Web Service Composition

Jorg Hoffmann
Department of Computer Science
Saarland University
Saarbriicken, Germany
hoffmann @cs.uni-saarland.de

Synonyms

Semantic web service composition, Al planning, business
process creation.

Glossary

Web Service: Self-contained software module available via
a network.

SOA: Service-oriented architecture, a software architecture
based on Web services.

BP: A Business Process “consists of a set of activities that
are performed in coordination in an organizational and tech-
nical environment.”[42]

BPM: Business Process Management “includes concepts,
methods, and techniques to support the design, adminis-
tration, configuration, enactment, and analysis of business
processes.”’[42]

Composition: A combination of web services achieving a
higher-value service.

BPEL: Business process execution language, a program-
ming language for creating compositions.

BPMN: Business process model and notation, a high-level
notation and semantics for compositions.

Manual composition: The process of creating a composi-
tion by hand.

Automatic composition: The process of creating a compo-
sition based on a description of what it should achieve.
Planning: An area of Artificial Intelligence aiming at equip-
ping computers with general problem solving capabilities.

Definition

The prevalent architectural model of modern enterprise ap-
plication software and other distributed systems is Service-
Oriented Architecture (SOA): applications are split into
reusable blocks of functionality — the services — which are
exposed to respective consumers. A Web service is a “self-
describing, self-contained software module available via a
network, such as the Internet, which completes tasks, solves

Ingo Weber
Software Systems Research Group
NICTA
Sydney, Australia
ingo.weber@nicta.com.au

problems, or conducts transactions on behalf of a user or
application” [26]. Examples for publicly available Web ser-
vices include US National Weather’s weather service [37] or
Amazon’s book search service [2]. An important aspect of
designing services is to assure they can be usefully applied
in various contexts [9]. As such, Web service composition
refers to both the activity and the result of combining multi-
ple Web services into a higher-value service.

Two flavours of Web service compositions are com-
monly distinguished: orchestration and choreography. An
orchestration of Web services is the “inside-out view” [28]
on an implemented business process of an organization —
while containing the information how to interact with busi-
ness partners, it also describes how and when to invoke Web
services of the organization itself. In contrast, a choreogra-
phy “defines the sequence and conditions under which mul-
tiple cooperating independent agents exchange messages in
order to perform a task to achieve a goal state” [38]. Orches-
trations are scripts that are detailed enough to be actively
executed, typically implementing a composition from the
viewpoint of one organization. In contrast, choreographies
are global contracts between participants of equal impor-
tance; adherence to the contract can be passively observed,
but the contract cannot be actively executed.

Introduction

In this chapter, we describe the main aspects and topics sur-
rounding Web service composition. The main distinction
we make is whether a composition is created manually, by
a human modelling the composition in a suitable language,
or automatically, by a program that accepts a declarative de-
scription of the composition-to-be as well as the available
services, upon which the program combines a suitable sub-
set of the available services into a composition. Various lan-
guages have been proposed for manual composition, ranging
from programming-like languages expressed in XML, such
as the Web Services Business Process Execution Language
(WS-BPEL) [24], over graphical languages such as Busi-
ness Process Model and Notation (BPMN) [25], to domain

expert-focused languages [41]. We give an overview of the
main approaches and explain how and where they are ap-
plied. Automatic composition frequently builds on Al Plan-
ning. We overview the foundations, and explain how these
techniques are applied to automatically generate orchestra-
tions.

Key Points

Web service composition is a software-engineering technol-
ogy allowing to flexibly recombine pre-existing functional-
ities, across physical and organizational boundaries. Au-
tomation techniques facilitate this task by allowing to conve-
niently find relevant functionalities in large repositories, and
by pre-composing them in sensible ways. In the present ar-
ticle, we provide a brief overview of the history and current
state of this technology, as an area of industrial application
as well as academic research. We highlight its use in Busi-
ness Process Management (BPM), an important application
area of Web service composition. The key points we make
are:

(1) Background: We explain how WSC was initially con-
ceived, and how the composition languages in use to-
day were designed. We outline the academic sources
of the main automation techniques.

