
Ontology-based Integration of Sensor Web Services in
Disaster Management

Grigori Babitski1, Simon Bergweiler2, Jörg Hoffmann1, Daniel Schön3,
Christoph Stasch4, and Alexander C. Walkowski4

1 SAP Research, Karlsruhe, Germany
{grigori.babitski|joe.hoffmann}@sap.com

2 DFKI, Saarbrücken, Germany
Simon.Bergweiler@dfki.de
3 Itelligence AG, Köln, Germany

daniel.schoen@itelligence.de
4 Institute for Geoinformatics, Münster, Germany
{staschc|walkowski}@uni-muenster.de

Abstract. With the specifications defined through the Sensor Web Enablement
initiative of the Open Geospatial Consortium, flexible integration of sensor data
is becoming a reality. Challenges remain in the discovery of appropriate sensor
information and in the real-time fusion of this information. This is important, in
particular, in disaster management, where the flow of information is overwhelm-
ing and sensor data must be easily accessible for non-experts (fire brigade of-
ficers). We propose to support, in this context, sensor discovery and fusion by
“semantically” annotating sensor services with terms from an ontology. In doing
so, we employ several well-known techniques from the GIS and Semantic Web
worlds, e.g., for semantic matchmaking and data presentation. The novel contri-
bution of our work is a carefully arranged tool architecture, aimed at providing
optimal integration support, while keeping the cost for creating the annotations
at bay. We address technical details regarding the interaction and functionality of
the components, and the design of the required ontology. Based on the architec-
ture, after minimal off-line effort, on-line discovery and integration of sensor data
is no more difficult than using standard GIS applications.

1 Introduction

Disasters may be caused by flooding, earthquakes, technical malfunctions, or terrorist
attacks, to name a few. The efficient handling of such emergencies, i.e., the manage-
ment of the measures taken to fight them, is a key aspect of public security. This is
especially true in an increasingly tightly interlinked world, where problems in one area
may quickly cause problems in connected areas. This phenomenon often causes dis-
asters to exhibit an explosive growth, especially during their early stages. Defensive
measures in such a stage are still premature, leading in combination with the explosive
growth to what has been termed the “chaos-phase” [22]. Methods for shortening that
phase are widely believed to be essential for limiting the damage caused by the disaster.

One of the characteristics of the chaos-phase is the overwhelming flow of infor-
mation that must be managed by the defense organizations, such as fire brigades and



2

the police. Depending on the scale of the disaster, each organization establishes a cri-
sis team, i.e., a committee of officers deciding which actions to take, and monitoring
their execution. To come up with informed decisions, members of the crisis team must
process an enormous amount of heterogenous information, such as messages from the
public, feedback from own forces in the field or from partner organizations, and – last
not least – Geospatial information such as weather conditions and water levels. Our
focus herein is on the latter. Since not only is the amount of information huge, but also
it must be evaluated in a situation of extreme stress and pressure, it is of paramount
importance that the information can be accessed quickly and with complete ease.

In the SoKNOS project5, we develop a service-oriented system facilitating amongst
other things the integration of Geospatial information. This integration is realized in a
Geographic Information component (GI Plugin), which offers functionalities to query
data from several geospatial web services, to visualize the data in a map component,
and to analyze the data through integrated GIS functionalities. Additional analyzing
capabilities (e.g. simulations) can be intergrated by adding external processing services.
The difficulty of integrating new information into the map depends on the form the
information comes in. Our most basic assumption is that the information is encapsulated
into Web services conforming with the standard specifications of the Open Geospatial
Consortium (OGC). The integration of basic maps is realized through adding data from
Web Mapping Services (WMS). Vector data (e.g. risk objects) can be accessed through
Web Feature Services (WFS) and hence require the creation of suitable queries which
poses serious challenges; indeed, given the stress and pressure of the targeted scenario,
pre-specified queries are necessary.

An interesting and important middle ground are sensors, accessible through e.g. the
Sensor Observation Services (SOS) as specified by the Sensor Web Enablement (SWE)
initiative of the OGC. As sensor data is time-dependent,

what the user needs to provide is, essentially, the desired Geographic area, the de-
sired time interval, and the desired properties to be observed. The SOS specification
lays the basis for doing so in an interoperable manner. Areas and time points are fully
covered by standards. The main problems remaining are:

(I) For identifying observed properties, mediation is required between the terminol-
ogy of the user and that of the Web service design.

(II) The user may not even know a technical term for the observed property she is
looking for, necessitating an option to search by related terms.

(III) For fusing the information of several sensors, data transformation (e.g. units of
measurement) is needed, and duplicate data needs to be detected and removed.

(IV) Sensors may become dysfunctional and in such case need to be replaced with
suitable alternative sensors.

Characteristic properties of disaster management are that (II) and (IV) are likely to
occur, that the number and types of required sensor informations are manifold, that the
persons needing them act under high pressure, and that these persons have hardly any
IT knowledge. Given this, (I)–(IV) constitute a serious difficulty.

5 Service-oriented architectures supporting networks in the context of public security;
http://www.soknos.de



3

In our work, we have developed and implemented a tool architecture that addresses
(I)–(IV), up to a point where discovery and integration of sensor data is no more dif-
ficult than using standard GIS applications. The key technique is to make use of se-
mantic annotations in a purpose-designed ontology. The technicalities will be summa-
rized directly below, and detailed later on in the paper. First, we need to clarify that
our approach encompasses a separate service registration activity, which contrasts with
service usage. These correspond to the two fundamentally different phases in our do-
main, off-line (prior to the disaster) vs. on-line (during the disaster). On-line, pressured
and hectic users need to comfortably discover and integrate sensor data. As the basis
for that, our approach assumes that – off-line, in peace and with ample time – each
service has previously been registered. Such registration means to acquire the service
(finding it in the Web), to create a description including the semantic annotation, and to
store that description within a local registry.6 Apart from exploiting the off-line phase
in a suitable preparatory way, the distinction between service registration and service
usage also serves for decoupling these activities, allowing them to be performed by dif-
ferent people. The person performing the registration will also be associated with the
fire brigade/police. But she may well have more IT knowledge than typical crisis team
members. (That said, clearly, this person will not be a logics expert, so creating the se-
mantic annotations needs to be reasonably easy; if it is not, then the effort for creating
them is very likely to lead to non-acceptance anyhow.)

