŝ
where h∗(s, x) < ∞. Then there exists a transition path
s = s0 → s1 · · · → sn from s to some state sn with
x ⊆ sn. Let i be the largest index such that si ∈ Ŝ. Such
i exists because s0 = s ∈ Ŝ, and i < n because otherwise
we get a contradiction to (i). But then, si+1 6∈ Ŝ, and thus
si+1 ∈ T̂ by definition. By (ii), there exists c ⊆ x such
that uC(si+1, c) = ∞. This implies that h∗(si+1, c) = ∞,
which implies that h∗(si+1, x) =∞. The latter is in contra-
diction to the selection of the path. The claim follows.

Theorem 2. Algorithm 2 is correct:
(i) The execution is well defined, i. e., it is always possible

to extract a conflict x as specified.
(ii) The algorithm terminates.

(iii) Upon termination, uC∪X(s) =∞ for every s ∈ Ŝ.
Proof (sketch). (i) holds with Lemma 2 and the arguments
sketched above. (ii) holds as every iteration adds a new con-
junction x 6∈ X and the number of possible conjunctions is
finite. (iii) follows from construction and Lemma 1.

In practice, to keep x small, we use simple greedy strate-
gies in ExtractX, trying to select c0 and p shared by many t
and s. Upon termination of Refine(G), we set C := C∪X .

Consider again Figure 1, and the refinement process on
Ŝ = R[s3] = {s3, s1}, with neighbor states T̂ = {s4, s5}.
We initialize X = ∅ and call Refine({p1C, p2B}). Calling
ExtractX({p1C, p2B}), c0 = {p1C} is suitable for each
of s4 and s5, and is not contained in s3 nor s1, so we may
return x = {p1C}. Back in Refine({p1C, p2B}), we see
that x may be achieved by unloading at C, and we need
to tackle the regressed subgoal through the recursive call
Refine({tC, p1t}). ExtractX here returns x = {tC}, and
to exclude the drive from A to C we get the recursive call
Refine({tA, f1}). In ExtractX now, the only choice of c0
for each of s4 and s5 is {f1}. As f1 is contained in each
of s3 and s4, we need to also add the other part of G into
x, ending up with x = G = {tA, f1}: exactly the one con-
junction needed to render uC∪X(s3) = uC∪X(s1) = ∞,
as earlier explained. Indeed, the refinement process stops
here, because the actions achieving x, drive to A from B or
C, both incur the regressed subgoal f2, for which we have
uC(s3, {f2}) = uC(s1, {f2}) =∞.

It is instructive to consider the special case where Ŝ has no
neighbors at all, i. e., T̂ = ∅ and all transitions on Ŝ remain
inside Ŝ. Then ExtractX(G) simply collects p ∈ G \ s
for each s. This is sound only because Ŝ has no neighbors;
it would not be sound otherwise. Imagine, e. g., Ŝ = {s}
where s = {p}, the goal is G = {p, q}, and the only action
adds q but deletes p. Then G is not reachable from s, but
x = {q} is reachable from s, violating our invariant. This is
not a counter-example to Lemma 2 because, in this situation,

s has the neighbor t = {q}; as hC(t,G) = ∞ must hold,
either c = {p} or c = {p, q} must be contained in C, so
we would collect x = {p, q} not x = {q}. Intuitively, given
Ŝ without neighbors, it suffices to collect p ∈ G \ s into x
because necessarily such x cannot be reached within Ŝ, and
Ŝ contains everything that can be reached.

Clause Learning
Our clause learning method is based on a simple form of
“state minimization”, inspired by Kolobov et al.’s (2012)
work on SixthSense. Say we just evaluated uC on s and
found that uC(s) = ∞. Denote by φ :=

∨
p∈F\s p the dis-

junction of facts false in s. Then φ is a valid clause: for
any state t, if t 6|= φ then uC(t) = ∞. Per se, this clause
is useless, as all states but s itself satisfy φ. This changes
when minimizing φ, testing whether individual facts p can
be removed. For such a test, we set s′ := s ∪ {p} and check
whether uC(s′) = ∞ (this is done incrementally, starting
from the computation of uC(s)). If yes, p can be removed.
Greedily iterating such removals, we obtain a minimal valid
clause. (Intuitively, a minimal reason for the conflict in s.)

