Web Service Composition as Planning, Revisited:
In Between Background Theories and Initial State Uncertainty

Jorg Hoffmann*
DERI Innsbruck
Innsbruck, Austria
joerg.hoffmann@deri.org

Abstract

Thanks to recent advances, Al Planning has become the un-
derlying technique for several applications. Amongst these,
a prominent one is automated Web Service Composition
(WSC). One important issue in this context has been hardly
addressed so far: WSC requires dealing with background on-
tologies. The support for those is severely limited in current
planning tools. We introduce a planning formalism that faith-
fully represents WSC. We show that, unsurprisingly, planning
in such a formalism is very hard. We then identify an inter-
esting special case that covers many relevant WSC scenarios,
and where the semantics are simpler and easier to deal with.
This opens the way to the development of effective support
tools for WSC. Furthermore, we show that if one additionally
limits the amount and form of outputs that can be generated,
then the set of possible states becomes static, and can be mod-
elled in terms of a standard notion of initial state uncertainty.
For this, effective tools exist; these can realize scalable WSC
with powerful background ontologies. In an initial experi-
ment, we show how scaling WSC instances are comfortably
solved by a tool incorporating modern planning heuristics.

Introduction

Since the mid 90s, AI Planning tools have become many
times more scalable, through the invention of heuristic func-
tions and other search techniques, e.g., (Hoffmann & Nebel
2001). A highly relevant application area for planning is
automated composition (WSC) of semantic web services
(SWS). SWS are pieces of software advertised with a for-
mal description of what they do; composing services means
to link them together in a way satisfying a complex user re-
quirement. WSC is widely recognized for its huge economic
potential. In the wide-spread OWL-S (Coalition 2003) and
WSMO (Fensel et al. 2006) frameworks, SWS are described
akin to planning operators, with preconditions and effects.
Hence planning is a prime candidate for realizing WSC.
WSC raises many novel challenges; for example, SWS
may exhibit complex interaction interfaces, as addressed,
e.g., in (Pistore, Traverso, & Bertoli 2005). Herein, we focus
on one important issue that has been hardly addressed so far:
semantic web services are embedded in background ontolo-
gies, which constrain the behavior of the involved entities.

*Research supported by EU project SUPER, IST FP6-026850.
Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Piergiorgio Bertoli and Marco Pistore
ITC-IRST
Trento, Italy
[bertoli,pistore]@irst.itc.it

To deal with this, WSC must reason about which behaviors
are possible. Further, the semantic descriptions may contain
only partial information (e.g., a user does not specify every
tiny detail about her request), so WSC must deal with un-
certainty. These aspects of WSC are best characterized in
terms of planning with background theories, along the lines
of, e.g., (Eiter ef al. 2003; Giunchiglia ez al. 2004). We con-
sider the case where there is no observability, i.e., confor-
mant planning. Note here that “observing” during SWS ex-
ecution may involve requesting additional information from
the user, or even crossing enterprise boundaries. So observ-
ability is partial at best; extending our notions to conditional
planning should be straightforward, and is future work.!

Example 1 We need a web service that helps organizing
ceremony lunches by finding a consistent menue and venue.
A “lunch-expert” service inputs a description of the cere-
mony, and outputs the kind of lunch required, e.g., “good”
or “top”. The lunch must obey complex constraints; e.g., for
a “good” lunch, “average” wine can only be tolerated if ei-
ther the food is “great” or the venue is “scenic”, ~good V
—averagewine\ greatfood\ scenic. A set of “directory” ser-
vices finds different quality providers. A solution consists of
the lunch-expert service and a set of directory services that
covers the relevant cases. Note that, even if we observe the
outcome of the lunch-expert, this does not identify a unique
combination of food, drinks, and venue quality.

Example 1 illustrates that reasoning over the background
ontology is necessary to understand which services should
be used — which directory services deal with relevant cases?
— and to test whether a given composition is a solution — how
many directory services do we need? Note that the exam-
ple requires so-called partial matches, where a service may
deal with only part of a requirement: any directory service
handles only some particular cases. Partial matches are not
supported by most current tools; we get back to this below.