A commonly used definition is that an ontology is a formal, explicit specification of
a shared conceptualization [7]. In our context, we define an ontology called Geosensor
Discovery Ontology (GDO). The GDO defines a terminology suitable for describing
sensor observations and related entities. Put in simple terms, the GDO contains:

(a) A taxonomy of phenomena, i.e., of properties that can be observed by sensors.
(b) A taxonomy of substances to which phenomena (a) may pertain.
(c) A taxonomy of Geographic objects to which phenomena (a) may pertain.
(d) The relations between (a), (b), and (c).

To ensure sustainable modeling, the GDO design follows the guiding principles of the
DOLCE foundational ontology [16, 5]. Simply put, DOLCE corresponds to a kind of
widely accepted “best practice” for ontological modelling, serving to avoid common
modelling flaws and shortcomings.

The semantic annotations associate, for a SOS service, each of the service’s ob-
served properties with a concept from (a). Clearly, these annotations are easy to create.
Our architecture provides a simple user interface for doing so via drag-and-drop. In the
obvious manner, the annotations solve problem (I). Since phenomena (a) are organized
in a taxonomy (enabling us to find more general/more specialized sensors), the GDO
also provides sophisticated support for problem (IV). Substances and Geographic ob-
jects are likely candidates a fire brigade officer will use as related terms, hence (b), (c),
and (d) together serve to solve problem (II). Problem (III), finally, is solved by standard
transformations and straightforward usage of the SOS output information.

6 Hence the term “discovery” in this paper refers to finding a suitable sensor, on-line, in a (po-
tentially huge) local registry, not in the Web.



4

It is also required to make the entire functionality easily accessible to the user.
Our Graphical User Interface does so via standard paradigms, and intutive extensions
thereof. For service discovery, the area of interest is marked by mouse movements as a
rectangle on a map; the desired time points are given by manipulating the boundaries of
a time interval; search in the GDO – which from the user’s perspective corresponds to
selecting the desired observations – is realized by text search combined with taxonomy
browsing and following links (given by the relations between pairs of concepts in the
ontology). Once services are discovered, fusing and displaying their data amounts to
a single drag-and-drop action for the user. The architecture was successfully demon-
strated to an evaluation team of German fire brigade and police officers, obtaining a
very positive rating; we give some more details on this in Section 6.

The paper is organized as follows. Section 2 provides a brief background on the
OGC Sensor Observation Service and the Semantic Web. Section 3 introduces concrete
use cases that we will use for illustration. Section 4 covers our architecture, detailing
after an overview the design of the GDO, the semantic annotations, as well as sensor
discovery and fusion. Section 5 discusses related work, and Section 6 concludes with
summary remarks and a discussion of open issues.

2 Background

We briefly give the most relevant background on the SOS service specification, and the
Semantic Web domain.

2.1 Sensor Observation Service

The goal of the OGC Sensor Web Enablement initiative is to enable the creation of
web-accessible sensor assets through common interfaces and encodings [2]. Therefore,
the SWE initiative defines standards for the encoding of sensor data as well as stan-
dards for web service interfaces to access sensor data, task sensors or send and receive
alerts. The Sensor Observation Service (SOS) is part of the SWE framework and offers
a pull-based access to observations and sensor descriptions [18]. The SOS operations
are grouped into three different profiles: the core profile for retrieving the service de-
scriptions, sensor descriptions and observations; the transactional profile for registering
new sensors and inserting new observations; the enhanced profile for offering additional
service functionalities.

In this work, we focus on the basic operations of the SOS defined in the core profile.
The core profile comprises the GetCapabilities, DescribeSensor and GetObservation
operation. The GetCapabilities operation returns a service description of the service
containing information about the supported operations and parameters as well as the
observations which are provided, e.g. spatial and temporal extent of the observations,
producing sensors and observed properties. Sensor metadata like sensor position, cali-
bration information or sensor administrator can be retrieved using the DescribeSensor
operation. The sensor descriptions are usually encoded in the Sensor Model Language
(SensorML), a data model and XML encoding for sensor metadata [1]. The core opera-
tion of the SOS depicts the GetObservation operation. It offers the possibility to query



5

observations filtered by spatial and temporal extent, producing sensors, certain observed
properties, and/or value filters.

The Observations and Measurements (O&M) specification [3] is utilized by the
SOS to encode the data gathered by sensors. It defines a model describing sensor ob-
servations as an act of observing a certain phenomenon. The basic observation model
contains five components: The procedure provides a link to the sensor which generates
the value for the observation.The observedProperty references the phenomenon which
was observed. The Feature Of Interest (FOI) refers to the real world entity (e.g., a river)
which was target of the observation. The time, when the observation was made, is indi-
cated by the samplingTime attribute.The result element contains the observation value.
The observation acts as a property value provider for a feature: It provides a value (e.g.
27 Celsius) for an observed property (e.g. temperature) of the FOI (e.g. weather sta-
tion) at a certain timestamp. The location to which the observation belongs is indirectly
referenced by the geometry of the FOI.

2.2 Semantic Web

In a nutshell (and as far as relevant for this paper), the Semantic Web community is
concerned with the investigation of how annotations within a formal language can help
with performing many tasks in a more flexible and effective way. Specifically, we are
herein concerned with a form of semantic service discovery. The idea is that each Web
service of interest is annotated with (an abstract representation of) its meaning – what
does it do? – and services are discovered by matching this annotation against a dis-
covery query – what kind of service is wanted? – given in the same logic. Since the
annotations and queries, formulated relative to a formal domain model encoding com-
plex dependencies, can be far more precise than free text descriptions, this approach
has the potential to dramatically improve precision and recall.

