
Towards Clause-Learning State Space Search: Learning
to Recognize Dead-Ends (Extended Abstract)

Marcel Steinmetz and Jörg Hoffmann

Saarland University,
Saarbrücken, Germany

{steinmetz,hoffmann}@cs.uni-saarland.de

1 Clause-Learning State Space Search

The ability to learn from conflicts is a key algorithm ingredient in constraint satisfac-
tion (e. g. [6, 24, 20, 22, 8, 2]). For state space search, like goal reachability in classical
planning which we consider here, progress in this direction has been elusive, and almost
entirely limited to length-bounded reachability, where reachability testing reduces to a
constraint satisfaction problem, yet requires iterating over different length bounds un-
til some termination criterion applies [5, 19, 16, 28]. But do we actually need a length
bound to be able to do conflict analysis and nogood learning in state space search?

Arguably, the canonical form of a “conflict” in state space search is a dead-end state,
from which no solution (of any length) exists. Such conflicts are not as ubiquitous as in
constraint satisfaction (including length-bounded reachability), yet they do occur, e. g.,
in oversubscription planning [26], in planning with limited resources [11], in single-
agent puzzles [15, 4], and in explicit-state model checking of safety properties [7] where
a dead-end is any state from which the error property cannot be reached.

We introduce a method that learns sound and generalizable knowledge from dead-
end states during state space search classical planning. To our knowledge, this is the first
of its kind. Prodigy [21] comes closest with its learning of sound action-pruning rules in
backward search. Inspired by Prodigy, Bhatnagar and Mostow [3] considered forward-
search conflict-based learning, yet their techniques are not sound (do not guarantee
that pruned states actually are dead-ends). Kolobov et al’s SixthSense technique [17]
is sound, yet is placed in probabilistic planning and incorporates classical planning
as a sub-procedure. Value function refinement using Bellman updates [18, 25, 1] will
eventually learn that a state is a dead-end, yet does not generalize that knowledge.

The key to our technique are critical-path heuristics hC [10, 9], relative to a setC of
atomic conjunctions. These heuristics incorporate an approximation allowing to break
up conjunctive subgoals into the elements of C. We don’t give a full definition here, but
the central equation should be suitable to get an idea:

hC(s,G) =

0 G ⊆ s
1 + mina∈A[G] h

C(s,Regress(G, a))G ∈ C
maxG′⊆G,G′∈C h

C(s,G′) else
(1)

This equation is easiest understood as a recursive estimation of goal distance. The bot-
tom case in the equation splits up the current subgoal G into its atomic subgoals. The



2 Marcel Steinmetz and Jörg Hoffmann

middle case in the equation minimizes over all actions the subgoal can be regressed
through. The top case terminates the recursion on subgoals that are true in our state s.
The overall distance estimate is obtained through a top-level call (not shown here) on s
and the global planning goal specified in the input planning task.

Critical-path heuristics were originally designed for admissible goal distance es-
timation. Here we are interested only in their ability to recognize dead-end states s,
returning hC(s) = ∞. This happens if every recursion path in the equation eventually
hits an unsupported subgoal. Intuitively, hC(s) = ∞ if s has no solution even when
allowing to break up conjunctive subgoals into atomic conjunctions.

It is easy to see that, for sufficiently large C, all dead-ends will be recognized (just
letC be the set of all conjunctions). But how to find a small yet informative setC useful
for search? Our key idea is to learn C during search, through conflict analysis.

We start from the simple set C that contains only the singleton conjunctions. We
augment forward state space search to identify unrecognized dead-ends s, where hC(s) <
∞ yet search has already explored all descendants of s and thus proved s to be a dead
end. We design hC-refinement methods analyzing the situation at such s, adding new
conjunctions into C to obtain hC(s) =∞, thus learning to recognize s as well as simi-
lar dead-ends search may encounter in the future. The refinement step is the most tech-
nical part of our work, and we refer to our AAAI’16 paper [27] for details. In a nutshell,
the technique assumes as input a component of states s, where all direct successors t of
any state s are already pruned (recognized to be dead-ends) by hC . It then tackles open
hC-paths on the states s, canceling each such path by combining conjunctions cancel-
ing corresponding paths on states t. Suitable combined conjunctions necessarily exist,
so that the method is constructive, guaranteeing to find the desired new conjunctions to
learn, without having to do any search or exploration.