(i) WSC languages: We overview two of the main lan-
guages for defining Web service compositions, BPEL
and BPMN. We summarize the key applications of this
methodology, illustrating it with the use of BPMN at
SAP.

(iii) Automation techniques: We describe two of the main
technologies allowing to automatically pre-compose
Web services, both based on Al Planning technology.
We summarize the key applications, and outline a con-
crete application we developed at SAP.

Historical Background

Web Service Composition

The main drivers behind Web services and their composition
are two-fold. On the one hand, the increasing development
of enterprise software led to the need for integrating various
systems with each other. For instance, making information
from a warehouse solution available to a production system,
and in turn, linking the latter to the financial planning and re-
porting system of a company can lead to increased efficiency
throughout an organization. However, traditional systems
were restricted in the integration technology; e.g., in Java,
remote procedure calls could only be achieved between two

systems using the same Java version. Web service technol-
ogy provides a standardized mechanism to interact with re-
mote system components over standard networks, like the
Internet. This further allows code reuse on a functional level:
functionality available as a service can be reused without
having to consider the underlying technology or involving
the original developers of the service. The described func-
tionality is also advertised in a standardized way, and con-
sumers of the service can develop their systems against the
advertised description.

On the other hand, proprietary systems were often per-
ceived as inhibiting quick changes: the speed with which
business demands change is ever-increasing; the speed with
which traditional implementations of business processes
could be changed did not match this increased pace [12].
This situation called for a shift in the way business applica-
tions were implemented, in order to support fast changes in
business process implementations or allowing the swift im-
plementation of new processes. Therefore, business process
models are nowadays implemented as Web service composi-
tions: rather than changing proprietary systems and integrat-
ing them in different ways, the idea is to combine existing
blocks of functionality — the services — in novel ways.

Planning for Web Service Composition

The dominating paradigm towards automation of Web ser-
vice composition, i.e., towards technology that selects and
pre-composes Web services based on a high-level specifi-
cation of the user requirement (that the composed service
should accomplish), is Al Planning. That field has its roots
at the dawn of Artificial Intelligence (Al), where it was
initially conceived having in mind to achieve the flexible
problem-solving capabilities of humans. Planning tools are
aimed at solving not just one specific problem, but at solving
all problems, so long as they can be described in a suitable
declarative input language.

Concretely, planning problems are described in terms of
an initial state, a goal, and a set of possible actions. Given
this input, the planning tool automatically derives a plan, a
schedule of actions transforming the initial state into a state
that satisfies the goal. A multitude of variants of this kind
of problem have been investigated. For an overview of the
area, we recommend the book by Ghallab et al. [10].

Seminal work on automization in WSC [23, 32] viewed
‘Web services as transformations on states, and viewed user
requirements as pairs of preconditions (“what I got”) and
postconditions (“what I want”). In the infamous “Virtual
Travel Agency” example (which is probably not the most
relevant application of automated WSC, but serves to il-
lustrate the idea), the Web services implement transactions
booking a train or flight ticket, the precondition describes
the user’s travel preferences, and the postcondition requires
an appropriate journey to be booked. The correspondence

to planning is immediate: the Web services are the actions,
the user requirement precondition is the initial state, and the
user requirement postcondition is the goal. This correspon-
dence has formed the basis of most work in this area, since
the early 2000s. A main prerequisite is that the Web services
come with a suitable planning-like description of what they
do (also a precondition/postcondition pair, in most cases).
These descriptions are referred to as semantic annotations,
and connect automated WSC to Semantic Web research. In
particular, the most wide-spread semantic Web language,
OWL [43], has a module OWL-S [6] allowing to annotate
Web services in this way.

Web Service Composition Languages

As outlined in the introduction, the two main composition
languages covered in this chapter are WS-BPEL and BPMN.
A composition language is defined by its syntax — its appear-
ance, i.e., XML expressions (BPEL) or graphical symbols
(BPMN) — as well as its execution semantics — how com-
binations of syntax elements translate to process behavior,
e.g., a sequence in BPEL means that the contained activ-
ities are executed in sequential order.