Semantic discovery is, by the standards of the field, a long-standing topic in the
Semantic Web. Earlier approaches were often based on annotating with, and reason-
ing about, complex logic languages such as 1st-order logic or rich subsets thereof. See
e.g. [13] for a classical Desciption Logics formalization. Arguably, most of these ap-
proaches suffer from the prohibitive complexity of creating semantic annotations and
discovery queries (and from the prohibitive computational complexity of the required
reasoning). A more recent trend in the Semantic Web community is to use more “light-
weight” approaches putting less of a burden on these activities, at the cost of reduced
generality and power – the slogan being “a little semantics goes a long way” [8]. Our
approach falls into this class, with carefully designed technology targeted at providing
added value, while keeping the complexity at a level that will lead to actual acceptance
by end users (fire brigades etc) in the relevant domain.

3 Example Scenario

In our example scenario, the floodwater level of the Rhine river in Germany rises im-
mensely during a long lasting thunderstorm. Cologne and the industry park of Dorma-
gen are affected by the flood. People have to be evacuated and organizations from other



6

German federal states are called to support the disaster management. After a dike has
broken and a chemical plant is flooded nearby the Rhine river, explosions occur which
release pollutants into the air and the water. The emergency staff as well as residential
areas around the chemical plant are threatened by the released air and water pollutants.
We consider the following use cases for the proposed architecture:

(A) Discovery and fusion of heterogenous water level measurements. To get a more
precise overview, all water gauges along the Rhine upstream of Cologne shall be
integrated into the SoKNOS System. The sensor data is provided by different SOS
services, using different identifiers for the observed phenomenon (e.g. water level,
water gauge, gauge height), using different units of measurement, and partially
overlapping each other. The challenges addressed by our architecture are to mediate
between the identifiers and the terminology of the non-expert user, to make the
sensors easy to find among a huge set of available sensors, to merge multiple data
points, and to recognize redundant data.

(B) Replacement of a water level measurement sensor. The data displayed to the
crisis team of course must be up-to-date. Since access to SOS services is pull-based,
the map component sends new queries periodically. One of the sensors may have
become damaged, and hence may now be out of order. The challenge addressed
by our architecture is to recognize this, and to discover and integrate a suitable
replacement sensor automatically.

(C) Discovery and fusion of heterogenous air pollutant concentration measure-
ments. With conventional methods, the monitoring of air pollutant concentration is
a time consuming and complicated task. There are only few vehicles with appro-
priate sensors. Hence the spatial resolution of the measured values is rather coarse
grained. It takes considerable time for the vehicles to arrive at the area of inter-
est, and the measurements are transferred through verbal communication, prone to
delays and misunderstandings. This can be improved considerably through lever-
aging on resources – SOS services – that happen to be available in the particular
scenario: the monitoring systems of chemical plants near the flooding. These SOS
services could of course also be integrated off-line into conventional systems. But
our approach allows to discover and use them with ease, based on minimal inte-
gration effort. Indeed, since registering a service requires hardly more effort than
knowing where the service is and which phenomena it observes (see Section 4.3
below), it is conceivable that the integration is performed on-line, e.g. by a system
administrator, upon demand by the crisis team members.

4 Semantic Sensor Integration

We now explain in detail our architecture, its individual components, and their design
and functionality. We begin in Section 4.1 with an overview, giving a rough picture of
the components and their interaction. We then delve into the details, describing in Sec-
tion 4.2 the design of our ontology, explaining in Section 4.3 our semantic annotations
and how they are created, describing in Section 4.4 our methods for sensor discovery,
and describing in in Section 4.5 our methods for sensor data extraction and fusion. All



7

user interactions are illustrated with screen shots, and all methods are exemplified with
the use cases introduced in the previous section.

4.1 Architecture

Figure 1 shows an overview of our architecture. There are six components. Two of
these are graphical user interfaces (GUIs, shown in the top left part of the figure), two
are backend components (shown in the bottom left part), and two are data stores (shown
on the right).

Sensor discovery
WSR

Fusion of sensor data
JSE

GIS interface

GIS
Formal world model

Store sensor descriptions

WSRDB
D

at
a 

st
o
re

Pose discovery queries

WSRGUI
retrieve

store/retrieve

retrieve

GUI

Backend

service descriptions

discovery query

se
rv

ic
e 

d
es

cr
ip

ti
o
n
s

d
is

co
v
er

y
 q

u
er

y
/n

ew
 s

.d
.

service descriptions

bounding box

d
at

a

se
rv

ic
e 

d
es

cr
ip

ti
o
n
s

GUI GDO

retrieve

Fig. 1. An overview of our architecture.

The Geographic Information System (GIS) GUI is basically a standard GIS map
component, extended to cater for the required interactions with the Web Service Reg-
istry (WSR) GUI and the Joined Sensor Engine (JSE). The Web Service Registry GUI
is the user interface of the Web Service Registry, which serves for registering and dis-
covering Web service descriptions – i.e., descriptions of SOS services, including their
semantic annotations, in our case. The Joint Sensor Engine extracts the data from a set
of discovered services. It makes the required data transformations and it detects dupli-
cate data. Most importantly, it monitors the performance of the services, and replaces
them – via posing a suitable discovery query to the WSR – fully automatically in case
of failure. The Geosensor Discovery Ontology (GDO) is a formalization of the domain,
i.e., of the relevant terminology relating to sensor data, as outlined in the introduction.
The Web Service Registry database (DB), finally, is the storage container for service
descriptions. A brief summary of the interactions is as follows:

– GIS GUI with Web Service Registry GUI. The user specifies a bounding box via
marking a rectangle on the map within the GIS GUI; the bounding box is sent to
the Web Service Registry GUI, to form part of the discovery query. The discovery
query is completed in the Web Service Registry GUI, and the discovered services
are sent back to the GIS GUI. From that point on, the GIS GUI is responsible for
displaying the data of these services.