As pointed out, the clauses do not have the same pruning
power as uC . Yet they have a dramatic runtime advantage,
which is key to applying learning and pruning liberally. We
always evaluate the clauses prior to evaluating uC . We learn
a new clause every time uC is evaluated and returns∞. We
re-evaluate the states in R[s] during CheckAndLearn(s),
closing those where uC = ∞ (dead-ends not recognized
when first generated, but recognized now). Observe that,
given this, the call of CheckAndLearn(s) directly forces a
jump back to the shallowest non-pruned ancestor of s. Fur-
thermore, while uC refutesR[s] after learning and thus sub-
sumes closed-list duplicate pruning for R[s], this property
is mute in practice as computing uC is way more time-
consuming than duplicate checking. That is not so for the
clauses, which also subsume duplicate pruning forR[s].

Experiments
Our implementation is in FD (Helmert 2006). For uC , fol-
lowing Hoffmann and Fickert (2015), we use counters over
pairs (c, a) where c ∈ C, a ∈ A[c], and R(c, a) does not
contain a fact mutex. As suitable for cylic problems, we use
DFS based on Algorithm 1. We break ties (i. e. order chil-
dren in the DFS) using hFF (Hoffmann and Nebel 2001)),
which helps a bit mainly on solvable instances.

We always start with C = C1 := {{p} | p ∈ F}, where
uC emulates the standard h1 heuristic. As learning too many
conjunctions may slow down the search, we experiment with
an input parameter α, stopping the learning when the num-
ber of counters reaches α times the number of counters for
C1. This loosely follows a similar limit by Keyder et al.
(2014). We experimented with α ∈ {1, 16, 32, 64, 128,∞}.
Our main interest will be the comparison α =∞, unlimited
learning, vs. α = 1, the same search without learning. For
α = 1, uC emulates h1 throughout (which actually is redun-
dant given hFF, but that does not affect our results here).

We focus on resource-constrained planning, where dead-
ends abound as the goal must be achieved subject to a limited



NoMystery (30 base instances) Rovers (30 base instances) TPP (5 base instances)
FD-hFF DFS-CL FD-hFF DFS-CL FD-hFF DFS-CL

M&S M&S NM M&S M&S NM M&S M&S NM
W Blind FD-hFF OA NM α1 α∞ α32 α128 Blind FD-hFF OA NM α1 α∞ α32 α128 Blind FD-hFF OA NM α1 α∞ α32 α128
0.5 19 25 30 30 25 30 30 30 2 5 30 29 5 30 29 30 4 4 5 5 5 5 5 5
0.6 10 16 30 30 16 30 30 30 1 2 29 25 2 30 28 30 1 1 5 5 2 4 5 4
0.7 0 11 30 29 11 29 29 28 0 0 29 23 0 30 24 29 0 0 5 3 0 3 5 3
0.8 0 0 30 26 0 24 26 25 0 0 24 21 0 24 22 25 0 0 1 1 0 0 1 0
0.9 0 0 29 24 0 16 24 20 0 0 16 13 0 22 17 21 0 0 0 0 0 0 0 0
1.0 0 6 26 20 0 12 20 15 0 1 10 6 0 21 12 21 0 1 0 2 0 0 0 0
1.1 0 10 24 21 0 11 19 17 0 0 5 3 0 13 6 14 0 3 0 4 0 2 2 2
1.2 0 16 19 22 0 13 16 18 0 1 3 1 1 14 5 14 0 3 0 3 3 3 3 3
1.3 0 20 18 24 0 8 13 15 0 2 1 2 1 12 5 11 0 4 0 4 3 3 3 3
1.4 0 25 15 27 0 11 11 12 0 2 0 3 3 12 6 10 0 4 0 4 4 5 5 5∑
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Figure 2: Empirical results. Left: Coverage. Best per-domain results highlighted in boldface. DFS-CL is our approach, α =∞
with unlimited learning, α = 1 without learning. Other abbreviations see text. For each domain, there are 30 or 5 base instances
as specified (union of Nakhost et al.’s “small” and “large” test suites, for NoMystery and Rovers). For each base instance and
value of W , the resource budget is set according to W . Right: Search space size for DFS-CL with learning (α = ∞, y-axis)
vs. without learning (α = 1, x-axis). “+” (red) NoMystery, “×” (blue) Rovers, “?” (orange) TPP, “∞”: out of time or memory.