BPEL

BPEL is primarily a block-structured language, i.e., control
flow is defined by nesting actions into control flow con-
structs such as sequence mentioned above. We explain
the main elements using the example of a phone line order
process given in Listing 1. Control flow elements include i £
/ elseif / else forconditional execution (see around
line 6 in Listing 1, the check if the order comes from an ex-
isting customer), £ 1ow for parallelism (concurrent updating
of the provisioning system and order confirmation, around
line 13),and while / forEach / repeatUntil for
repetition. The core activity types around which control flow
is structured are assign for data manipulation in variables
(copying the order information to the internal format, line 4),
invoke for calling Web services (e.g., checking the cus-
tomer status, line 5), receive for incoming Web service
calls (line 3), and reply for replying to received calls (or-
der confirmation or rejection, line 16 or 19).

Listing 1: Phone Line Order Process from the telecommuni-
cations domain in simplified BPEL.

| <process name="PhoneLineOrderProcess">

2 <sequence>

3 <receive name="ReceiveNewOrder" />
4 <assign name="CopyInformation">

5 <invoke name="CheckCustomerStatus">
6 <if>

7 <condition name="newCustomer"/>

8 <invoke name="CreateNewCustomer">
9 </if>

10 <invoke name="CheckOrder">

11 <if>

12 <condition name="compatibleOrder"/>
13 <flow>

14 <invoke name

15 ="UpdateProvisioningSystems">
16 <reply name="OrderConfirmation">
17 </flow>

18 <else>

19 <reply name="OrderRejection">

20 </else>

21 </if>

2 </sequence>
23 </process>

Besides the block-structured parts of BPEL, the f1low
element may be enriched with 1inks inducing partial or-
dering: if there is a link from activity A to activity B, A’s
execution needs to be completed before B is started. Com-
plex conditions can guide how an activity should behave that
is the target of multiple links.

BPEL includes many more elements — such as partner
links, event-based behavior, fault handling, and compensa-
tion — not discussed here for brevity. Due to its XML-based
syntax and close proximity to programming models, BPEL
adoption has focused on a technical integration layer be-
tween Web service-based systems [35].

BPMN

BPMN in contrast is a language with a graphical syntax,
which is said to appeal more to business users. Fig. 1 shows
the sample process from Listing 1 in BPMN.

BPMN distinguishes between the main element types of
activity (rectangle with rounded corners), event (circle), and
gateway (diamond), as well as certain arrow types for ex-
pressing control and data flow. Basic activities just contain
a textual label, like “Check Customer Status” in Fig. 1.

Start events have a single, thin line surrounding them
(e.g., “New Order”), intermediate events a double thin line
(e.g., “Reject Order”), and end events a single, thick line
(bottom right corner of Fig. 1). The respective meaning of
an event is partly expressed by the contained symbol, if any
—e.g., the white letter symbol in the shown start event means
receiving a message, whereas a black letter symbol, e.g., in
the intermediate events in Fig. 1, indicates sending a mes-
sage. Other symbols (not shown here) include time-related
events, errors, compensation, and many more.

Gateway types are distinguished in a similar fashion: a
“+” indicates a parallel split/join gateway, an “X” inside a
diamond refers to an exclusive-or (XOR) split/join. The for-
mer can be seen in Fig. 1 before (split) and after (join) “Con-
firm Order” / “Update Provisioning Systems”. XOR gate-
ways are used, e.g., around the conditional activity “Create
New Customer Record” in Fig. 1. The outgoing arrows from
the XOR split indicate conditional execution (arrow starting
with a diamond and condition “New Customer’) or default

Check Customer
Status

New
Order

Create New
Customer
Record

Check Order

A

Compatible Order

Update
Provisioning
Systems

Figure 1: Phone Line Order Process from the telecommuni-
cations domain in BPMN.

(arrow start crossed by a diagonal line). Additional gateway
types in BPMN (not shown here) are inclusive-or, complex,
and (parallel) event-based.

BPMN also contains elements for modeling process
parts in separate spheres of control, choreographies, excep-
tion handling, links between several models, and many more
details left out here for brevity.