8

– Web Service Registry GUI with Web Service Registry. Discovery queries are
created in the Web Service Registry GUI, comprising the desired area (the bounding
box), the desired time interval, as well as the desired kind of phenomenon to be
observed. The queries are sent to the Web Service Registry, which performs the
discovery and sends the discovered service descriptions back to the Web Service
Registry GUI. Additionally, the user may enter a new service description (possibly
including a semantic annotation) in the Web Service Registry GUI, which is then
sent to the Web Service Registry for storage.

– GIS GUI with Joined Sensor Engine. Whenever the GIS GUI needs to extract up-
to-date data from the discovered sensors, it sends their descriptions to the Joined
Sensor Engine. Based on the descriptions, the Joint Sensor Engine connects to the
services, and extracts and fuses their data, which is then sent back (as a single data
set) to the GIS GUI.

– Joined Sensor Engine with Web Service Registry. Whenever service monitoring
inside the Joint Sensor Engine finds that a sensor has failed, it queries the Web
Service Registry for replacement services, delivering equivalent data.

– Web Service Registry with Web Service Registry DB. The Web Service Registry
connects to the database for storage and retrieval of service descriptions.

– Web Service Registry GUI with Geosensor Discovery Ontology. For specifying
a discovery query, the user needs to find the desired concepts in the Geosensor Dis-
covery Ontology, i.e., suitable phenomena or related entities. For that, the Web Ser-
vice Registry GUI uses the structure of the Geosensor Discovery Ontology, which
is read from the storage.

– Web Service Registry with Geosensor Discovery Ontology. Discovery is made
not only directly on the concepts in the query, but also indirectly through the con-
nections within the Geosensor Discovery Ontology, read from the storage.

– Joined Sensor Engine with Geosensor Discovery Ontology. For the purpose of
data transformation, the Joined Sensor Engine needs information from the Geosen-
sor Discovery Ontology in order to detect equivalent observed properties.

These functionalities and interactions will now be explained in detail. We start by de-
tailing the structure of the GDO, which lies at the heart of our approach.

4.2 Ontology Design

The GDO is formalized in F-Logic [12], a logic based programming language which
we chose mainly for practical reasons: F-Logic provides sufficient modelling power for
our purposes, while at the same time being computationally efficient in the reasoning
tasks we require.7 In what follows, we do not delve into details of the formalization.
Instead, we describe the design of the GDO at an intuitive level.

The GDO is designed to support discovery of SOS services, so, naturally, it builds
on the relevant specifications [3, 18]. SOS service descriptions contain keywords (called
“observed properties” in (O&M) [3]) indicating the properties measured by the sensor.

7 There is also a version of the GDO formulated in the standard description logic based language
OWL [17]. In our work, this version mainly serves as a reference model. For the sake of
simplicity, we do not discuss the OWL version and its relation to the F-Logic version.



9

These properties are not standardized, but the CF Metadata8 contains a (incomplete)
collection. The GDO models those properties relevant for our application, as well as
some supplementary entities, in the form of taxonomies of categories. Our technology
connects those to real sensors via F-Logic rules.

An important aspect of the GDO is that it follows well-established ontological de-
sign principles. We align the GDO with the well-known DOLCE foundational ontol-
ogy. DOLCE essentially is a kind of widely accepted “best practice” for ontological
modelling. This serves to avoid common modelling flaws and shortcomings. For de-
tails regardng DOLCE, we refer the reader to the literature [16, 5, 6]. In what follows, a
rough understanding of the following four concepts will suffice. Endurants and perdu-
rants are distinct regarding their behavior in time. Endurants are wholly present at any
time they exist, whereas perdurants extend in time by accumulating different temporal
parts. Perdurants embrace entities generally classified as events, processes, and activ-
ities. An endurant “lives” in time by participating in some perdurant(s). For example,
a building (endurant) participates in its lifespan (perdurant). In the GDO, we use two
sub-categories of endurant: “non-agentive physical object” and “amount of matter”.
Qualities are the basic entities we can perceive or measure, for example the volume
of a lake, the color of a rose, or the length of a street. DOLCE distinguishes physical
and temporal qualities, which pertain to endurants and perdurants, respectively. Roles
are played by endurants. For example, a physical object may play the role “observed
object”, but it may also play the role, e.g., of an “operation site” or of a “target”.

To exemplify the importance of such ontological precision: in (O&M), some vital
concepts are under-specified or ambigiously defined. For example, “observed property”
and “phenomenon” are defined vaguely and used more or less like synonyms. Accord-
ing to DOLCE, they would be a mixture of endurant, perdurant, and quality (see a
detailed discussion in [19]). Similarly, “feature of interest” is not perceived as a role
(which is done according to DOLCE), but instead as an endurant – although, quite
clearly, being observed is not a characteristic property of an object. The Rhine is a
river; will it become a different object because it is being observed? Such terminologi-
cal inclarity is unproblematic when used amongst members of a closed community who
know what is meant, but may cause problems when crossing community boundaries –
e.g. during a disaster. That said, the GDO is not dogmatic in its alignment to DOLCE;
we follow the DOLCE guidelines where sensible, and opt for pragmatic solutions in
cases where a full solution would unnecessarily complicate matters.

The GDO is based on the design pattern depicted in Figure 2. That is, the ontology
is built as a specialization of that pattern, extending the pattern’s high-level categories
with whole taxonomies, i.e., with hierarchies of more concrete categories, and instanti-
ating the high-level relations with relations between such concrete categories. In what
follows, we briefly explain the main aspects of the design.