resource budget. We use the benchmarks by Nakhost et al.
(2012), which are especially suited as they are controlled:
the minimum required budget bmin is known, and the actual
budget is set toW ∗bmin. The parameterW allows to control
the frequency of dead-ends, and, therewith, empirical hard-
ness. Values of W close to 1.0 are notoriously difficult. In
difference to Nakhost et al., like Hoffmann et al. (2014) we
also consider values W < 1 where the tasks are unsolvable.

We use a cluster of Intel E5-2660 machines running at
2.20 GHz, with runtime (memory) limits of 30 minutes (4
GB). As a standard satisficing planner, we run FD’s greedy
best-first dual-queue search with hFF and preferred opera-
tors, denoted “FD-hFF”. We compare to blind breadth-first
search, “Blind”, as a simple canonical method for prov-
ing unsolvability. We compare to Hoffmann et al.’s (2014)
two most competitive configurations of merge-and-shrink
(M&S) unsolvability heuristics, “Own+A” and “N100K
M100K”, denoted here “OA” respectively “NM” for brevity.
These represent the state of the art for proving unsolvabil-
ity in planning, in that, on Hoffmann et al.’s benchmark
suite, they dominate and outperform all other approaches,
including state-of-the-art BDD-based planners (Torralba and
Alcázar 2013). We run them as dead-end detectors in FD-
hFF to obtain variants competitive also for satisficing plan-
ning.

We finally experiment with variants using both M&S and
uC for dead-end detection. The two techniques are orthog-
onal, except that the recognized neighbors property requires
the neighbors to be recognized by uC . If dead-ends are also
pruned by some other technique, our refinement method can-
not analyze the conflict. We hence switch M&S pruning on
only once the α limit has stopped the uC refinements. We
use only NM, as OA M&S guarantees to recognize all dead-
ends and a combination with learning would be void.

Figure 2 (left) gives coverage data. Compared to the state
of the art, our approach (“DFS-CL”) easily outperforms the
standard planner FD-hFF. It is vastly superior in Rovers,
and generally for budgets close to, or below, the minimum
needed. The stronger planners using FD-hFF with M&S
dead-end detection (not run in any prior work) are better
than DFS-CL in NoMystery, worse in Rovers, and about on
par in TPP. The combination with M&S (shown for α = 32
and α = 128, which yield best coverage here) typically per-

forms as well as the corresponding base configurations, and
sometimes outperforms both. We consider these to be very
reasonable results for a completely new technique.

The really exciting news, however, comes not from com-
paring our approach to unrelated algorithms, but from com-
paring α = ∞ vs. α = 1. The former outperforms the
latter dramatically. Observe that the only reason for this is
generalization, i. e., refinements of uC on R[s] leading to
pruning on states outside R[s]. Without generalization, the
search spaces for α = ∞ and α = 1 would be identical
(including tie breaking). But that is far from being so. Gen-
eralization occurs at massive scale. It lifts a hopeless planner
(DFS with h1 dead-end detection) to a planner competitive
with the state of the art in resource-constrained planning.
Figure 2 (right) compares the search space sizes directly. On
instances solved by both, the reduction factor min/geometric
mean/maximum is: NoMystery 7.5/412.0/18117.9; Rovers
58.9/681.3/70401.5; TPP 1/34.4/1584.3. The only cases
with no reduction are 6 TPP instances with W ≥ 1.2.

