
SAP Speaks PDDL

Jörg Hoffmann∗

INRIA
Nancy, France

joerg.hoffmann@inria.fr

Ingo Weber∗

University of New South Wales
Sydney, Australia

ingo.weber@cse.unsw.edu.au

Frank Michael Kraft
SAP

Walldorf, Germany
frank.michael.kraft@sap.com

Abstract

In several application areas for Planning, in particular help-
ing with the creation of new processes in Business Process
Management (BPM), a major obstacle lies in the modeling.
Obtaining a suitable model to plan with is often prohibitively
complicated and/or costly. Our core observation in this work
is that, for software-architectural purposes, SAP is already
using a model that is essentially a variant of PDDL. That
model describes the behavior of Business Objects, in terms
of status variables and how they are affected by system trans-
actions. We show herein that one can leverage the model to
obtain (a) a promising BPM planning application which in-
curs hardly any modeling costs, and (b) an interesting plan-
ning benchmark. We design a suitable planning formalism
and an adaptation of FF, and we perform large-scale exper-
iments. Our prototype is part of a research extension to the
SAP NetWeaver platform.

Introduction

Business processes control the flow of activities within and
between enterprises. Business Process Management (BPM)
is concerned, amongst other things, with the maintenance
of these processes. To minimize time-to-market in an ever
more dynamic business environment, it is essential to be
able to quickly create new processes. Doing so involves se-
lecting and arranging suitable IT transactions from huge in-
frastructures such as those provided by SAP. That is a very
difficult and costly task. A well-known idea is to annotate
each IT transaction with a planning-like description of its
relevant properties, enabling AI Planning tools to compose
(parts or approximations of) the desired processes fully au-
tomatically. Variants of this idea have been explored in Web
Service Composition, e.g. (Narayanan and McIlraith 2002;
Pistore, Traverso, and Bertoli 2005).

Planner performance is important in such an application:
typically, the user – a business person wishing to create a
new process – will be waiting online for the planning out-
come. But the crucial question is: How to get the planning
model? To be useful, the model needs to capture, in a precise
way and at the right level of abstraction, the relevant proper-
ties of a huge IT infrastructure. Designing such a model is

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
∗Work performed while authors were employed by SAP.

so costly that one will need good arguments indeed to per-
suade a manager to embark on that endeavor. (This relates to
modeling of Web Services, see e.g. (Kambhampati 2007).)

When we first looked into applying planning in BPM at
SAP, we did not expect to find a solution to the modeling
problem. Imagine our surprise when we discovered that
SAP had already designed the model we were looking for.

At SAP, various models of software behavior have been
developed, mostly for software-architectural purposes.
One of these models is essentially a variant of PDDL.

The “SAP PDDL” is called Status and Action Management
(SAM). SAM describes how “status variables” of Business
Objects (BO) change their values when “actions” – IT-level
transactions affecting the BOs – are executed. SAM is ex-
tensive, covering 404 kinds of BOs with 2418 transactions.

BOs in full detail are vastly complex. A single BO may
contain 1000s of data fields. SAM describes their behav-
ior at a level of abstraction that corresponds to the language
of business users. SAM was originally intended (only) to
provide a declarative way of checking transaction precondi-
tions. Using SAM for planning, we obtain technology that
automatically generates processes characterized by their ef-
fect on the status of BOs. Such process generation under-
lies the task SAP customers are facing, in the BPM scenario
described above. The only cost of using our technology is
the time it takes business users to specify the desired status
changes – in their own language! We implemented a GUI in
which that can be done using simple drop-down menus.

Translating SAM into PDDL is straightforward except for
some subtleties in the treatment of non-deterministic ac-
tions. We design a suitable planning formalism, and we
adapt FF (Hoffmann and Nebel 2001) accordingly. Our GUI
and its back-end are integrated as a research extension into
the commercial SAP NetWeaver platform. Initial steps to-
wards pilot customer evaluation have been taken, but it is
still a long way towards actual commercialization. An addi-
tional benefit of our work is a new, highly realistic, bench-
mark domain for Planning. An anonymized PDDL version of
SAM is publicly available.1 We run large-scale experiments
with FF and show that, while many tasks can be solved suf-
ficiently quickly, significant challenges remain.