Incorporating background theories into the modern scal-
able planning tools poses serious challenges, and has not
yet even been tried. The background theory incurs a ram-
ification problem, making even the basic step of computing
a state transition — which is a form of belief revision — a

!(Agarwal et al. 2005) include a conditional planning approach
to WSC, but do not incorporate background theories.

computationally very hard task. The existing approaches
either severely limit the background theories, necessitat-
ing a distinction between “basic” and “derived” predicates
(Thiébaux, Hoffmann, & Nebel 2005); or are based on gen-
eral deduction and lacking the planning-specific heuristic
techniques, e.g., (Eiter et al. 2003; Giunchiglia et al. 2004).

Most existing planning tools dealing with WSC,
e.g., (Ponnekanti & Fox 2002; Pistore, Traverso, & Bertoli
2005), ignore the background theories and assume exact
matches of inputs and outputs, based on concept names. In
Example 1, this does not work because the lunch-expert out-
put refers to whole lunches, while the directory inputs re-
fer to food, drinks, and/or locations. There are some ap-
proaches that allow plug-in matches, e.g., (Sirin & Parsia
2004), where a single service must cover all possible cases.
In Example 1, this would require a single directory service
for all relevant combinations of quality requirements.

We introduce a planning formalism that faithfully repre-
sents WSC. In particular, we allow the generation of new
constants, corresponding to web service outputs.> We show
that it is TI5-complete to test whether a given action se-
quence is a plan. We then make two key contributions:

1. We identify an interesting special case of WSC, termed
forward effects, where the semantics are much easier to
deal with, but which still covers many relevant WSC sce-
narios. The key observation is that the effects of a web
service are often “forward” in the sense that all ramifi-
cations concern only propositions involving at least one
new constant; in that case, a “backwards-directed” belief
revision is not necessary. In WSC with forward effects,
plan testing is “only” coNP-complete. Planning under
uncertainty has the same complexity of plan testing, and
scalable planning tools for this case have already been de-
veloped. Hence this result opens up a promising line of
research extending existing planning tools for WSC.

2. Given forward effects, we identify a restriction on the
amount and form of outputs that can be generated, under
which the set of possible states becomes static, in a cer-
tain sense. It is then no longer necessary to reason about
the theory every time an action is applied; one can instead
model the possible states in the form of an initial state for-
mula. The restriction is naturally given under strictly for-
ward effects, where the web service effects concern only
new constants. This is still significant, and corresponds
to web services modelled as in, e.g., the basic versions of
OWL-S. We provide a compilation into conformant plan-
ning under initial state uncertainty, and hence enable the
application of off-the-shelf modern planning tools. We
show empirically that this approach is promising.

‘We next introduce our formalism, then we define forward ef-
fects and our compilation into initial state uncertainty; there-
after we present empirical results, and conclude. Due to
space restrictions, some details are moved to (Hoffmann,
Bertoli, & Pistore 2007).

’E.g., OWL-S outputs model the generated data.

Formalizing WSC

Our formalism, denoted with WSC, follows the relevant lit-
erature, e.g., (Winslett 1988; Eiter er al. 2003). It relies on a
notion of clausal theories, which supports a powerful notion
of WSC, and at the same time enables our later compila-
tion into initial state uncertainty. Web services correspond
to planning operators. Their input/output behavior maps to
input/output parameters, on which preconditions and effects
are specified. This corresponds to web services in OWL-S
“service profiles” and WSMO “capabilities”.

We assume a supply of logical predicates, a supply of
variable names, and an infinite supply of constant names;
we will denote predicates with p, g, variables with x, y, and
constants with a,b,c,d,e. Literals are possibly negated
predicates whose arguments are variables or constants; if
all arguments are constants, the literal is ground. Given
a set X of variables, we denote by LX the set of all lit-
erals which use only variables from X. If [is a literal,
we write [[X] to indicate that [has the variable arguments
X. f X = {x1,...,24} and C = (cy,...,ci), then by
llery ... en/x1,. .., xx] we denote the respective substitu-
tion, abbreviated as I[C]. In the same way, we use the
substitution notation for any construct involving variables.
Slightly abusing notation, we use a vector of constants, like
C above, also to denote the set of constants appearing in it.
We refer to positive ground literals as propositions.