BPMN for Web service composition. Being a graph-
ical, generic business process modeling language, BPMN
can be used for many purposes, such as documenting pro-
cesses or training new employees. However, BPMN is also
used for modeling Web service compositions. While this
usage was limited in BPMN v1.1 by partially unclear exe-
cution semantics, this problem has been overcome in v2.0.
Yet, graphical models by themselves do not contain enough
details to be an executable as such. Missing information in-
clude the Web service location (URL), which operation to
call, what data to send in which format, etc. Tool vendors
using BPMN for Web service composition allow the spec-
ification of these details often in proprietary form, e.g., as
properties of activities. Examples of such tools include SAP
NetWeaver BPM Process Composer [34], Intalio|BPM De-
signer [8], and many more.

Automation Techniques

We now consider planning-based techniques for automated
WSC in some detail. A multitude of approaches exist (e.g.,
[23, 32,7, 18, 31, 20, 15, 17]), which differ widely in inten-
tion, scope, and underlying formalisms. A major distinction
line is that between (A) planning for service chaining and
(B) planning for service interactions. (A), but not (B), sim-
plifies the automated WSC challenge — which is essentially
a form of automated programming and thus quite difficult
— by viewing Web services as one-shot applications, taking
into account their input/output typing and high-level proper-
ties (like available credit), but ignoring the technical details
of interacting with them. Thus (A) provides only a compo-
sition template, pre-selecting and arranging a subset of rel-
evant Web services. (B), by contrast, delivers an executable
software artifact, i.e., an orchestration. Its disadvantages are
computational (practical scaling is much worse than in the
simplified variant), as well as in modeling because deliver-
ing executable software requires a very fine-grained specifi-
cation of the user requirement.

In what follows, we mainly focus on (A), because it
is easier to comprehend in the limited space, and has rel-
evant applications in BPM. We remark that one can com-
bine both approaches naturally, using (A) as a pre-process
to (B). This yields much smaller input for (B), along with
additional information how the relevant Web services could
be combined, and thereby helps to address both (B)’s scala-
bility issues and modeling requirements [5].

Foundations

To make matters concrete, we describe a simple planning
formalism, planning with finite-domain variables [13]. A
planning task is a tuple (X,I,G,A). X is a finite set of
state variables, where each x € X is associated with a finite
domain D,. A partial state over X is a function s on a
subset X of X, so that s(z) € D, forallz € X,; sisa
state if Xy = X. The initial state I is a state. The goal G is
a partial state. A is a finite set of actions. Eacha € A is a
pair a = (pre,, eff,,) of partial states, called its precondition
and effect. Partial states are identified with sets of variable-
value pairs, referred to as facts. The state space of the task
is the directed graph whose vertices are all states over X,
with an arc (s, s') iff there exists a € A such that pre, C s,
eff, C ¢, and s(z) = §/(z) forallx € X \ Xeg,. A plan
is a path in the state space, leading from I to a state s with
G C s. (Note that the size of the state space is exponential
in the number of variables. Thus this planning language,
despite its simplicity, allows to describe compactly a large
number of possibilities; deciding whether or not there exists
a plan is PSPACE-complete.)

For example, say we have a variable for the status
of a flight booking, Pending vs. Confirmed. The book-

Action name ‘ precondition

‘ effect

Create CQ

(CQ.approval:necessary OR CQ.approval:notNecessary)
AND CQ.acceptance:notAccepted

AND CQ.archiving:notArchived

AND CQ.submission:notSubmitted

CQ Approval | CQ.approval:necessary

CQ.approval:approved OR CQ.approval:rejected

Submit CQ CQ.archiving:notArchived AND CQ.submission:submitted
(CQ.approval:notNecessary OR CQ.approval:granted)

Mark CQ CQ.archiving:notArchived AND CQ.acceptance:accepted

as Accepted CQ.submission:submitted

Archive CQ CQ.archiving:notArchived CQ.archiving:archived

Figure 2: A SAM-like example, modeling the behavior of “customer quotes” CQ.

ing is currently pending, we wish it to be confirmed,
and the only action is a Web service confirming the
booking. In the above formalism, this can be modeled
as follows. X = {flightStatus} with Dggnistatus =
{Pending, Confirmed}; I = {(flightStatus, Pending)};
G = {(flightStatus, Confirmed)}; A contains a sin-
gle action taking the form ({(flightStatus, Pending)},
{(flightStatus, Confirmed)}) where {(flightStatus,
Pending)} is the precondition and {(flightStatus,
Confirmed)} is the effect. The state space contains the two
vertices {(flightStatus, Pending)} and {(flightStatus,
Confirmed)}, the only arc going from the former to the
latter. The plan traverses that arc, confirming the flight.