We also experimented with the remainder of Hoffmann
et al.’s (2014) unsolvable benchmarks (Bottleneck, Mystery,
UnsPegsol, and UnsTiles), and the IPC benchmarks Airport,
Freecell, Mprime, and Mystery. In Mystery, performance is
similar to the above. Elsewhere, often the search space is
reduced substantially but this is outweighed by the runtime
overhead. Interestingly, the DFS search itself sometimes has
a strong advantage relative to FD-hFF, with reductions up to
3 (2) orders of magnitude in Airport (Freecell).

Conclusion
Our work pioneers dead-end learning in state-space search
classical planning. Assembling pieces from prior work on
critical-path heuristics and nogood-learning, and contribut-
ing methods for refining the dead-end detection during
search, we obtain a form of state space search that ap-
proaches the elegance of clause learning in SAT. This opens
a range of interesting research questions.

Can the role of clause learning, as opposed to uC refine-
ment, become more prominent? Can we learn easily testable
criteria that, in conjunction, are sufficient and necessary for
uC =∞, thus matching the pruning power of uC itself? Can
such criteria form building blocks for later learning steps,
like the clauses in SAT, which as of now happens only for



the growing set C in uC? Can we learn to refute solutions
via a parent and thus allow to use classical DFS in general?

An exciting possibility is the use of C as an unsolvabil-
ity certificate, a concept much sought after in state space
search. The certificate is efficiently verifiable because, given
C, uC(I) = ∞ can be asserted in polynomial time. The
certificate is as large as the state space at worst, and will
typically be exponentially smaller. From a state space with
h1 = ∞ at the leaves, our refinement step exactly as stated
here extracts the certificate. From a state space pruned using
other methods, different refinement methods are needed.

Last not least, we believe the approach has great poten-
tial for game-playing and model checking problems where
detecting dead-ends is crucial. This works “out of the box”
modulo the applicability of Equation 1, i. e., the definition of
critical-path heuristics. As is, this requires conjunctive sub-
goaling behavior. But more general logics (e. g. minimiza-
tion to handle disjunctions) should be manageable.
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Proofs
Theorem 1. At the start of the while loop Algorithm 1, the
labeled states are exactly the known dead-ends.

Proof. Soundness, i. e., t labeled =⇒ t is a known dead-
end, follows immediately from construction because at the
moment a state t is labeled we have R[t] ⊆ Closed , and
once that condition is true obviously it remains true for the
remainder of the search.

Completeness, i. e., t is a known dead-end =⇒ t labeled,
can be proved by induction on the number of expansions.
Assume that the claim holds before a state s is expanded; we
need to show that, for any states t that were not known dead-
ends before but are known dead-ends now, t will be labeled.
Call such t new-label states. Clearly, any new-label state
must be an ancestor of s. Therefore, a new-label state can
exist only if, after the expansion, R[s] ⊆ Closed : else, an
open state is reachable from s, and transitively is reachable
from all ancestors of s. In the case where R[s] ⊆ Closed , s
is labeled and so is every new-label state parent t of s, due
to the recursive invocation on t. It remains to show that each
new-label state t will indeed be reached, and thus labeled,
during the reverse traversal of the search space induced by
the recursive invocations of CheckAndLearn. This is a di-
rect consequence of the following two observations: (1) each
ancestor t of s has not been labeled dead end so far, and
(2) for each new-label state t, the search space contains a
path of new-label states t = t0, t1, . . . , tn = s. The first
observation follows immediately from the algorithm: since
t is an ancestor of s, t must have been expanded at some
point (which means that t could not have been labeled dead
end before its expansion), and t could not have been labeled
dead end during any previous call to CheckAndLearn be-
cause at least one open state was reachable from t during
any such call. The second observation follows immediately
from R[t] ⊆ Closed : (as above) t is an ancestor of s, i. e.,
the search space contains a path t = t0, t1, . . . , tn = s, and
due to the transitivity of reachability, for every 1 ≤ i < n,
R[ti] ⊆ Closed . Obviously, for every 1 ≤ i ≤ n, s is also
reachable from ti, meaning that ti must be a new-label state,
too. Since CheckAndLearn will traverse at least one such
path from t to s in reverse order, t will indeed be labeled
eventually.