1http://www.loria.fr/∼hoffmanj/SAP-PDDL.zip

Background
We briefly outline what BPM is, and how AI Planning can
help with it. Weske (2007) gives the following commonly
used definition of what a business process is:

“A business process consists of a set of activities that are
performed in coordination in an organizational and

technical environment. These activities jointly realize a
business goal.”

That is, business processes serve as an abstraction of the way
enterprises do business. Technically, processes are control-
flows often formalized as Petri nets, notated in a human-
readable format. Business process management (BPM) aims
at configuring and implementing processes in IT systems,
monitoring and analyzing their execution, and re-designing
them. A central activity in BPM is the creation and/or mod-
ification of business processes. This is done by business
users, in suitable BPM modeling environments. There, pro-
cesses are often shown as a kind of flow diagram, e.g. in the
wide-spread BPMN notation (OMG 2008).

Today’s business environment is increasingly dynamic. It
is important to be able to adapt business processes, and to
create new processes, quickly. A major bottleneck is the
translation of high-level process models into implemented
processes that can be run on the IT infrastructure. This step
is very time-consuming since it requires intensive communi-
cation between business experts (who model the processes)
and IT experts (who implement them). If the IT infrastruc-
ture is from an external provider, then experts for that in-
frastructure (such as SAP consultants) usually need to be in-
volved as well. This incurs significant costs for human labor,
plus potentially high costs due to increased time-to-market.

The basic idea of our application is to use Planning for
composing processes automatically (to a certain extent),
helping the business expert to come up with processes that
are close to the IT infrastructure, and hence reducing the ef-
fort and costs associated with implementation.

This application requires a planning model, i.e., a suitable
description of the behavior of the relevant software entities
in the IT infrastructure. In most cases, such a description
cannot be fully precise (exactly represent all relevant tech-
nical aspects of the software artifacts dealt with), and so the
plan will not be guaranteed to work at IT-level. Hence plan-
ning cannot fully replace the human IT expert.

What the planning can help with is choosing the correct
combination of artifacts, plus putting them together in a way
that is likely to be suitable. Given that the main pain-point is
the size of the IT landscape, this can potentially be quite use-
ful. Note in particular that the IT landscape may be subject
to changes. Indeed a major motivation behind SAP’s SAM
model is to be able to reflect such changes in a declarative
way. Hence the “planning domain” may change, and the
flexibility of domain-independent planning is a necessity.

There are two major requirements for practicality: (a) re-
sponse times should be (almost) instantaneous; and (b) the
modeling overhead should be low. As for (a), the plan-
ning will be in on-line interaction with a business user, so
response time is limited to human patience. While this is
important, point (b) is potentially more critical. Appropri-
ately modeling the “domain” – a complex IT infrastructure –

can be prohibitively costly. Not less importantly, “instances”
must be provided by the business user, on-line. That must be
possible in a matter of seconds, and in terms that business
users are familiar with. The great news we share herein is
that, at SAP, both these modeling issues can be resolved to
satisfaction, by leveraging the SAM model.

SAM

As outlined in the introduction, SAM documents the behav-
ior of actions – IT transactions – affecting the status of busi-
ness objects. “Status” here is represented in terms of a value
assignment to a set of finite-domain “status variables”. SAM
defines for each action a precondition and an effect, stating
the required status of the relevant BOs, and how that sta-
tus changes when executing the action, respectively. The
original purpose of this model is, simply put, to provide a
declarative way of detecting applicable actions. SAP appli-
cations check the current status against the SAM model, and
provide to the user only those actions whose preconditions
are satisfied. This guards against implementation bugs in the
applications, since it is easier to maintain the action require-
ments on the level of SAM, than on the level of the actual
program code. This is important because execution of ac-
tions on BOs not satisfying the requirements (e.g., process-
ing a BO whose data fields have inconsistent values) may
have all sorts of subtle and harmful side effects, which can
constitute a major maintenance problem.

For illustration, Figure 1 gives a SAM-like model for
“customer quotes” CQ, our running example.2 CQ in the
figure is used to refer to the customer quote instance.