When applying this form of planning to WSC, each Web
service is modeled as an action, so we describe its “precon-
dition” and “effect” using the above structures. This allows
to express the service’s input and output behavior, i.e., the
typing of the respective service parameters. As a simple ex-
ample, the service input may be a customer-data object, and
the output may be a reservation object. Further, one can
express additional prerequisites or consequences the service
may have. For example (presuming a richer planning lan-
guage dealing with numeric state variables), a precondition
“credit > 500” may require the sufficient availability of
money, and an effect “credit := credit — 500” may reduce
the available money by that amount.

Planning is computationally hard even in its simplest
forms, however research has come up with a range of ap-
proaches that tend to be effective in practice (e.g. [16, 33]).
Provided that the plans to be created are not too large
(around a few dozen actions), they are typically found within
seconds (e.g. [15, 17]). On the downside, plans here are not
executable software artifacts. They disregard the order of
interactions required for communicating with the services
(making a reservation typically involves several steps), and
they disregard the underlying data structures (what exactly is
a “customer-data object”?). Given this, in the typical appli-
cation scenario, a human user is responsible for the overall
design, and uses the planning facility for easing the task of
selecting and arranging a useful subset of services from a
large services database or the internet (e.g. [1, 17]).

In difference to planning for service chaining, planning
for service interactions (e.g., [30, 4, 5, 21, 3]) has the am-
bition to create executable software. Each Web service is
modeled as a state transition system, specifying its interac-
tion behavior in terms of a set of different internal states of
the service, along with transitions associated with input and
output objects. The task is to automatically generate a new
transition system, implementing a controller that interacts
with the given services in a way satisfying a composition re-
quirement. The input transition systems correspond closely
to BPEL abstract processes, and thus are easy to come by in
practice. The difficult issue regarding modeling is the com-
position requirement, which must be provided by the user
desiring to create the process, and which can become rather
complex since it must be sufficiently precise to describe the
desired software.

Modeling also is a crucial point in the practice of plan-
ning for service chaining. Although the annotations needed
are more light-weight than in planning for service interac-
tions, the modeling overhead can be prohibitive. In our own
work at SAP [17], we showed that, sometimes, it is possible
to re-use pre-existing models of software behavior, reducing
that overhead dramatically. We now consider this approach
in some detail, as an example.

Ilustrative Example

SAP widely employs model-driven software engineering.
In particular, Status and Action Management (SAM) mod-
els over 400 business objects (BOs). BOs are software ob-
jects corresponding to common business scenarios, like a
customer quotes or a sales order. SAM models these com-
plex objects at the business-level of abstraction. Each BO is
described using a set of finite-domain status variables, and
a set of actions. Each action is specified in terms of a pre-
condition and an effect, describing which status values are
required in order to execute the action, respectively how the
action may change these values. For illustration, Figure 2
gives a SAM-like model for a BO called “customer quote
(CQ)”. (Note that, for confidentiality reasons, the shown ob-
ject and model are artificial, i.e., they are not contained in
SAM as used at SAP.) In Figure 2, by “CQ.X:Y” we de-

note the atomic proposition stating that variable X of the
customer query has value Y.

The original purpose of SAM is code generation: code
skeletons check if preconditions are fulfilled at runtime, and
update the status variables accordingly. Despite this differ-
ence in purpose, clearly SAM corresponds closely to plan-
ning with finite-domain variables. Indeed, the only differ-
ences are that SAM preconditions are logical formulas in-
cluding “OR” and “NOT” connectives, and that SAM action
effects can be non-deterministic, i.e., have several possible
outcomes. Both have long been subject of research in Al
Planning, and in our work we adapted a wide-spread plan-
ning technique [16] to deal with SAM.