At first glance, one sees that the pattern does not only cover sensor observations –
observable qualities – but also weather phenomenon, substance, geosphere region,
and boundary of geosphere regions. This enables search by related terms: rather than
laborously searching through a huge set of observable qualities, the user may select a

8 NetCDF Climate and Forecast (CF) Metadata Convention (http://cf-pcmdi.llnl.gov)



10

Fig. 2. The design pattern underlying the GDO (Geosensor Discovery Ontology), slightly simpli-
fied for presentation. Concepts inherited from DOLCE are marked by inscription and color.

related concept which pertains to the desired quality.9 The advantage is that the tax-
onomies of related concepts tend to be much smaller than that of possible sensor ob-
servations. For example, for a non-expert user “wind direction” (or “water level”) are
probably much easier to find via “wind” (or “river”) than via browsing the taxonomy of
observable qualities. That said, browsing is of course also an option in our system.

In the GDO, weather phenomenon captures things such as rain shower, wind,
fog; substance is orientated at chemical terminology, distinguishing between pure sub-
stances and blended subtances, covering things such as oxygen and nitratemonoxide
(pure substances), and salt water (a mixture of substances); geosphere region covers
things such as athmosphere, ground, body of water; boundary of geosphere regions
covers things such as earth surface, water surface. If needed, these 4 top-level categories
can easily be augmented by additional ones. One simply adds the new categories, clas-
sifies them according to DOLCE, and gives them the played by relation to observed
object – which is defined as a role, c.f. the above discussion.

In accordance with DOLCE, observable qualities are distinguished into temporal
ones (e.g. speed, flow rate) and physical ones (e.g. temperature, distance). Another as-
pect worth noting is that observable qualities may be related – one quality informs
about another – or even equivalent – one quality informs exactly about another. An
example of the former is fog density, which informs about range of sight. An example
of the latter are the two ways of observing wind direction: from where vs. whereto.

4.3 Semantic Annotation

As stated, our semantic annotations are simple, in order to ensure practicality for orga-
nizations such as fire brigades. The precise form of the annotations is as follows:

9 The relation may be direct or indirect; hence the has quality and has indirect quality rela-
tions in Figure 2. To exemplify the difference: water (directly) has a temperature; in contrast,
pressure is not a property of the athmosphere, but is often (indirectly) associated with it.



11

Definition 1. Assume that s is a SOS service. A service description of s is any set D
that contains the URL of s as well as a semantic annotation α of s, defined as follows.
Assume that OP (s) = {op1, . . . , opk} is the set of observed properties supported by s,
across offerings, and assume that OQ is the set of concepts in the GDO that are sub-
concepts of observable quality. Then a semantic annotation of s is a partial function
α : OP (s) 7→ OQ.

Sub-concept here refers to the taxonomic structure of the GDO: concept c1 is a sub-
concept of concept c2 iff c1 lies below c2 (directly or indirectly) in the tree of concepts.
In practice, and in our prototype, of course the form of the service descriptions (i.e.,
the precise set of attributes stored for each service) is fixed. What that form is – other
than that it complies with Definition 1 – is not important to this work. Note that α is a
partial function, hence allowing the annotation to be incomplete. This allows to register
a service without giving it a full semantic annotation. In order to use a particular output
(a particular observed property) of a service with our architecture, that output must be
annotated, i.e., be in the domain of the annotation function α.

Each observed property is characterized by a single concept of the GDO. This is ap-
propriate because it complies well with the intended meaning of the SOS specification:
each sensor output corresponds to one atomic category of possible observations. It is
important to note that such a simple correspondence would not be valid for more com-
plex OGC services. For example, it would make no sense to restrict the annotation of a
WFS service to a single concept in an ontology: since WFS services are databases that
may contain a whole variety of data, a description of their data content would definitely
need to be some sort of combination of concepts (see also [15]). From a Semantic Web
perspective, ours is a classical example of a light-weight approach, c.f. Section 2.2.

In our architecture, the simple semantic annotations as per Definition 1 suffice to
conveniently discover and, where needed, replace SOS services (details follow in the
next sub-sections). Creating the annotations can, obviously, be supported in a straight-
forward manner using classical GUI paradigms. Figure 3 shows a screenshot of our
implemented tool, in a situation corresponding to use case (C) of Section 3, i.e., anno-
tation of air pollutant concentration measurements with concepts from the ontology.

As can be seen in Figure 3, the WSR GUI contains a tab for annotating sensor
services. The WSR displays the service’s observed properties, as well as any α assign-
ments that have already been made. In a separate part of the window (“Konzepte”), the
ontology is displayed. One can search concepts in the ontology via several options that
will be detailed in the next section, when we describe how to create discovery queries.
Once the desired concept is found, one simply drags it onto the corresponding observed
property – in Figure 3, the concept “Lufttemperatur” is dragged onto the output prop-
erty “airtemperature”. The new assignment is stored in the service’s annotation α. If the
output was already assigned previously, then that assignment is over-written.

Clearly, this annotation process requires no more expertise than a basic familiarity
with computers, as well as some familiarity with SOS service observations and with the
GDO. It is realistic to assume that such expertise will be available, or easy to create,
within the relevant organizations and their partners.



12

Fig. 3. A screen shot of our GUI for creating semantic annotations. Since our tool is built in
cooperation with (and for the use of) German disaster defence organizations, the inscriptions are
in German; explanations are in the text.

4.4 Sensor Discovery

As is common in semantic service discovery, c.f. Section 2.2, the discovery is formu-
lated as a process of matching the available services against a discovery query. In our
approach, the semantic annotations serve for terminology mediation, and for allowing
indirect matches. The latter enables the user to find the desired services via intuitively
related terms, rather than having to laborously search for the actual technical term.

Service descriptions and the semantic annotations they contain were defined already
in Definition 1. Discovery queries and matches are defined as follows:

Definition 2. Assume that CO is the set of all concepts in the GDO. A semantic dis-
covery query sQ is a subset sQ ⊆ CO. Assume that D is the description of a service
s, that OP (s) = {op1, . . . , opk} is the set of observed properties supported by s, and
that α ∈ D is the semantic annotation of s. Then sQ and s match in opi iff opi is in
the domain of α, α(opi) = c0, and there exists q0 ∈ sQ such that q0 is connected to c0.
The latter notion is defined inductively as follows:

(1) Every c ∈ CO is connected to itself.
(2) If the GDO contains a relation with domain c1 ∈ CO and range c2 ∈ CO, then c1

is connected to c2.
(3) If c1 ∈ CO is a super-concept of c2 ∈ CO, then c1 is connected to c2.
(4) If c1 ∈ CO is connected to c2 ∈ CO, and c2 is connected to c3 ∈ CO, then c1 is

connected to c3.