We furthermore learn clauses φ, in a manner inspired by, and similar to, a nogood
certification technique in SixthSense: we minimize the commitments made in a dead-
end state s while still preserving that hC(s) =∞. The clauses are sound in that s′ 6|= φ
implies hC(s′) = ∞, i. e., we learn sufficient conditions for hC dead-end detection.
While these sufficient conditions constitute a weaker pruning method than hC itself,
they are much faster to evaluate. Doing so prior to computing hC strongly reduces the
runtime overhead, which can otherwise be prohibitive.

Arranging these techniques in a depth-first search, we obtain an algorithm approach-
ing the elegance of clause learning in SAT: When a subtree is fully explored, the hC-
refinement and clause learning (1) learns to refute that subtree, (2) enables backjump-
ing to the shallowest non-refuted ancestor, and (3) generalizes to other similar search
branches in the future. Our experiments show that this can be quite powerful. On prob-
lems where dead-ends abound, relative to the same search but without learning, our
technique often reduces the search space by several orders of magnitude.

2 Empirical Results

Our implementation is in FD [12]. Our current experiments focus on resource-constrained
planning, where the goal must be achieved subject to a fixed resource budget. We use
the benchmarks by Nakhost et al. [23], which are controlled in that the minimum re-



Towards Clause-Learning State Space Search 3

NoMystery (30 base instances) Rovers (30 base instances) TPP (5 base instances)
FD-hFF DFS-CL FD-hFF DFS-CL FD-hFF DFS-CL

M&S M&S M&S
W Blind FD-hFF OA NM W/O L W/ L Blind FD-hFF OA NM W/O L W/ L Blind FD-hFF OA NM W/O L W/ L
0.5 19 25 30 30 25 30 2 5 30 29 5 30 4 4 5 5 5 5
0.6 10 16 30 30 16 30 1 2 29 25 2 30 1 1 5 5 2 4
0.7 0 11 30 29 11 29 0 0 29 23 0 30 0 0 5 3 0 3
0.8 0 0 30 26 0 24 0 0 24 21 0 24 0 0 1 1 0 0
0.9 0 0 29 24 0 16 0 0 16 13 0 22 0 0 0 0 0 0
1.0 0 6 26 20 0 12 0 1 10 6 0 21 0 1 0 2 0 0
1.1 0 10 24 21 0 11 0 0 5 3 6 14 0 3 0 4 0 2
1.2 0 16 19 22 0 13 0 1 3 1 1 14 0 3 0 3 3 3
1.3 0 20 18 24 0 8 0 2 1 2 1 12 0 4 0 4 3 3
1.4 0 25 15 27 0 11 0 2 0 3 3 12 0 4 0 4 4 5∑

29 129 251 253 52 184 3 13 147 126 12 208 5 20 16 31 17 25

Fig. 1. Coverage results. Best per-domain results highlighted in boldface. DFS-CL is our ap-
proach, “W/O L” without learning, “W/ L” with learning. Other abbreviations see text. For each
base instance and value of W , the resource budget is set according to W .

quired budget bmin is known, and the actual budget is set toW ∗bmin. The parameterW
allows to control the frequency of dead-ends; values of W close to 1.0 are notoriously
difficult. In difference to Nakhost et al., we also consider valuesW < 1 where the tasks
are unsolvable.1

We use a cluster of Intel E5-2660 machines running at 2.20 GHz, with runtime
(memory) limits of 30 minutes (4 GB). Our technique runs a forward depth-first search;
in selecting the next children node to expand, it prefers children with smaller hFF [14]
value. We compare to blind search, and to FD’s greedy best-first dual-queue search with
hFF and preferred operators (denoted “FD-hFF”), as baselines. We compare to Hoffmann
et al.’s [13] two most competitive configurations of merge-and-shrink (M&S) heuristics
for proving unsolvability (denoted here “OA” and “NM”). We run the latter as dead-end
detectors in FD-hFF to obtain variants competitive also for satisficing planning.