MOT Status: ApprovalMotiecessary @ CustomerGuote

% Custamer
Cwiote
Approval

Status: 4pprovalotiecessary @ CustomerGuote

5 Mark Customer
Guiote a3 Accepted

“Create Sales Order
from Custamer
Guote

®

End O

Figure 3: Screenshot of the SAP NetWeaver BPM Process
Composer with an automatically composed process of five
non-deterministic services. Source: [39].

The planning functionality is implemented as a prototyp-
ical research extension to the SAP NetWeaver BPM Process
Composer. In that modeling environment, business users can
specify the requirement on a to-be-composed process (typi-
cally a variation of a standard process), in terms of changes
to SAM status variables, i.e., essentially in their own lan-
guage. The status values are specified using simple drop-
down menus. Pushing a button invokes the planner, which
returns a BPMN template for the new process. Figure 3
shows that template, for the example from Figure 2. Note
the non-deterministic effect of the create operation (top): ap-
proval may or may not be necessary. Depending on which
is the case, an additional approval step is included. That
step also has two possible outcomes. The process continues
only in the positive case. For the negative case, exception
handling is needed, and since SAM does not contain infor-
mation about how that should be done, the planner cannot

compose it and leaves this part of the process unspecified.
The template is also incomplete in that not every customer
quote should be approved, submitted, etc. straight after be-
ing created.

Key Applications

As outlined, planning for service chaining can be used to
help with the generation of new or changed process in BPM.
This is important because changes are frequent in dynamic
markets, while the people responsible for adapting the pro-
cesses — business experts — are not familiar with the un-
derlying IT infrastructure. Designing executable processes
requires intensive communication between business experts
and IT experts, incurring significant costs for human labor
and increased time-to-market. Planning, as in our applica-
tion based on SAM at SAP, helps business experts to come
up with a process close to the IT infrastructure, and thus
helps to bridge the expertise gap more efficiently.

Another key application of planning for service chaining
is the control of computing and network resources. With the
advent of cloud computing, changing the state of resources
or acquiring new resources can be achieved by invoking Web
services — see e.g., Amazon Web Services EC2, S3, and re-
lated services [36]. Planning can then be used to bring a
system’s structure from the current state to a more desired
state, e.g., [19, 14, 11, 40].

Planning for service interactions has been successfully
applied in a variety of areas, including electronic commerce
[22] and electronic government [29].

Future Directions

We highlight a few of the current trends in WSC that we per-
sonally consider important. On the side of WSC languages,
a fairly recent development is the release of BPMN 2.0, in-
cluding a profile for specifying choreography models. An-
other trend is end-user-focused WSC [41], i.e., simplifying
the (manual) composition method to a point where business
users can code compositions for their personal needs them-
selves. Last but not least, we want to mention techniques
for looser coupling of compositions to Web services. This is
particularly interesting when available Web services follow
the REST paradigm. Composition methods for REST-based
services include adapting BPEL [27], or custom approaches
like [44], where REST services include the relevant frag-
ments of the composition in messages returned to the client.
Fot automated WSC, the challenge essentially is to keep of
with these developments, since every distinct WSC frame-
work has different prerequisites and requirements on the au-
tomation support.

Cross-references

e Cloud Computing 00105
e Description Logics 00108
e E-Commerce and Internet Business 00061

e Modeling of Business Processes and Crisis Manage-
ment 00275

e Ontology Matching 00123

e OWL (Web Ontology Language) 00113
e RDF 00114

e Reasoning 00115

e Semantic Annotation 00119

e Service Discovery 00121

e Web Mashups 00130

e WSDL 00134

Acknowledgements

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

Parts of this chapter are based on other publications of
the authors, as cited in the text.

References

[1] V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Ku-
mar, S. Mittal, and B. Srivastava. Synthy: A system for
end to end composition of web services. J. Web Seman-
tics, 3(4), 2005.