In words, a discovery query is just some collection of terms from the ontology.
What the discovery does is to look for services s whose annotation contains a term c0
which one of the query terms (namely q0 in the definition) is “connected” to. All these



13

services s – along with the relevant observation opi and ontology term c0 – are returned,
provided the spatial and temporal aspects match as well (see below).

Connected in Definition 2 refers to a combination of relations in, and taxonomic
structure of, the GDO. It is best understood as defining a set of possible paths through
the ontology. Item (1) in Definition 2 says that empty paths are allowed: a query concept
q is, of course, relevant to itself. Item (2) says that a path may follow a relation between
two concepts c1 and c2 – if c1 is relevant to the query, then c2 is as well because c1
relates to c2. For example, c1 may be the concept river, the relation may be has quality,
and c2 may be water level; c.f. use case (A) of Section 3. Item (3) in Definition 2 says
that a path may go downwards in the taxonomy, i.e., go from c1 to c2 if c1 lies above c2
in the taxonomy. This is so because, if c1 is relevant to the query and c2 is a special case
of c1, then clearly c2 is relevant to the query as well. For example, the query concept
may be body of water, which is a super-concept of river, from which by item (2) we
may get to water level. Item (4) states transitivity, a technical vehicle for expressing
concisely whether or not there exists a path between two concepts.

Items (1)–(4) in Definition 2 are implemented in a straightforward way using F-
Logic rules. Such a rule takes the form rule-head ⇐ rule-body , meaning that truth of
the rule body (right hand side) implies truth of the rule head (left hand side). Rule head
and body are composed of F-Logic atoms. Item (4), e.g., is implemented by the rule
∀X,Y,Z connected(X,Z) <- connected(X,Y) AND connected(Y,Z).
While one could of course implement items (1)–(4) “by hand”, the F-Logic implemen-
tation is efficient, and has the advantage of full flexibility: our approach and implemen-
tation can be trivially adapted to extended or modified matching methods, as long as the
matching is expressible within the realm of F-Logic.

The above clarifies the semantic part of the discovery. On top of that, we need
to specify the desired geographical region and time points. Consequently, a discovery
query Q consists of a semantic discovery query sQ in combination with a bounding
box bb and a time interval ti, both defined in the usual way. An observed property opi

of a service matches a query Q iff it matches sQ according to Definition 2, and the
bounding box of the corresponding offering has a non-empty intersection with bb, and
the time interval of the offering has a non-empty intersection with ti.10

Having clarified the inner workings of discovery, the important question remains
how that functionality interfaces with the user. How do non-experts such as fire brigade
officers, acting under great stress, create discovery queries? Given that our queries
are combinations of standard constructs and very light-weight semantics, such query
creation is quite feasible. Figure 4 shows the relevant screen shots for illustration.

We do not show a screenshot for specifying the bounding box and time interval
because these interactions are obvious. The bounding box is specified within the GIS
Plugin via marking a rectangle on the map. The time interval is specified via a time line
with lower and upper bounds, shown at the bottom of the windows in Figure 4 (in the
windows, the right-hand part of the interval has been selected). The core part of query
creation consists of finding the desired set sQ of terms from the ontology. The WSR

10 One can rank the services depending on the match quality. In our implementation, the ranking
is a combination of the distance (path length) between the relevant query and annotation terms
(q0 respectively c0), as well as the size of the intersections with bb respectively ti.



14

Fig. 4. Screen shots of our GUI for creating discovery queries.

GUI offers three options: text search, browsing, and following relations. The first two
facilities are illustrated in Figure 4 left-hand side, the third one is shown in Figure 4
right hand side. On the left, the user has entered the text “Flu”, which string-matches
with “Fluss” (river); the GDO taxonomy tree is opened, highlighting that concept. Al-
ternatively, the user could choose to browse for river, which would be done via clicking
downwards in the taxonomy tree shown below “Geosphaere-Bereich” (geosphere re-
gion). On the right, the user wishes to give the precise phenomenon for the query, and
chooses to look at the terms related to “Fluss” (river). This is done by a double-click
on that concept. All related concepts, among them the desired “Wasserstand” (water
level) are shown and highlighted.

Note how this form of discovery addresses problems (I) and (II) described in the
introduction. Problem (I) – mediation is required between the terminology of the user
and that of the Web service design – does not occur in Figure 4 because the required
mediation has already been done at the point these interactions happen. The translation
of terms is stored in the semantic annotations, and from the point of view of the end-user
(who is likely to be different from the person doing the annotations) there is only one
terminology. As for problem (II) – the user may not even know a technical term for the
observed property she is looking for – this is addressed by the option to follow relations



15

(Figure 4 (b)), and by the option to not even search for the actual phenomenon by hand
but instead leave it up to indirect discovery (c.f. Definition 2) to make the connections.

Once the completed discovery query has been sent to the WSR, all matching ser-
vices are returned. The user may simply select all these services, or, in case the query
was for more general ontology terms, he/she may select a subset. To help with the latter,
the WSR GUI offers the option to display, for each service, the actual observations (the
ontology terms annotated at the service) that match the query.11

4.5 Sensor Fusion and Replacement

Our architecture also serves to fuse data from different sensor services (c.f. problem
(III) from the introduction), and to replace damaged sensors through appropriate other
sensors (c.f. problem (IV) from the introduction). This is realized by the Joint Sensor
Engine (JSE). After the user has selected sensor services in the WSR GUI and dropped
them into the GIS GUI, the GIS GUI sends a request to the JSE. The JSE retrieves the
data from the SOSs, and transforms these as necessary. Afterwards, new observation
layers are added to the map displaying the features of interest (FOI) as well as the
actual sensor values. We now describe these functionalities in more detail. We ignore
the case where the user selects only a single service in the WSR GUI. Obviously, this
is simpler to handle than the more general case where several services are selected.