A few words are in order regarding our “abuse” of SAM
for a purpose that was not in the intention of its designers.
Just because SAM is similar to PDDL, that doesn’t mean it
makes sense to use it like PDDL. Are the processes com-
posed this way useful? Given the lack of tests with real cus-
tomers, we cannot answer this question conclusively. Our
impression based on demos at SAP is that, at least for quick
experimentation and kick-starting the process design, the
technique will be quite handy. That said, there is one po-
tentially important shortcoming of SAM, in its current form,
that we are aware of. SAM does not reflect any interactions
across different kinds of BOs, although such interactions do
exist. The interactions are not relevant to SAM’s original
purpose. But they might be relevant for composing higher
quality processes. We get back to this in the conclusion.

Planning Formalization

We discuss the intended meaning of SAM and design a suit-
able planning formalism. Consider Figure 1. The intended
meaning of (disjunctive) preconditions is exactly as in plan-
ning. The same goes for non-disjunctive effects. For dis-
junctive effects, matters are more complicated. What SAM
models here is that the action modifies the status variables,
and that several outcomes are possible; which outcome actu-
ally happened will be visible to the SAP application at exe-

2At SAP, SAM models are stored in an XML format. For pri-
vacy, the shown object and model are not part of SAM as used at
SAP. The SAM models are similar.

Action name precondition effect

Check CQ Completeness CQ.archivation:notArchived(x) CQ.completeness:complete(x) OR CQ.completeness:notComplete(x)

Check CQ Consistency CQ.archivation:notArchived(x) CQ.consistency:consistent(x) OR CQ.consistency:notConsistent(x)

Check CQ Approval Status CQ.archivation:notArchived(x) AND CQ.completeness:complete(x) CQ.approval:Necessary(x) OR CQ.approval:notNecessary(x)

AND CQ.consistency:consistent(x)

CQ Approval CQ.archivation:notArchived(x) AND CQ.approval:Necessary(x) CQ.approval:granted(x)

Submit CQ CQ.archivation:notArchived(x) CQ.submission:submitted(x)

AND (CQ.approval:notNecessary(x) OR CQ.approval:granted(x))

Mark CQ as Accepted CQ.archivation:notArchived(x) AND CQ.submission:submitted CQ.acceptance:accepted(x)

Create Follow-Up for CQ CQ.archivation:notArchived(x) AND CQ.acceptance:accepted(x) CQ.followUp:documentCreated(x)

Archive CQ CQ.archivation:notArchived(x) CQ.archivation:Archived(x)

Figure 1: Our SAM-like running example, modeling the behavior of “customer quotes” CQ.

cution time. What SAM does not model is that the outcome
depends on the properties of the relevant object prior to the
action application. For example, the outcome of “Check CQ
Completeness” is fully determined by the contents of the
object CQ. These contents – up to 100s or 1000s of data
fields for a single object – are abstracted in SAM, making
the action non-deterministic from its perspective. At the
same time, this “non-determinism” is not like throwing a
dice: the outcome changes only if the object content was
changed in the meantime. That is possible (the processes do
not have full control over the objects), but it does not make
sense to “wait for the right outcome”, and SAM does not
model actions allowing to notify someone that the content
needs to be changed. We hence take these actions to be non-
deterministic but do not allow to repeat them.

SAM explicitly provides an initial value for each status
variable. Regarding the goal and the definition of plans, mat-
ters are more complicated again. Clearly, the SAM model of
Figure 1 does not allow strong plans that guarantee success
under all circumstances: checking completeness or consis-
tency can always result in a negative outcome that forbids
successful processing. This pertains not only to our illus-
trative example here – in a large experiment, we determined
that 75% of the considered instances did not have a strong
plan (we get back to this in the experiments section).

To address this, one can define more complicated goals,
or a weaker notion of plans. The former is impractical
because goals must be specified online by the user, and
complex goals require familiarity with the underlying SAP
system, which contradicts our value proposition. As for
the latter, strong cyclic plans (Cimatti et al. 2003) do not
make sense because “waiting for the right outcome” does
not, c.f. above. The best one can do based on SAM is
to highlight the potentially “bad” outcomes, and to make
sure to not highlight any outcomes that could actually be
solved. We hence settle for a notion of plans that al-
lows non-deterministic actions to have failed outcomes, pro-
vided that at least one outcome is solved, and that the
failed outcomes are provably unsolvable. For specifying
the goal, all that is required is to give the desired at-
tribute values: e.g., CQ.followUp:documentCreated(x) and
CQ.archivation:Archived(x) in the case of Figure 1. In our
GUI this is done in simple drop-down menus.