[2] Amazon Web Services. E-commerce service API, ac-
cessed: 14/5/2013. http://webservices.
amazon.com/AWSECommerceService/
AWSECommerceService.wsdl.

[3] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore,
H. Raik, and M. Wagner. Control Flow Require-
ments for Automated Service Composition. In Proc.
of the IEEE International Conference on Web Services
(ICWS09), 2009.

[4] P. Bertoli, M. Pistore, and P. Traverso. Automated web
service composition by on-the-fly belief space search.
In 16th International Conference on Automated Plan-
ning and Scheduling (ICAPS-06), 2006.

(5]

[10]

[11]

[12]

[13]

[14]

[15]

Piergiorgio Bertoli, Joerg Hoffmann, Freddy Lecue,
and Marco Pistore. Integrating discovery and auto-
mated composition: from semantic requirements to ex-
ecutable code. In Proceedings of the IEEE 2007 In-
ternational Conference on Web Services (ICWS’07),
2007.

Mark Burstein, Jerry Hobbs, Ora Lassila, Drew Mc-
Dermott, Sheila Mcllraith, Srini Narayanan, Mas-
simo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin,
Naveen Srinivasan, Katia Sycara, and David Martin
(ed.). OWL-S: Semantic Markup for Web Services.
OWL-S 1.1. http://www.daml.org/services/owl-s/1.1/,
November 2004. Version 1.1.

Ion Constantinescu, Boi Faltings, and Walter Binder.
Large scale, type-compatible service composition. In
2nd International Conference on Web Services (ICWS-
04), pages 506-513, 2004.

Intalio|BPM Designer. http://www.intalio.
com/bpms/designer.

Thomas Erl. Service-Oriented Architecture: Principles
of Service Design. Prentice Hall, Upper Saddle River,
NJ, USA, 2007.

Malik Ghallab, Dana Nau, and Paolo Traverso. Auto-
mated Planning: Theory and Practice. Morgan Kauf-
mann/Elsevier, San Francisco, CA, USA, 2004.

Sebastian Hagen and Alfons Kemper. Model-based
planning for state-related changes to infrastructure and
software as a service instances in large data centers. In
Proceedings of the 2010 IEEE 3rd International Con-
ference on Cloud Computing, CLOUD ’10, pages 11—
18, Washington, DC, USA, 2010. IEEE Computer So-
ciety.

Randy Heffner, Bobby Cameron, and Kimberly Dowl-
ing. Your strategic SOA platform vision crafting
your architectural evolution to service-oriented archi-
tecture. Technical report, Forrester Research, Trends,
29 March 2005.

Malte Helmert. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence, 173(5-
6):503-535, 2009.

Herry Herry, Paul Anderson, and Gerhard Wickler.
Automated planning for configuration changes. In
LISA’11: Large Installation System Administration
Conference, 2011.

Jorg Hoffmann, Piergiorgio Bertoli, Malte Helmert,
and Marco Pistore. Message-based web service com-
position, integrity constraints, and planning under un-
certainty: A new connection. J. Artificial Intelligence
Research, 35:49-117, 2009.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Jorg Hoffmann and Bernhard Nebel. The FF planning
system: Fast plan generation through heuristic search.
J. Artificial Intelligence Research, 14:253-302, 2001.

Jorg Hoffmann, Ingo Weber, and Frank Michael Kraft.
SAP speaks PDDL: Exploiting a software-engineering
model for planning in business process management.
J. Artificial Intelligence Research, 44:587-632, 2012.

U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler.
Information gathering during planning for web service
composition. J. Web Semantics, 3(2-3):183-205, 2005.

Feng Liu, Vitalian Danciu, and Pavlo Kerestey. A
framework for automated fault recovery planning in
large-scale virtualized infrastructures. In MACE 2010,
LNCS 6473, pages 113-123, 2010.

Zhen Liu, Anand Ranganathan, and Anton Riabov. A
planning approach for message-oriented semantic web
service composition. In 22nd National Conference
of the American Association for Artificial Intelligence
(AAAI’07), 2007.