A clause is a disjunction of literals with universal quan-
tification on the outside, e.g., Va.(—p(x) V ¢(x)); a the-
ory is a conjunction of clauses. An operator o is a tuple
(Xo, pre,, Yo, eff,), where X, Y, are sets of variables, pre,
is a conjunction of literals from £X°, and eff, is a conjunc-
tion of literals from £X°“Ye. The intended meaning is that
X, are the inputs and Y, the outputs, i.e., the new constants
created by the operator. For an operator o, an action a is
given by (pre,,eff,) = (pre,,eff,)[Co/ X0, Eq/Y,] where
C, and FE, are vectors of constants; for £, we require that
the constants are pairwise different — it makes no sense to
“output the same new constant twice”.

Planning tasks are tuples (P, 7,0, Cy, ¢o, o). Here, P
is a set of predicates; 7 is the background theory; O is a set
of operators; Cj is a set of constants, the initial constants
supply; ¢q is a conjunction of ground literals, describing the
possible initial states; ¢¢ is a conjunction of literals with
existential quantification on the outside, describing the goal
states, e.g., 3z, y.(p(z) A q(y)).> All predicates are taken
from P, and all constants are taken from Cj. All constructs
(e.g., sets and conjunctions) are assumed to be finite.

In what follows, assume we are given a planning task
(P,T,0,Cy, do, ¢c). To be able to model the creation of
constants, states in our formalism are enriched with the set
of constants that exist in them: a state s is a pair (Cs, I5)
where C, is a set of constants, and I is a Cs-interpretation,
i.e., an interpretation of the predicates P over the constants
Cs. In other words, I is a truth value assignment to all
propositions formed from P and Cs. We write s |= ¢ for
I, = ¢, where the quantifiers in ¢ are restricted to Cs.

3The existential quantification is needed to give meaning to the
creation of new constants.

We next define the outcome of applying actions in states.
Given a state s and an action a, a is applicable in s, short
appl(s,a), if s = pre,, Cy, C Cs, and E, N Cs = (). That
is, on top of the usual precondition satisfaction we require
that a’s inputs exist and that a’s outputs do not yet exist. We
allow parallel actions. These are sets of actions which are
applied at the same point in time; we require that E,NE, =
() for all a,a’ € A. The result of applying a parallel action
Ain astate s is res(s, A) :=

{(0/7 I/) |C/ = QS U UaGA,appl(s,a) Ea,
I' € min(s,C", T A /\aeAyappl(&a) eff,)}

Here, min(s,C’, ¢) is the set of all C’-interpretations that
satisfy ¢ and that are minimal with respect to the partial or-
der defined by I; < I :iff for all propositions p over Cj,
if Io(p) = Is(p) then I;(p) = Is(p). This is a standard
semantics where the ramification problem is addressed by
requiring minimal changes to the predecessor state s.

Note that, in the definition of res(s, A), non-applicable
actions are allowed. This realizes partial matches: a web
service may cover only part of the possible situations. In
planning terms, our actions have a conditional effects se-
mantics; we do not treat those explicitly here, for the sole
purpose of simplifying notation. A parallel action A is in-
consistent with a state s if res(s, A) = 0. This happens in
case of conflicts between the subset of actions that are appli-
cable in s; the conflicts can be either direct, or indirect via
causing a contradiction in the background theory.

We refer to the set of states possible at a given time
as a belief. The initial belief is by = {s | Cs =
Co,s E T N ¢o}. A parallel action A is inconsistent
with a belief b if it is inconsistent with at least one s €
b. In the latter case, res(b, A) is undefined; else, it is
U, mes(s, A). This is extended to action sequences in the
obvious way. A plan is a sequence (A1,...,A,) s.t. for all
seres(bo, (A1,...,An)) 1 s E ¢q.

Example 2 A part of Example 1 is formalized as follows:

e P contains {lunch, lunchquality, average, good, top,
averagewine, greatfood, scenic}

e T contains Vx.(—lunchquality(xz) V average(xz) V
good(x) VvV top(x)) and Vax.(—good(x) V
—averagewine(x) V greatfood(z) V scenic(x))

= ({z}, lunch(z), {y},

o O contains WSlynch-expert

lunchquality(y))
o Co = {mylunch}; ¢o = lunch(mylunch)

A comprehensive investigation of the computational com-
plexity of our formalism is a topic for future work. How-
ever, the following result points out that the complicated se-
mantics of action application makes it computationally very
hard to even fest plans. Obviously, this must be done as part
of planning. When assuming fixed arity — a constant upper
bound on the arity of all variable vectors (e.g., used in pred-
icates) — transformation to a propositional representation is
polynomial. Even in this case, plan testing is II5-complete
in WSC. Note that the same proof applies when allowing
conditional effects instead of parallel actions.