The above translates into the following planning formal-
ism. Planning tasks are tuples (X,A, I,G). X is a set of
variables; each x ∈ X is associated with a finite domain
dom(x). A is a set of actions, where each a ∈ A takes the

form (pre
a
, Ea) with pre

a
being a partial variable assign-

ment, and Ea being a set of partial variable assignments.
The members eff

a
∈ Ea are interpreted as alternative (non-

deterministically chosen) outcomes. I is a variable assign-
ment representing the initial state, and G is a partial variable
assignment representing the goal.

A fact is a pair (x, v) where x ∈ X and v ∈ dom(x). We
identify (partial) variable assignments with sets of facts in
the obvious way. We denote with dA := {a ∈ A | |Ea| =
1} and ndA := {a ∈ A | |Ea| > 1} the sets of deterministic
and non-deterministic actions, respectively. If a ∈ dA, then
by eff

a
we denote the single outcome of a.

A state s is a variable assignment. If f is a partial vari-
able assignment, then s ⊕ f is the variable assignment that
coincides with f where f is defined, and that coincides with
s elsewhere. An action tree is a tree whose nodes are ac-
tions and whose edges are labeled with partial variable as-
signments, so that each action a in the tree has exactly |Ea|
outgoing edges, one for (and labeled with) each eff

a
∈ Ea.

Definition 1 Let (X,A, I,G) be a planning task, let s be a
state, let ndAav ⊆ ndA, and let T be an action tree. We say
that T solves (s, ndAav) iff either:

1. T is empty and G ⊆ s; or
2. the root of T is a ∈ dA, pre

a
⊆ s, and the sub-tree of T

rooted at a’s son solves (s ⊕ eff
a
, ndAav); or

3. the root of T is a ∈ ndAav , pre
a
⊆ s, and for each son

of a reached via an edge labeled with eff
a
∈ Ea we have

that either (i) the sub-tree of T rooted at that son solves
(s⊕ eff

a
, ndAav \ {a}), or (ii) there exists no action tree

T ′ that solves (s ⊕ eff
a
, ndAav \ {a}), where (i) is the

case for at least one of a’s sons.
A plan is an action tree that solves (I, ndA).

Items 1 and 2 of this definition should be clear. Item 3 re-
flects our above discussion of the meaning of SAM. First,
non-deterministic effects are directly observed, which is
handled by separating the outcomes of a in item 3, rather
than including them all into a single belief state. (A desir-
able side effect is that the object stati are always fully known,
i.e., in spite of the non-determinism there are no non-trivial
belief states.) Second, we allow solution trees containing
unsolvable leaf nodes, as long as below every node there is
at least one solved leaf – c.f. the arrangement of options (i)
and (ii) in item 3. Third, we allow each non-deterministic
action only once on each path through T , as is encoded by
the use of the set ndAav in Definition 1.

Figure 2 shows a plan for our running example from Fig-
ure 1. For presentation to the user, a post-process (omitted

Check CQ Completeness

Check CQ Consistency

Check CQ Approval Status

Submit CQ CQ Approval

Y

Y N

N

Create CQ

Mark CQ as Accepted

Create SO from CQ

Archive CQ

Submit CQ

Mark CQ as Accepted

Create SO from CQ

Archive CQ

notNec Nec

Figure 2: A plan for the running example.

for space reasons) transforms such plans into BPMN work-
flows, merging redundant sub-trees and using explicit rout-
ing nodes for parallel and alternative execution.

Planning Algorithms

We use a variant of AO* tree search. We refer to this variant
as SAM-AO*. Search is forward in an AND-OR tree whose
nodes are states (OR nodes) and actions (AND nodes). For
deterministic actions, there is a single child so the AND node
trivializes. We propagate “node solved” and “node failed”
markers. An OR node is failed if either its heuristic value
(see below) is infinite, or if all its children are failed. The
node is solved if either its heuristic value is 0, or if one of its
children is solved. An AND node is failed if all its children
are failed. The node is solved if all of its children are either
failed or solved, and at least one child is solved. The algo-
rithm terminates when the initial state is solved or failed. In
the former case, a solved sub-tree is returned.