After the user has dropped the services onto the GIS GUI, a sensor request is created
and sent to the JSE. This request includes the endpoints of the sensor services, a layer
id, the observed properties, the sensor IDs, and a temporal and spatial extent. The JSE
translates the sensor request into service-specific SOS requests, and calls the services
accordingly. The SOS responses are then merged as follows.

First, depending how data is distributed over several SOS instances, there may be re-
dundant data provided by more than one instance. For example, in our use case (A) from
Section 3, two sensors for data “upstream of Cologne” and “downstream of Cologne”
might duplicate the data for Cologne itself. The JSE checks whether such duplicates
occur, by comparing the relevant concepts of the GDO. If the observed properties (i.e.,
the annotated concepts) are the same, and that is also the case for the FOIs and the
time-stamps of the data, then only one of the duplicate values is considered.12

Second, data transformation may be necessary. Trivially, this is the case for units
of measurement, which need to be normalized to the style of presentation used in the
GIS GUI. This is done via standard techniques. The more interesting case is that of
sensors which measure equivalent observable qualities, such as wind direction from
where vs. whereto. Note that this is an important issue for crisis team work because,
to correctly interpret such data, without IT support one needs to be aware of rather
subtle context information – e.g. wind direction is interpreted differently in Germany
and the Netherlands, so one would need to take the respective location of the service into
consideration. The GDO resolves this issue via the aforementioned informs exactly
11 More advanced support may be possible relating to, e.g., quality-of-service parameters of the

services. This is a direction for future work.
12 Note here that the GDO is required for being able to do so: duplicate detection via sensor IDs

is not possible because those IDs are not maintained globally, i.e., across SOS services.



16

about relation, c.f. Section 4.2. By virtue of the semantic annotations, the JSE knows
that the observations are different; by virtue of the informs exactly about relation, the
JSE knows that they are equivalent. That said, our solution is preliminary in that the
GDO does not state how to actually transform measurements of these observations into
one another. To state this in the GDO, one would need to include arithmetic terms in the
ontology. This is not possible in either of OWL or F-Logic. Our current implementation
simply hard-codes this arithmetic into the JSE. A more flexible solution, e.g. via stating
the arithmetics within ontology comments, is a topic for future work.

The JSE monitors service invocations, and automatically replaces a service if the
monitoring concludes that the service is not functional anymore. We explain below
exactly when that conclusion is made. First, we define what sensor replacements are:

Definition 3. Assume that s is a service, that OP (s) = {op1, . . . , opk} is the set of
observed properties supported by s, that D is the description of s, and that α ∈ D
is the semantic annotation of s. Assume similar notations for another service s′. Then
s′ can replace s in opi by op′

j iff: opi is in the domain of α, α(opi) = c0; op′
j is in

the domain of α′, α′(op′
j) = c′0; and c′0 can replace c0. The latter notion is defined

inductively as follows:

(1) Every c ∈ CO can replace itself.
(2) If c1 ∈ CO is a sub-concept of c2 ∈ CO, then c1 can replace c2.
(3) If c1 informs exactly about c2 according to the GDO, then c1 can replace c2.

Note that, as before, this definition covers only the semantic part of the replacement.
In addition to the conditions stated, we require that the respective FOIs are identical,
and that the respective time stamp of s′ is at least as recent as the last valid measurement
provided by s. Definition 3 should be largely self-explanatory. Item (1) is obvious, item
(2) says that we can replace a sensor with a more specialized sensor, and item (3) states
that we can replace a sensor with a sensor providing an equivalent observation. These
items may be combined in an arbitrary fashion. For illustration of item (3), re-consider
the wind direction example mentioned above. An example where item (2) is relevant is
that were both s and s′ measure the speed of a river, and opi is annotated with velocity
while op′

j is annotated with stream velocity. To illustrate item (1), consider use case
(B) from Section 3, where water level sensors may require replacement.

To perform a replacement, the JSE contacts the WSR with a discovery query that
contains the URL of s, as well as the desired observation opi (if more than one opi

are needed, several queries are posed). The WSR returns the suitable replacements s′

and op′
j as per the above. The replacement is triggered iff monitoring detects one of the

following situations: the service does not respond; an error occurs; the answering time
exceeds a given time interval; the observation values provided by a specific sensor are
empty or outside a given interval.

5 Related Work

There are several projects in which OGC SWE services have been applied to risk mon-
itoring and disaster management, e.g. [11, 20]. In difference to our work, these projects



17

focus on service architectures and SWE protocols for data exchange and fusion without
any formalized knowledge.

There is some previous work on creating ontologies in the context of SOS services,
most importantly the SWEET project13 which has developed ontologies [21] that cover
a broad spectrum of GIS terminology. The GDO models the SoKNOS-relevant subset of
observable qualities defined in the CF Metadata and in SWEET. The ontology structure
of SWEET was examined closely, and some relevant approaches were adapted to suit
DOLCE. Overall, the GDO is more specialized than SWEET, and more suitable for our
application; it is distinguished through its conformity with DOLCE.

Semantic discovery of OGC services has previously been investigated in the follow-
ing three works. [15] design a Desciption Logics based approach to discovery of WFS
services, and [14] design a 1st-order approach to WPS service discovery. Recent work
has developed a more light-weight logic programming based approach to WPS discov-
ery [4]. Although our approach uses similar machinery (F-Logic), there is no technical
or conceptual relation between the two works.14 Recent work [9] is similar to ours in
that it also addresses semantic annotation of SOS services. However, the intentions,
and consequently the employed methods, are very different. Whereas we aim at quick
discovery and fusion of sensors in situations of great stress, [9] aim at a deep analysis
of sensor data, automatically identifying phenomena such as blizzards from the sensor
output. Thus, in stark difference to our light-weight annotation of SOS descriptions, [9]
use more heavy-weight annotation and reasoning about data content. Finally, in [10] a
method is proposed for linking Geosensor network data and ontologies. In difference
to our work, the focus of [10] is mostly on the generation of annotations, the main con-
tribution being an implementation of such methods within the Protégé ontology editor;
also, the application domain is different, namely transportation.