Proposition 1 (Plan testing in WSC) Assume a WSC task
(P, T,0,Cy,¢o,0c) with fixed arity, and a sequence
(Ay,...,A,) of parallel actions. It is I15-complete to de-
cide whether (Aq, ..., Ay) is a plan.

Proof Sketch: Membership: By guess and check, it can
be tested in NP whether s’ € res(s, A) for arbitrary s, ¢/,
and A. Hence one can guess the proposition values along
(A1, ..., Ay), and test validity using calls to an NP oracle.
Hardness: Truth of a QBF formula VX 3Y ¢[X,Y] is re-
duced to plan testing for a single parallel action A. We in-
troduce a new proposition GG, which is set to F' initially. The
theory is formed by a version of ¢ where the literal -G is
introduced into every clause. This means that, initially, ¢
trivializes to 7. One action in A has an empty (true) pre-
condition, and sets G to T'. This ensures that ¢ must hold
after A. Further, for each z € X, A includes one action that
has precondition = and effect x, as well one action that has
precondition —z and effect —z. This ensures that the truth
value assignment to X is the same before and after A. The
goal is GG. The initial belief contains all truth assignments to
X UY. Since A unconditionally achieves the goal, A is a
plan iff it is consistent with all these states. A is consistent
with a state s iff there exists a state s’ that agrees with s on
X, and that satisfies ¢. =

Forward Effects

The high complexity of planning in WSC motivates the
search for interesting special cases. We define a special case
where every change an action makes to the state involves a
newly generated constant. Formally, assume a WSC task
(P, T,0,Cy, do, c). The task has forward effects iff:

e Forall o € O, and for all [X] € eff,, we have X NY,, #
(). In words, the variables of every effect literal contain at
least one output variable.

e For all clauses cl[X] € T, where cl[X] = VX.(l1[X1] V
-+ V1,[X,]), we have X = X; = --- = X,,. In words,
in every clause all literals share the same arguments.

We denote this case with WSC| 4. The first condition
means that every ground effect literal of an action contains at
least one new constant. The second is a sufficient condition
implying that effects involving new constants can only af-
fect literals involving new constants. Intuitively, WSC| fwd
covers the case where a web service outputs some new con-
stants, sets their basic properties relative to the inputs, and
relies on the background ontology to describe the ramifi-
cations. In Example 2, WSlynch-expert OUPULS a constant

of concept lunchquality, and lets the ontology formulate the
implications of that; WS lunch-expert does not in any way

affect the status of the constant mylunch that was present be-
forehand. Many WSC scenarios, both from the literature and
from real case studies, have forward effects. A simple ex-
ample is the wide-spread “virtual travel agency”, where web
services must be linked that book travel and accommoda-
tion, generating new constants corresponding to tickets and
reservations.

We now observe how the semantics in WSC| ¢,,4 is much
simpler than in general WSC, no longer needing the notion

of minimal changes with respect to the previous state. Given
a state s and a parallel action A, define res|fyq(s, 4) 1=

{(C/’I/) |C/ =Cs U UaeA,appl(s,a) Ea,
I/|CS = IS,I/): TN /\GGA,appl(s,a) effa}

where I’| ¢, is the restriction of I’ to propositions over Cj.

Proposition 2 (Semantics of WSC|f.,q) Assume a
WSC| rya task (P,T,0,Co,¢0,0c), a state s, and a
parallel action A. Then res(s, A) = res| fwd(s, A).

Proof: Recall that res(s, A) is defined as the set of states
s’ that satisfy 7 A A\ ¢ 4 oppi(s.a) €ifa and whose difference
to I is minimal on the propositions over Cs. The claim
follows because the latter set of propositions has an empty
intersection with the set of propositions possibly affected by
the action and its ramifications. u

Further, in difference to WSC, we can make sure in a
pre-process that no inconsistent actions will occur, by filter-
ing out certain actions, without affecting plan existence. An
action a is called contradictory if T A eff, is unsatisfiable.