We prune duplicates by comparing every new state s
backwards with its predecessor states up to the most recent
non-trivial AND node (given the SAM semantics, pruning
states across non-trivial AND nodes is not possible).

Proposition 1 Let (X,A, I,G) be a planning task, and let
h be a heuristic function. SAM-AO* with duplicate pruning
terminates. Provided h returns ∞ only on unsolvable states,
SAM-AO* terminates with success iff the task is solvable,
and the action tree returned in that case is a plan.

This follows by definition and the simple observation that
duplicate pruning allows only finitely many nodes in a plan-
ning task without non-deterministic actions.

We use a simple variant of the FF heuristic function (Hoff-
mann and Nebel 2001). For the non-deterministic actions,
we act as if we could choose the outcome.3 That is, we com-
pile each a ∈ ndAav – the non-deterministic actions that are
still available at the respective point in the search tree – into
the set of deterministic actions {(pre

a
, {eff

a
}) | eff

a
∈

Ea}. While this is simplistic, as we will see it leads to quite

3This idea is known as “determinization” in probabilistic plan-
ning, see e.g. (Yoon, Fern, and Givan 2007).

reasonable performance. As in FF, we use the relaxed plans
not only to obtain the goal distance estimates, but also to
restrict the action choice to those that are “helpful”.

One important aspect of the heuristic function is that, just
as usual, it may stop without reaching the goals in the re-
laxed planning graph, which obviously proves the evaluated
state to be unsolvable: there is not even a single sequence
of action outcomes that leads to success. The heuristic then
returns ∞, enabling SAM-AO* to mark states as “failed”.

Experiments

As stated, from a commercial point of view our techniques
are in a preliminary stage. Their business value is yet to be
determined. We now evaluate them from a scientific point
of view. Our experiments are aimed at understanding:

(1) Is the runtime performance of our planner sufficient
for the envisioned application?

(2) How interesting is SAM as a planning benchmark?

All experiments were run on a 1.8 GHZ CPU, with a 10
minute time and 0.5 GB memory cut-off. Our planner is im-
plemented in C as a modification of FF-v2.3. Its input is the
aforementioned PDDL version of SAM, where each fact en-
codes one status variable value, and where non-deterministic
actions are represented in a PPDDL-style format.

The initial states in our PDDL encodings are empty – no
BOs have been created as yet. Our PDDL allows to cre-
ate at most a single BO of each type (allowing more would
make no sense in terms of the business processes we are
aiming to create). Hence a SAM planning instance is identi-
fied by its goal: a subset of variable values. This implies in
particular that the number of SAM instances is finite. That
number, however, is enormous; just for choosing the subset
of variables to be constrained we have 22413 options.4 In
what follows, we mostly consider goals all of whose vari-
ables belong to a single BO. This is sensible because, as
previously stated, SAM currently does not reflect interac-
tions across BOs. There are 1373259536 single-BO goals,
which is still astronomic. However, when running FF on all
3482 instances whose goal contains only a single variable
value, we found that 989 of those are unreachable. When
excluding goals that contain any of these per-se unsolvable
values, 9833400 instances remain.

We made an instance generator (also included in the
PDDL download) that allows to create instance subsets char-
acterized by the number |G| of variables constrained in the
goal. For given |G|, the generator enumerates all possible
variable tuples, and allows to randomly sample for each of
them a given number S of value tuples. The maximum num-
ber of variables of any BO is 15. We created all possible in-
stances for |G| = 1, 2, 3, 13, 14, 15 where the number of in-
stances is up to around 50000. For all other values of |G|, we
chose a value for S so that we got around 50000 instances.
We omitted instances with a trivial plan, i.e., where the goal
is true already in the initial state of the respective BO. The
total number of instances created thus is 548987.

4Anyway, pre-computing a table of plans is not an option be-
cause one of the main points about SAM is the ability to easily
reflect and handle changes in the IT infrastructure.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350

SOLVED

UNSOLVED

FAILED

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SOLVED

UNSOLVED

FAILED

(a) (b)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350

UNSOLVED MAX

SOLVED MAX

UNSOLVED MEAN

SOLVED MEAN

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UNSOLVED MAX

SOLVED MAX

UNSOLVED MEAN

SOLVED MEAN

(c) (d)
Figure 3: Coverage (a,b) and state evaluations (c,d) data, plotted over individual kinds of BOs (a,c) and |G| (b,d). “SOLVED”:
plan found. “UNSOLVED”: search space (with helpful actions pruning) exhausted. “FAILED”: out of time or memory.