6 Conclusion

We have presented an architecture for flexible discovery and integration of SOS ser-
vices, based on light-weight semantic annotations. The annotations are sufficiently easy
to create for end-user acceptance, while at the same time they provide significant added
value through the ease of finding suitable sensors, and the ease of fusing their data and
dealing with service failure. Hence ours appears to be a good compromise between the
power of semantic annotations and the difficulty of creating and maintaining them.

An evaluation by real fire brigade men has largely confirmed this view. Three groups
of men ranked the discovery functionalities – text search, browsing, linked concepts,
indirect discovery – with school grades. All grades were among the best 2 grades avail-
able, and top grades were given 5 times. The men expressed the view that such a tool
would be useful for crisis team work. They were especially enthusiastic about indirect
discovery (discovery via related terms) because, under the stress of a crisis, it will often
happen that crisis team members don’t immediately recall the correct technical terms.
13 Semantic Web for Earth and Environmental Terminology, http://sweet.jpl.nasa.gov/index.html
14 [4] focus exclusively on formulating the dependencies between inputs and outputs of a service

– an issue which does not even arise for SOS services. While we match through a notion of
paths through the ontology, [4] use query containment.



18

Of course, our architecture is far from perfect and several issues have been left un-
addressed as yet. Some important ones regard the selection of services, once a set has
been discovered. Our current ranking methods are fairly primitive. A tool for quickly
comparing services, i.e., showing at one glance their most relevant strong/weak aspects,
would be desirable. Also, depending on the level of user acceptance of creating more
complex annotations, techniques such as presented in [9] (c.f. Section 5) may be quite
useful for automatically issueing warnings regarding potentially dangerous events.

Acknowledgments

Part of this work was supported by the German Federal Ministry of Education and
Research (BMBF) under grant number 01—S07009 and the SAP AG within the context
of the SoKNOS project.

References

1. Botts, M.: OpenGIS Sensor Model Language (SensorML) implementation specification, ver-
sion 1.0.0. Tech. Rep. 07-00, Open Geospatial Consortium (2007)

2. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC white paper - OGC Sensor Web Enable-
ment: Overview and high level architecture. Tech. Rep. 07-165, Open Geospatial Consortium
(2007)

3. Cox, S.: Observations and Measurements - part 1- observation schema version 1.0. Tech.
Rep. 07-022r1, Open Geospatial Consortium (2007)

4. Fitzner, D., Hoffmann, J., Klien, E.: Functional description of geoprocessing services as
conjunctive datalog queries. Geoinformatica (2009), currently under review

5. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WordNet with DOLCE.
AI Magazine 24 (3), 13–24. (2003)

6. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and situations.
In: DOA/CoopIS/ODBASE 2003 Confederated International Conferences DOA, CoopIS and
ODBASE, Proceedings. LNCS, Springer (2003)

7. Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisi-
tion 5(2), 199–220 (1993)

8. Hendler, J.: On beyond ontology: What’s next for the semantic web? Keynote Talk at the 2nd
International Semantic Web Conference (ISWC’03) (2003)

9. Henson, C.A., Pschorr, J.K., Sheth, A.P., Thirunarayan, K.: International Symposium on
Collaborative Technologies and Systems (CTS 2009), chap. SemSOS: Semantic Sensor Ob-
servation Service (2009)

10. Hornsby, K., King, K.: Linking geosensor network data and ontologies to support trans-
portation modeling. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GeoSensor Networks:
Second International Conference, GSN 2006. pp. 191–209. Springer (2008)

11. Jirka, S., Bröring, A., Stasch, C.: Applying OGC Sensor Web Enablement to Risk Monitoring
and Disaster Management. In: GSDI 11 World Conference, Rotterdam, Netherlands (June
2009)

12. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based lan-
guages. J. ACM 42(4), 741–843 (1995)

13. Li, L., Horrocks, I.: A software fframework for matchmaking based on semantic web tech-
nology. In: 12th International Conference on the World Wide Web (WWW’03) (2003)



19

14. Lutz, M.: Ontology-based descriptions for semantic discovery and composition of geopro-
cessing services. Geoinformatica (2006)

15. Lutz, M., Klien, E.: Ontology-based retrieval of geographic information. International Jour-
nal of Geographic Information Science 20(3), 233–260 (2005)

16. Masolo, C., Guarino, N., Oltramari, A., Shneider, L.: The WonderWeb library of founda-
tional ontologies. Tech. rep. (2003)

17. McGuinness, D., van Harmelen, F.: Web Ontology Language (OWL) Overview.
http://www.w3.org/TR/owl-features/ (Feb 2004), w3C Recommendation

18. Na, Arthur Priest, M.: Sensor Observation Service - implementation specification version
1.0. Tech. Rep. 06-009r6, Open Geospatial Consortium (2007)

19. Probst, F.: Semantic reference systems for observations and measurements. PhD Dissertation
(2007)

20. Raape, U., Teßmann, S., Wytzisk, A., Steinmetz, T., Wnuk, M., Hunold, M., Strobl, C.,
Stasch, C., Walkowski, A.C., Meyer, O., Jirka, S.: Decision support for tsunami early warn-
ing in indonesia: The role of standards. In: Cartography and Geoinformatics for Early Warn-
ing and Emergency Management (2009)

21. Raskin, R., Pan, M.: Knowledge representation in the semantic web for earth and environ-
mental terminology (SWEET). Computers and Geosciences 31(9), 1119–1125 (2005)

22. Vemmer, T.: The Management of Mass Casualty Incidends in Germany - From Ramstein to
Eschede. BoD (2004)