Proposition 3 (Inconsistency in WSC|f.,q) Assume a
WSC|¢wa task (P, T,0,Cy, ¢, i), a belief b reachable
in the task, and a parallel action A. If A is inconsistent with
b, then there exists a € A so that a is contradictory.

Proof: By definition, there exists s € b so that A is incon-
sistent with s. Now, consider that the outputs of parallel
actions are disjoint, and that any action in WSC| f,,q affects
only propositions involving at least one of its output con-
stants. Hence there can be no conflicts between different
actions in A, hence there must exist a single a € A so that a
is inconsistent with s. The only way a single action can be
inconsistent, with any state, is if 7 A eff, is unsatisfiable. ®

Obviously, a contradictory action will never yield a suc-
cessor state; it can be filtered out prior to planning, without
affecting plan existence. Thanks to this, and thanks to the
simpler semantics as per Proposition 2, plan testing is much
easier in WSC| f,,q than in WSC.

Proposition 4 (Plan testing in WSC| 7,,q) Assume a
WSC|fwa task (P,T,0,Cy, o, dc) with fixed arity,
and without contradictory actions. Assume a sequence
(Aq, ..., Ayn) of parallel actions. It is coNP-complete to
decide whether (Aq, ..., A,) is a plan.

Proof: Hardness is obvious, considering an empty se-
quence. Membership can be shown by the following guess-
and-check argument. Say C'is the union of Cy and all output
constants appearing in (A4, ..., A,). We guess an interpre-
tation I of all propositions over P and C'; further, for each
1 <t < n, we guess a set C; of constants. We can then
check in polynomial time whether I and the C; correspond
to an execution of (Ay,..., A,). For1 <t <nanda € A,
say that a is applicableif I |= pre,, C, C Cy, and E,NCy =
(). First, we assert I = 7. Second, for all ¢ and for all
a € Ay, assert that, if « is applicable, then I |= eff,,. Third,
assert that Cy1y = Cy U{E, | a € A, ais applicable}.

It is easy to see that [and the C; correspond to an execu-
tion iff all three assertions hold; note that I needs not be
time-stamped because once an action has generated its out-
puts then the properties of the respective propositions remain
fixed forever. The claim follows because, with fixed arity,
we can also test in polynomial time whether I and C,, satisfy
¢c- A guess of I and C} is successful if it corresponds to an
execution and does not satisfy ¢. Obviously, (A1, ..., A,)
is a plan iff there is no such guess of I and C. u

In standard notions of planning under uncertainty, plan
testing has the same complexity. Research has already re-
sulted in a sizeable number of approaches and scalable tools,
e.g., (Cimatti, Roveri, & Bertoli 2004; Hoffmann & Braf-
man 2006; Bryce, Kambhampati, & Smith 2006). It seems
likely that the underlying techniques can be useful also for
WSC| fya- In particular, Conformant-FF (CFF) (Hoffmann
& Brafman 20006) is a promising candidate; CFF is based on
CNF reasoning, which can be naturally adapted.

Compilation to Initial State Uncertainty

We now show that, under certain additional restrictions, off-
the-shelf scalable tools for planning under uncertainty can
solve WSC| f,q. The main limiting factors are: (1) Those
tools do not allow the generation of new constants. (2) Those
tools allow the specification of a clausal formula only for the
initial state, not for all states. We adopt the obvious approach
to deal with (1), by considering a pre-fixed set of constants,
namely the initially available constants, and “potential” con-
stants that can be used to instantiate outputs. Our more sub-
tle observation is that, within WSC| 7,4, one can also deal
with (2). In what follows, we first introduce our core ob-
servation of a case where the set of possible states becomes
“static”, in a certain sense; we then exploit that observation
by providing a compilation into planning under uncertainty.

Our core observation is based on a notion of compatible
actions. Assume a WSC|fyq task (P, 7T,0,Co, ¢o, 0c).
Two actions a, a’ are compatible if either E, N E, = (), or
eff, = eff,/,. Thatis, a and o’ either have disjunct outputs
— and hence affect disjunct sets of literals since we are in
WSC| fa — or their effects agree completely. A set A of
actions is compatible if £, N Cy = @ for all a € A, and
every pair of actions in A is compatible.