In a first experiment, we tried to find strong plans only.
To enable proofs of unsolvability, we ran FF without helpful
actions pruning, and we included in the input only the subset
of actions affecting the relevant BO (else the state space is
always much too vast to be exhausted). Overall, only 10%
of the instances could be solved; on 15%, FF ran out of time
or memory; 75% of them were proved unsolvable.

Strong plans are rare in SAM. We now report detailed re-
sults for the more generous semantics as per Definition 1,
allowing failed action outcomes as long as they are provably
failed. In our baseline, we include all actions in the input
(not only those of the relevant BO), because (a) helpful ac-
tions pruning will detect the irrelevant actions anyway, and
(b) in the long term SAM will model cross-BO interactions.

We identify two parameters relevant to the performance of
FF: the kind of BO considered, and |G|. Figure 3 shows how
coverage and state evaluations (number of calls to the heuris-
tic function) depend on these parameters. Consider first Fig-
ure 3 (a). The x-axis ranges over BOs, i.e., each data point
corresponds to one kind of BO.5 The ordering of BOs is by
decreasing percentage of solved instances. For each BO, the
y-axis shows the percentage of solved, unsolved, and failed

5We consider only 371 BOs because in the other 33 BOs, all
possible goals either contain an unreachable goal value (c.f. above),
or are satisfied already in the initial state of the BO.

instances within that BO. We see that, in 275 of the 371
kinds of BOs, coverage is perfect. For another 65 BOs, cov-
erage is above 70%. For the remaining 32 BOs, coverage
is rather bad. The fraction of unsolved instances peaks at
81.92% and the fraction of failed instances peaks at 14.98%.
Considering Figure 3 (b), we see how coverage is affected
by |G| (shown on the x-axis). |G| = 1 is handled perfectly,
followed by a fairly steady decline as |G| grows. An expla-
nation for the discontinuity at |G| = 3, 4 could be that for
|G| = 3 our experiment is exhaustive while for |G| = 4 we
only sample. The discontinuity at |G| = 13, 14 is largely
due to BO structure. Few BOs have more than 12 variables.
Those with 13 variables happen to be exceptionally chal-
lenging, while almost all of the instances for |G| > 13 are
from a BO that is not quite as challenging.

Consider now Figures 3 (c) and (d) which provide a
deeper look into performance on those instances where FF
terminated regularly (plan found or helpful actions search
space exhausted).6 In (c), the most striking observation is
that, for 350 of the 371 BOs, the maximum number of state
evaluations is below 100; for solved instances, this even
holds for 364 BOs. In fact, in all but a single BO we always
need less than 1000 evaluations to find a plan. The single

6The ordering of BOs in (c) is by increasing y-value for each
curve individually; otherwise the plot would be unreadable.

harder BO contains the peak of 54386 evaluations, finding
a plan with 38 actions in it. From the “SOLVED MEAN”
curve we see that this behavior is extremely exceptional –
the mean number of state evaluations per BO peaks at 47.78.
Comparing this to the “UNSOLVED MEAN” curve, we see
that a large number of search nodes is, as one would expect,
much more typical for unsolved instances.

In Figure 3 (d), we see that the overall behavior of state
evaluations over |G| largely mirrors that of coverage, in-
cluding the discontinuities at |G| = 3, 4 and |G| = 13, 14
(the “UNSOLVED MAX” curve is flat because larger search
spaces lead to failure). The most notable exception is the
fairly consistent decline of “SOLVED MAX” for |G| > 3.
It is unclear to us what the reason for that is.