Figure 1 gives coverage data. Our approach easily outperforms the standard planner
FD-hFF. It is vastly superior in Rovers, and generally for budgets close to, or below, the
minimum needed. The stronger planners using FD-hFF with M&S dead-end detection
are better than DFS-CL in NoMystery, worse in Rovers, and about on par in TPP.

For the exciting news, consider the comparison between with vs. without learning.
The former outperforms the latter dramatically. The only reason for this is general-
ization, i. e., refinements of hC on states s leading to pruning on states other than s.
Without generalization, the search spaces would be identical, including tie breaking. So
generalization occurs at massive scale. It lifts a hopeless planner (DFS with singleton-
conjunction, aka h1, dead-end detection) to a planner competitive with the state of the
art in resource-constrained planning.

Figure 2 compares the search space sizes directly. On instances solved by both, the
reduction factor min/geometric mean/maximum is: NoMystery 7.5 / 412.0 / 18117.9;
Rovers 58.9 / 681.3 / 70401.5; TPP 1 / 34.4 / 1584.3.

1 Not all actions consume resources, so that the fixed budget does not per se entail an upper
bound on plan length. The more important role of the fixed budget for our technique, to our
current understanding, is that search paths will tend to be short, i. e., a depth-first forward
search will quickly run into dead-ends from which we are then able to learn.



4 Marcel Steinmetz and Jörg Hoffmann

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

Fig. 2. Search space size for DFS-CL with learning (y-axis) vs. without learning (x-axis). “+”
(red) NoMystery, “×” (blue) Rovers, “?” (orange) TPP, “∞”: out of time or memory.

3 Conclusion

Our work pioneers conflict-directed learning, of sound generalizable knowledge, from
dead-end states in forward state-space search. This is made possible by the progress
in modern classical-planning heuristic functions, specifically hC , and our key technical
contribution in that context is a method for refining hC’s dead-end detection capabilities
during search. The resulting technique is, in our humble opinion, quite elegant, and
suggests that the learning from “true” conflicts in state space search, not necessitating a
solution length bound, is worth the community’s attention.

Beauty contests aside, from a pragmatical point of view the technique certainly
does, as it stands, not deliver an empirical breakthrough. It vastly improves over us-
ing the same technique without learning, and it appears to have strengths in (certain)
resource-constrained situations. As ours is merely a first foray into this kind of tech-
nique, and lots more remains to be explored – combinations with alternate search tech-
niques, refinement of different dead-end detection machineries, reasoning over knowl-
edge learned from different sources, etc. – we expect this to be the beginning of the
story, not its end.

One thing we would particularly like to see is the export of this (kind of) tech-
nique, from classical planning where it is presently placed, to game-playing and model
checking. For hC refinement, this works “out of the box” modulo the applicability of
Equation 1, i. e., the definition of critical-path heuristics. As is, this requires conjunctive
subgoaling behavior. But more general logics (e. g. minimization to handle disjunctions)
should be manageable.

Acknowledgments. This work was partially supported by the German Research Foun-
dation (DFG), under grant HO 2169/5-1 “Critically Constrained Planning via Partial
Delete Relaxation”.

References
1. Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using real-time

dynamic programming. Artificial Intelligence, 72(1-2):81–138, January 1995.



Towards Clause-Learning State Space Search 5

2. Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351,
2004.

3. Neeraj Bhatnagar and Jack Mostow. On-line learning from search failures. Machine Learn-
ing, 15(1):69–117, 1994.

4. Ronald Bjarnason, Prasad Tadepalli, and Alan Fern. Searching solitaire in real time. Journal
of the International Computer Games Association, 30(3):131–142, 2007.

5. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artifi-
cial Intelligence, 90(1-2):279–298, 1997.

6. Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learning, and
cutset decomposition. Artificial Intelligence, 41(3):273–312, 1990.

7. Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit-state model
checking in the validation of communication protocols. International Journal on Software
Tools for Technology Transfer, 5(2-3):247–267, 2004.

8. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceedings of the 6th In-
ternational Conference Theory and Applications of Satisfiability Testing (SAT’03), pages
502–518, 2003.

9. Maximilian Fickert, Jörg Hoffmann, and Marcel Steinmetz. Combining the delete relax-
ation with critical-path heuristics: A direct characterization. Journal of Artificial Intelligence
Research, 56(1):269–327, 2016.

10. Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In S. Chien,
R. Kambhampati, and C. Knoblock, editors, Proceedings of the 5th International Conference
on Artificial Intelligence Planning Systems (AIPS’00), pages 140–149, Breckenridge, CO,
2000. AAAI Press, Menlo Park.

11. Patrik Haslum and Hector Geffner. Heuristic planning with time and resources. In A. Cesta
and D. Borrajo, editors, Proceedings of the 6th European Conference on Planning (ECP’01),
pages 121–132. Springer-Verlag, 2001.

12. Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

13. Jörg Hoffmann, Peter Kissmann, and Álvaro Torralba. “Distance”? Who Cares? Tailoring
merge-and-shrink heuristics to detect unsolvability. In Thorsten Schaub, editor, Proceed-
ings of the 21st European Conference on Artificial Intelligence (ECAI’14), Prague, Czech
Republic, August 2014. IOS Press.

14. Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

15. Andreas Junghanns and Jonathan Schaeffer. Sokoban: Evaluating standard single-agent
search techniques in the presence of deadlock. In Proceedings of the 12th Biennial Confer-
ence of the Canadian Society for Computational Studies of Intelligence, pages 1–15, 1998.

16. Subbarao Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and
other CSP search techniques in graphplan. Journal of Artificial Intelligence Research, 12:1–
34, 2000.

17. Andrey Kolobov, Mausam, and Daniel S. Weld. Discovering hidden structure in factored
MDPs. Artificial Intelligence, 189:19–47, 2012.

18. Richard E. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.
19. Derek Long and Maria Fox. Efficient implementation of the plan graph in stan. Journal of

Artificial Intelligence Research, 10:87–115, 1999.
20. Joao Marques-Silva and Karem Sakallah. GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.
21. Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel Kuokka, Oren Etzioni, and

Yolanda Gil. Explanation-based learning: A problem solving perspective. Artificial Intelli-
gence, 40(1-3):63–118, 1989.



6 Marcel Steinmetz and Jörg Hoffmann

22. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In Proceedings of the 38th Conference on Design Automation (DAC-01), Las
Vegas, Nevada, USA, 2001. IEEE Computer Society.

23. Hootan Nakhost, Jörg Hoffmann, and Martin Müller. Resource-constrained planning: A
monte carlo random walk approach. In Blai Bonet, Lee McCluskey, José Reinaldo Silva,
and Brian Williams, editors, Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS’12), pages 181–189. AAAI Press, 2012.

24. Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence, 9:268–299, 1993.

25. Alexander Reinefeld and T. Anthony Marsland. Enhanced iterative-deepening search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(7):701–710, 1994.

26. David E. Smith. Choosing objectives in over-subscription planning. In Sven Koenig, Shlomo
Zilberstein, and Jana Koehler, editors, Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), pages 393–401, Whistler, Canada, 2004.
Morgan Kaufmann.

27. Marcel Steinmetz and Jörg Hoffmann. Towards clause-learning state space search: Learning
to recognize dead-ends. In Dale Schuurmans and Michael Wellman, editors, Proceedings of
the 30th AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press, February 2016.

28. Martin Suda. Property directed reachability for automated planning. Journal of Artificial
Intelligence Research, 50:265–319, 2014.