Proposition 5 (Static states in WSC|f,,q) Assume a
WSC| fwa task (P, T,0,Cy, ¢o, dc), a compatible set of
actions A, and a state s that can be reached with A. Then
s = ¢o, and whenever E, C C, fora € A, s = eff,.

Proof: The proof is by induction. In the base case, for s €
bg, the claim holds by definition since Cs N E, = { for
all a. Say s’ is reached from s by a parallel action A. For
simplicity, consider the case where A = {a}; the general
case follows immediately from that. If a is not applicable
to s, with induction assumption there is nothing to prove.
Else, because we are in WSC|yq, res(s,a) = {(C',I') |
C'=CsUE,I'|c, = Is,s = T Aeff,}. With induction
assumption applied to s, we have res(s,a) = {(C’,I') |
C'=CsUE.;,s ET Ndo A /\a'EA,Ea/CCd eff, A eff,}.

Now, ifany o’ € Ahas E,» C CsUE, but B, & Cs, then
we have E,s N E, # () and hence eff,, = eff,.

With Proposition 5, the possible configurations of all (po-
tential) constants are characterized by the formula 7 A ¢g A
Nqca effa. Before even beginning to plan, we already know
how the potentially generated constants will behave. So we
can list the possible behaviors of all potential constants in
our initial belief, and let the actions change only which con-
stants actually exist. In other words, we can compile into
initial state uncertainty, given we settle for a finite set A
of compatible actions. One option is to simply require ev-
ery action to have its own unique output constants. This
appears problematic: every potential constant must be al-
lowed to instantiate the input parameters of every opera-
tor, hence necessitating the creation of a new action and
yet new output constants. It is unclear where to break this
loop, in a sensible way. We instead focus on a restriction
of WSC| fwa, strictly forward effects (denoted WSC|s fvq),
where it suffices to assign unique output constants to indi-
vidual operators, rather than actions. Assume a WSC| 4
task (P, 7,0, Cy, ¢o, ¢c). The task is in WSC|s 4 iff, for
all o € O, and for all [[X] € eff,, X CY,,.

In WSC|, fwd- all actions based on the same operator have
the same effect. Hence the action set is compatible if we
choose one or several sets of unique output constants for
every subset of operators that has identical effects. Impor-
tantly, WSC|; rwa closely corresponds to web services mod-
elled as in, e.g., (Ponnekanti & Fox 2002) and the basic ver-
sions of OWL-S, where inputs and outputs are regarded as
independent entities. So the existence of a compilation into
standard planning under uncertainty is quite significant.

We compile a WSC|, f.0q task into a task of conformant
planning under initial state uncertainty, which takes the form
(P, A, ¢g, dc). P is the finite set of propositions used. A
is a finite set of actions, where each a € A takes the form
(pre(a), eff(a)) of a pair of sets of literals over P. ¢ is a
CNF formula over P, ¢¢ is a conjunction of literals over P.
These notions are given a standard belief state semantics. A
state is a truth value assignment to P. The initial belief is the
set of states satisfying ¢y. The result of executing an action
a in a state s is res(s,a) := s if s }%= pre(a), and otherwise
res(s,a) := (sUadd(a))\ del(a); here we use the standard
notation that gives s in terms of the set of propositions that
it sets to 7', uses add(a) to denote the positive literals in
eff(a), and del(a) to denote the negative literals in eff(a).
Extension to parallel actions is done by taking the set unions
of the positive and negative effect literals. Extension of res
to beliefs and the definition of a plan remain unchanged.