What is the conclusion regarding the issues (1) (plan-
ner performance) and (2) (benchmark challenge) we wish
to understand? For issue (1), our results look fairly posi-
tive. In particular, consider only the solved instances (plan
found). As explained above, the number of state evaluations
is largely well-behaved. In addition, the heuristic function is
quite fast. The maximum runtime is 27.41 seconds, the sec-
ond largest runtime is 2.6 seconds. So a practical approach
for use in an online business process modeling environment
could be to simply apply a small cut off, e.g. 5 seconds or at
most a minute. What that leaves us with are, in total, 17.12%
unsolved instances and 2.4% failed ones. Are those an im-
portant benchmark challenge for future research? Answer-
ing this question first of all entails finding out whether (a)
we can solve these instances without helpful actions prun-
ing, and (b) if not, whether they are solvable at all.

We ran FF without helpful actions pruning on the un-
solved and failed instances, again enabling unsolvability
proofs by giving as input only the actions of the relevant
BO. All failed instances are still failed in the new FF config-
uration. Of the previously unsolved instances, 64.95% are
failed, 35% are proved unsolvable, and 0.05% are solved
(the largest plan contains 140 actions). The number of state
evaluations is vastly higher than before, with a mean and
max of 10996.72 respectively 289484 for solved instances.
But the heuristic is extremely fast with a single BO, and so
finding a plan takes mean and max runtimes of 0.12 and 2.94
seconds. The influence of |G| and the kind of BO is simi-
lar to what we have seen. All in all, changing the planner
configuration can achieve some progress on these instances,
and it seems that many of them are unsolvable. But certainly
they are a challenge for research. We note also that heuristics
are required to deal with SAM successfully. For almost 80%
of our test instances, blind search (SAM-AO* with a trivial
heuristic) exhausts computational resources even if the input
contains only the actions of the relevant BO.

Interestingly, FF does not scale gracefully to planning
tasks with several BOs. We selected for each of the 404
BOs one solved instance m(BO) with maximum number
of state evaluations. We then generated 404 planning tasks
where task k combines the goals m(BO) for all BOs up to
number k. FF’s state evaluations increase sharply with k.
The largest instance solved is k = 101, with 29078 evalu-
ations. For comparison, the sum of state evaluations when
solving the 101 sub-tasks individually is 486. A possible

explanation is that, adding more goals for additional BOs,
more actions are helpful. The increased number of nodes
multiplies over the search depth. This is not relevant at the
moment, where SAM does not model cross-BO interactions.
But trouble may lie ahead once it does.

Conclusion
As mentioned, our techniques form a research extension
to SAP’s commercial NetWeaver platform. This concerns
in particular the CE Process Composer, NetWeaver’s BPM
modeling environment. Our prototype is currently in the ini-
tial steps towards pilot customer evaluation. It must be said
that it is still a long way towards actual commercialization.
The potential pilot customer has not made a firm commit-
ment yet, and while our prototype works just fine its po-
sitioning inside the SAP software architecture entails some
political and technical difficulties.

As was previously pointed out, the current SAM model
does not reflect dependencies across BOs. Such dependen-
cies exist, e.g., in the form of transitions that several BOs
must take together. A corresponding extension is currently
underway in a research activity lead by SAP Research Bris-
bane, with the purpose of more informed model checking
based on SAM models. We expect to be able to build on
the extension for improved planning. Our experiments indi-
cate that additional/modified techniques may be required for
satisfactory performance of such planning.

To close, we would like to emphasize that SAM’s method-
ology is not specific to SAP, and that it establishes a direct
connection between AI Planning and Software Engineering.
Pre/post-condition based models of software behavior are
being used in the industry. Intriguingly, this came about with
no AI intervention whatsoever. SAM’s inventors had no idea
that there exists a whole scientific community working since
40 years with precisely this kind of model. We believe that
this new genuine connection may turn out fruitful for both
fields on a scale much greater than the contribution of the
particular technical work presented herein.

References
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147(1-2):35–84.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.

Kambhampati, S. 2007. Model-lite planning for the web age
masses: The challenges of planning with incomplete and evolving
domain models. In Proc. AAAI’07.

Narayanan, S., and McIlraith, S. 2002. Simulation, verification
and automated composition of web services. In Proc. WWW’02.

OMG. 2008. Business Process Modeling Notation.
http://www.bpmn.org/.

Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Automated com-
position of web services by planning in asynchronous domains.
In Proc. ICAPS’05.

Weske, M. 2007. Business Process Management: Concepts, Lan-
guages, Architectures. Springer-Verlag.

Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline
for probabilistic planning. In Proc. ICAPS’07.