A. Marconi and M. Pistore. Synthesis and composition
of web services. In Formal Methods for Web Services,
pages 89—157. Springer Berlin / Heidelberg, 2009.

A. Marconi, M. Pistore, and P. Traverso. Automated
Web Service Composition at Work: the Amazon/MPS
Case Study. In Proc. of IEEE International Conference
on Web Services (ICWS’07), 2007.

Sheila Mcllraith and Tran Cao Son. Adapting Golog
for composition of semantic Web services. In Proc. of
the 8th Int. Conf. on Principles and Knowledge Rep-
resentation and Reasoning (KR-02), Toulouse, France,
2002.

OASIS. Web Services Business Process Execution
Language V 2.0, April 2007.

OMG. Business Process Model and Notation — BPMN
2.0. http://www.omg.org/spec/BPMN/2.0/, 2011.

Mike Papazoglou. Web Services: Principles and Tech-
nology. Prentice Hall, Upper Saddle River, NJ, USA,
2007.

Cesare Pautasso. Restful web service composition with
bpel for rest. Data Knowl. Eng., 68(9):851-866, 2009.

C. Peltz. Web Services Orchestration and Choreogra-
phy. Computer, 36(10):46-52, 2003.

M. Pistore, P. Braghieri, P. Bertoli, A. Biscaglia,
A. Marconi, S. Pintarelli, and M. Trainotti. ASTRO:
supporting the composition of distributed business pro-
cesses in the e-government domain. In At Your Service:

[30]

[31]

(32]

[33]

[34]

[35]

[36]
[37]

(38]
[39]

[40]

[41]

[42]

Service-Oriented Computing from an EU Perspective,
2008.

M. Pistore, P. Traverso, and P. Bertoli. Automated
composition of web services by planning in asyn-
chronous domains. In 15th International Conference
on Automated Planning and Scheduling (ICAPS-05),
2005.

M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Au-
tomated synthesis of composite BPEL4AWS web ser-
vices. In 3rd IEEE International Conference on Web
Services (ICWS-05), 2005.

Shankar Ponnekanti and Armando Fox. SWORD: A
Developer Toolkit for Web Service Composition. In
Proceedings of the 11th International WORLD WIDE
WEB CONFERENCE — WWW2002, 2002.

Silvia Richter and Matthias Westphal. The LAMA
planner: Guiding cost-based anytime planning with
landmarks. J. Artificial Intelligence Research, 39:127—
177, 2010.

SAP. NetWeaver BPM Process Composer - http:
//scn.sap.com/community/bpm.

Terry Schurter. BPM State of the Nation
2009. bpm.com, http://www.bpm.com/
bpm-state-of-the-nation-2009.html,
accessed 25/11/2009, 2009.

Amazon Web Services.

US National Weather.
accessed: 14/8/2012.
weather.gov/xml/.

Weather service API,
http://graphical.

W3C. Web Services Architecture.

Ingo Weber. Semantic Methods for Execution-level
Business Process Modeling. PhD thesis, Universitit
Karlsruhe (TH), November 2009. Springer, Lecture
Notes in Business Information Processing (LNBIP)
Vol. 40, ISBN 978-3-642-05084-8.

Ingo Weber, Hiroshi Wada, Alan Fekete, Anna Liu,
and Len Bass. Automatic undo for cloud management
via ai planning. In Hotdep’12, Oct 2012.

Ingo Weber, Hye young Paik, and Boualem Benatallah.
Forms-based service composition. In ICSOC’11: 9th
International Conference on Service Oriented Com-
puting, short paper, Paphos, Cyprus, Dec 2011.

Mathias Weske. Business process management: con-
cepts, languages, architectures. Springer Verlag,
Berlin, Heidelberg, 2007.

[43]

[44]

World Wide Web Consortium (W3C). Web Ontology
Language (OWL). W3C Recommendation 10 February
2004.

Xiwei Xu, Liming Zhu, Udo Kannengiesser, and Yan
Liu. An architectural style for process-intensive web
information systems. In WISE’10: Proceedings of the
11th international conference on Web information sys-
tems engineering, pages 534-547, Berlin, Heidelberg,
2010. Springer-Verlag.