Starting with a WSC|sfya task (P, 7,0, Co, ¢o, ¢c).
the compilation produces a conformant planning task
(P, A, ¢, o). as follows:

e For each operator o € O, create a unique set of new con-
stants £, = {e1,...,e;} where Y, = {y1,...,yr}. We
denote C' := Cjy U ero

e P’ contains all instantiations, with C, of P plus two new
predicates, E'x and G. E'x has arity 1 and expresses which
constants have yet been brought into existence. G has
arity 0 and forms the new goal, i.e., ¢;; = G.

e The actions A’ are the instantiations of all o € O,
where X, is instantiated with C, and Y, is instanti-
ated with E,. The preconditions are enriched with
(Avex, Ex(x)) N (Nocp, ~Ex(e)), the effects are re-
placed by A cp. Ex(e)

e The original action effects, i.e., the conjunction of
eff,[E,/Y,] for all operators o € O, is moved into
¢y Further, ¢, contains ¢, 7 instantiated with C, and

(/\CECO E%(C)) A /\CEC\CO —|E$(C)) A -G

e A’ is enriched with goal achievement actions, achieving
G under preconditions instantiating ¢ with C'.

Note that we create only one F, per operator, and that we
do not take into account sets of operators that have identical
effects. This is simplifies presentation; the results carry over
immediately to more general output creation strategies.

Example 3 Re-consider the task fragment defined in Exam-
ple 2. We have C' = {mylunch, mylq} where mylq is the
output generated for wsy,, expert

e P = {lunch, lunchquality, average, good, top,
averagewine, greatfood, scenic, Ex, G}

o A’ has all instantiations of WS [unch-expert [mylg/y] =
({x}, lunch(x)\ Ex(x)A\ ~Ex(mylg), Ex(mylq))

o ¢, contains lunch(mylunch), lunchquality(mylq)
(initial state, action effects); all instantiations of
V. (—lunchquality(x) V average(x) V good(x) V top(x))
and Yx.(—good(x) V —averagewine(x) V greatfood(z) V
scenic(x)) (theory); Ex(mylunch), —~Ex(mylg), -G
(constants and goal).

We say that an operator is contradictory if 7 Aeff,[E,/ Y]
is unsatisfiable; note that, in WSC|, fwd» 4N operator is con-
tradictory iff all actions based on it are contradictory.

Proposition 6 (Compilation Soundness) Assume a
WSC|swa task (P, T,0,Cy, do,pg) without contra-
dictory operators. Let (Ay,...,Ay,) be a plan for the
compiled task (P', A', ¢, ¢¢). Then the sub-sequence of
non-goal achievement actions in (Ay, ..., Ay,) is a plan for

(P777 Oa COv ¢07 QSG)

Proof Sketch: For an arbitrary sequence of non-goal
achievement actions, denote by b the belief after execution
in the original task, and by b the belief after execution in
the compiled task. For a state s in the original task, denote
by [s] the class of all compiled-task states s over the con-
stants Co U |J,cp Eo so that {c | 3(Ez(c)) = T} = C

Sle, = Is,and 5 = T Ao A\ ,c o effo[E]. One can prove
that b = J,,[s]. The claim follows directly from that. =

Proposition 7 (Compilation Completeness) Assume a
WSC|s fwa task (P, T,0,Cy, ¢o, dG) without contradic-
tory operators. Let (Ay,...,A,) be a plan where every
operator o appears with at most one instantiation E, of
the outputs. Then (A1,...,A,) can be extended with goal
achievement actions to form a plan for the compiled task
(P, A, ¢y, ¢) obtained using the outputs E,,.

Proof: Follows immediately from b = | J, ., [s] as shown for
Proposition 6. =

As indicated, the proofs of Propositions 6 and 7 remain
valid when allowing more than one E, per operator, and/or
when operators with identical effects share output constants.
Note that operators have identical effects if several web
services provide alternative ways of achieving something,
which is quite a usual situation. In the experiments below,
all such operators are assigned the same output constants.

A First Experiment

We present results for a scalable WSC scenario, modelled
in WSC|s rwq. We implemented the compilation explained
above, and ran tests with CFE. Our WSC scenario can be in-
stantiated to study different scalability aspects. The scenario
is abstract, but representative for, e.g., telecommunication
scenarios where one complex function has to be obtained by
concatenating several existing functions, and where several
“parallel” services must be established that serve different
cases. Concretely, the scenario demands to realize a kind
of chain. There are n concepts Aj,..., A,. The goal in-
put is A;, the goal output is A,. Beneath each A;, there
is a tree-shaped hierarchy of sub-concepts, with branching b
and depth d. For each leaf A;;, there is a web service that
takes A;; as input and that outputs A;;,. Hence, a solu-
tion must for each A; put together all services treating the
leaves, thereby making sure to obtain a constant of concept
A;+1. Sequencing these steps yields the solution.