Theorem 2. Algorithm 2 is correct:
(i) The execution is well defined, i. e., it is always possible

to extract a conflict x as specified.
(ii) The algorithm terminates.

(iii) Upon termination, uC∪X(s) =∞ for every s ∈ Ŝ.
Proof. (i) follows by induction on the recursion depth. For
the induction beginning, note that the selection of x ⊆ G =
G in ExtractX is well-defined because of the recognized
neighbors property (*), and because Ŝ does not contain a
goal state. For the induction step, assume for contradiction
that ExtractX fails to select a conjunction x ⊆ G that satis-
fies the condition of Lemma 2, where G = R(x′, a) is given
as input, i. e., x′ is chosen as in Lemma 2, and a is an ac-
tion from A[x′]. In other words, (i) there is a state s ∈ Ŝ

with G ⊆ s, or (ii) there is a state t ∈ T̂ so that for all
conjunctions c0 ∈ C with c0 ⊆ G, uC(t, c0) < ∞. It can-
not be (i) because otherwise, it follows from a ∈ A[x′] and
R(x′, a) = G ⊆ s that s[[a]] is defined and x′ ⊆ s[[a]],



i. e., h∗(s, x′) < ∞. This is a contradiction to the selection
of x′. For (ii), let c′0 ∈ C, c′0 ⊆ x′ be some conjunction
with uC(t, c′0) = ∞. Such a conjunction must exist due to
the selection of x′. Since uC(t, c′0) =∞, it directly follows
that c′0 6⊆ R(x′, a). However, c′0 ⊆ x′, so c′0 ⊆ add(a), and
thus a ∈ A[c′0]. Now plugging in the definition of uC , we
get from uC(t, R(x′, a)) <∞ and R(c′0, a) ⊆ R(x′, a) that
uC(t, R(c′0, a)) < ∞. In other words: uC(t, c′0) < ∞. This
is clearly a contradiction to the selection of c′0. We conclude
that there must be a conjunction x ⊆ G that satisfies the
conditions of Lemma 2.

For (ii) note that in every single recursion, a new conjunc-
tion x is added to X . This is true because before going into
recursion on some R(x, a), we make sure that there does
not exist x′ ∈ X so that x′ ⊆ R(x, a). Thus, regardless of
the selection of the conflict x′ ⊆ R(x, a) in the correspond-
ing call to ExtractX(R(x, a)), x′ cannot be contained in
X . After selecting the conflict x′, it is added to X . So X is
extended by a new conflict in each recursion. But since the
overall number of conjunctions is bounded, it immediately
follows that the number of recursions is bounded.

To show (iii), we make use of the observation uC(s,G) =
∞ iff hC(s,G) = ∞ for any set of facts G ⊆ F . Let
s ∈ Ŝ be arbitrary, and let x ∈ X be a conjunction with
minimal hC∪X -value, i. e., let x ∈ X be so that for all
x′ ∈ X: hC∪X(s, x) ≤ hC∪X(s, x′). Assume for contradic-
tion that hC∪X(s, x) <∞. Due to the construction of X , it
must be x 6⊆ s, meaning that there must be an action a ∈
A[x] with hC∪X(s,R(x, a)) < hC∪X(s, x) (definition of
hC∪X ). However, the refinement algorithm ensures that X
contains a conjunction x′ ⊆ R(x, a): in the call to Refine
where x is added to X , the algorithm makes sure that for
each action a ∈ A[x], either there is already a conjunction
x′ ∈ X so that x′ ⊆ R(x, a), or it calls Refine(R(x, a))
which in turn adds a conjunction x′ ⊆ R(x, a) to X . But
this is a contradiction to the hC∪X minimality assumption:
as there is a conjunction x′ ∈ X with x′ ⊆ R(x, a), it
is hC∪X(s, x′) ≤ hC∪X(s,R(x, a)) < hC∪X(s, x). This
shows that hC∪X(s, x) =∞ for every x ∈ X , and for every
state s ∈ Ŝ, and thus uC(s) =∞ for every s ∈ Ŝ.