In our tests, we considered two extreme cases of tree
shapes, giving us instances with identical numbers of leaves.
Namely, we used the scenario Broad, where d = 1 and b
scales over 2,4,8,16,32; and Deep, where b = 2 and d
scales over 1, 2, 3, 4, 5. In both scenarios, n scaled from 2 to
20. As it turns out, both scenarios yield very similar results:
CFF’s search spaces are identical. Deep takes up to an or-
der of magnitude more runtime because the more complex
concept hierarchies incur an overhead in CFF’s internal SAT
testing. Figure 1 shows the results for Broad. With up to 8
leaves, CFF easily scales to chains of length 20. Even with
32 leaves, it solves chains of at least length 7.

:
-]
b=2 -
b=4 ---X--- e B e
.ﬁ?é' é . - 1]
100 b=32 --W-- ,,. a
P =
ol a7 ek
10 . s * 3 i
g o *
H . a *
& = *
153 1 LK X
/o X X
01" X X 7]
g |
X
X P
001K XX KAt : ‘ ‘ ‘
4 6 8 10 12 14 16 18 20

Figure 1: Results for Broad.

We also ran the aforementioned deduction-based ap-
proach (Eiter et al. 2003). As we expected, the lack of
heuristic guidance results in much worse performance. With

Broad and n = 2, up to 18 leaves can be solved within 30
minutes; however, with n = 3 only 2 leaves are feasible,
and no instance is solved for n > 3. In Deep, only 8 leaves
can be solved with n = 2. We created a Broad-Trap sce-
nario, where a second chain of concepts can be linked, but
is completely irrelevant for the goal service. CFF is largely
unaffected by this, since the heuristic function correctly ex-
cludes the irrelevant parts. The deduction-based approach,
by contrast, can solve only up to 14 leaves with n = 2, and
no longer solves any instance with n > 2.

Conclusion and Future Work

We have identified a special case of planning with back-
ground theories that is relevant in the WSC context; we have
established a new connection to initial state uncertainty and
have performed a first experiment. Exploring these results
further has the potential to yield powerful and scalable tools
for WSC within the near future.

References
Agarwal, V.; Chafle, G.; Dasgupta, K.; Karnik, N.; Kumar, A.;
Mittal, S.; and Srivastava, B. 2005. Synthy: A system for end to
end composition of web services. JWS 3(4).
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Planning
graph heuristics for belief space search. JAIR 26:35-99.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant plan-
ning via symbolic model checking and heuristic search. Al 159(1—
2):127-206.
Coalition, T. O. S. 2003. OWL-S: Semantic Markup for Web
Services.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A. 2003.
A logic programming approach to knowledge-state planning, II:
The DLVK system. Al 144(1-2):157-211.
Fensel, D.; Lausen, H.; Polleres, A.; de Bruijn, J.; Stollberg, M.;
Roman, D.; and Domingue, J. 2006. Enabling Semantic Web
Services— The Web Service Modeling Ontology. Springer-Verlag.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and Turner, H.
2004. Nonmonotonic causal theories. Al 153(1-2):49-104.
Hoffmann, J., and Brafman, R. 2006. Conformant planning via
heuristic forward search: A new approach. Al 170(6-7):507-541.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253-302.
Hoffmann, J.; Bertoli, P.; and Pistore, M. 2007. Web service com-
position as planning, revisited: In between background theories
and initial state uncertainty. Technical report, DERI Innsbruck.
Auvailable at http://members.deri.at/ joergh/papers/tr-aaai07.ps.gz.
Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Automated com-
position of web services by planning in asynchronous domains.
In Proc. ICAPS-05.
Ponnekanti, S., and Fox, A. 2002. SWORD: A developer toolkit
for web services composition. In Proc. WWW-02.
Sirin, E., and Parsia, B. 2004. Planning for semantic web services.
In Workshop “Semantic Web Services” at ISWC-04.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense of
PDDL axioms. Al 168(1-2):38-69.
Winslett, M. 1988. Reasoning about actions using a possible
models approach. In Proc. AAAI’SS.

