Red-Black Planning: A New Systematic Approach to
Partial Delete Relaxation

Carmel Domshlak
Technion, Haifa, Israel
Jorg Hoffmann
Saarland University, Saarbriicken, Germany

Michael Katz
IBM Research, Haifa, Israel

Abstract

To date, delete relaxation underlies some of the most effective heuristics for deter-
ministic planning. Despite its success, however, delete relaxation has significant
pitfalls in many important classes of planning domains, and it has been a chal-
lenge from the outset to devise heuristics that take some deletes into account. We
herein devise an elegant and simple method for doing just that. In the context of
finite-domain state variables, we define red variables to take the relaxed seman-
tics, in which they accumulate their values rather than switching between them,
as opposed to black variables that take the regular semantics. Red-black plan-
ning then interpolates between relaxed planning and regular planning simply by
allowing a subset of variables to be painted red. We investigate the tractability
region of red-black planning, extending Chen and Giménez’ characterization the-
orems for regular planning to the more general red-black setting. In particular,
we identify significant islands of tractable red-black planning, use them to design
practical heuristic functions, and experiment with a range of “painting strategies”
for automatically choosing the red variables. Our experiments show that these new
heuristic functions can improve significantly on the state of the art in satisficing

Email addresses: dcarmel@ie.technion.ac.il (Carmel Domshlak),
hoffmann@cs.uni-saarland.de (Jorg Hoffmann), katzm@il. ibm.com (Michael
Katz)

Preprint submitted to Artificial Intelligence December 13, 2016

planning.!

Keywords: Planning, Heuristic Search, Delete Relaxation

1. Introduction

In deterministic, also know as “classical”, planning for action selection, the
world states are represented by complete assignments to a set of variables, the
actions allow for deterministic modifications of these assignments, and the ob-
jective is to find a sequence of actions that modifies a given initial assignment to
an assignment that satisfies a goal property. In the last two decades, solvers for
classical planning have made spectacular advances in their empirical efficiency.
A key role in this progress, especially in the context of satisficing planning where
no optimality guarantee is required, is played by the monotonic, or “delete-free”,
relaxation (4, 5, 6].

At a high level, state variables in the monotonic relaxation accumulate their
values, rather than switching between them. The key property of such a relaxation
is that applying actions under value accumulating semantics does not reduce the
applicability of actions in the future. As a result, while regular satisficing planning
is PSPACE-complete even for simple formalisms, monotonic satisficing planning
is polynomial-time [7]. Despite this, plans for the monotonic relaxation — com-
monly referred to as relaxed plans — often yield very useful heuristic functions
[8, 9], and have been a key ingredient of state-of-the-art satisficing planners (e. g.,
[5, 6, 10, 11]) since more than a decade.

While some of the most effective heuristics to date are obtained in this manner,
the delete relaxation has significant pitfalls. A striking example (see, e. g., [8, 12])
is the inability to account for “having to move back” on a road map: Under the
relaxation, once we traversed the map once, we are in all locations simultaneously
so there never is a need to move back. In effect, if, say, a truck needs to move
across a line of road segments to pick up a cargo and then move back to deliver
it, then the heuristic value remains constant (equal to the length of the line) until
the truck reaches the cargo. In many domains that involve transportation or other

'Many of the results presented herein were previously published in three conference papers
[1, 2, 3]. The present article discusses these results much more comprehensively, and makes
several extensions, including a refinement to the theoretical analysis, detailed proofs, additional
experiments, and implementing heuristic functions relying on acyclic black causal graphs instead
of arcless ones.

types of movement, this leads to huge plateaus, 1. e., regions of states with identical
heuristic value. Another prominent issue (see, e.g., [13, 14, 15]) is “resource
persistence”, that is, inability to account for the consumption of non-replenishable
resources. The monotonic relaxation furthermore ignores any detrimental side
effects an action may have on other parts of the plan, trivializing domains with a
puzzle nature. For example, monotonic relaxation of Rubic’s Cube tasks loses the
dependencies across the subcubes.

Given these weaknesses of monotonic relaxation, it has been an actively pur-
sued research challenge from the outset to design heuristics that take some deletes
into account. This resulted in a wealth of approaches, taking into account conflicts
in the relaxed plan [16, 10, 17, 13, 18, 15], keeping track of (some) side effects
[12, 19, 20], and incorporating TSP solvers responsible for the movements of par-
ticular variables in the relaxed plan [21, 22, 23]. It has proved daunting, however,
to devise frameworks that fully interpolate between regular planning and mono-
tonic planning, by providing a choice of which, and the ability to scale freely with
how many, deletes are taken into account. The first such interpolation framework
was put forward in 2012, enriching the monotonic relaxation with an explicitly
represented set of fact conjunctions, forcing the heuristic to eventually become
perfect as that set gets larger [24, 25, 26]. We herein propose a much simpler
interpolation framework: we relax only some of the state variables.

In this framework, which we baptize red-black planning, some state variables,
called red, take the relaxed semantics and accumulate their values, while all other
variables, called black, keep the regular semantics and thus switch between their
values.? Consider again our previous example where a truck needs to move across
a line of road segments. Say we paint the truck-position variable black, and we
paint the cargo-position variable red. A red-black plan then needs to include the
backward truck moves, and the length of an optimal red-black plan is equal to
that of an optimal real plan. The same applies to VisitAll when painting the robot
position black. A heuristic function generated this way would be perfect.

The problematic word here of course is the “would”. Apart from the qual-
ity of the heuristic, we also need to consider the computational effort required
to compute it. As red-black planning generalizes monotonic planning — the spe-

2The aforementioned works of Fox and Long [21, 22] and Keyder and Geffner [23] can also be
viewed as “un-relaxing” some of the state variables (those controlled by TSP solvers). However,
this applies only to restricted subsets of variables, and the TSP treatment is weaker than ours in the
sense that it considers only the set of variable values that must be visited, ignoring duplicates and
ordering. We will get back to this in more detail later, once we formally introduced our framework.

cial case where all variables are painted red — and optimal monotonic planning is
NP-hard [7], optimal red-black planning also is (at least) NP-hard. Therefore, in
analogy to commonly used relaxed plan heuristics, we will generate an (inadmis-
sible) heuristic function by generating some, not necessarily optimal, red-black
plan. Still, the question is whether there are significant tractable fragments of
satisficing red-black planning.

Fortunately, the answer is “yes”. Analyzing the complexity of satisficing red-
black planning, we in particular show tractability for planning tasks whose black
causal graph — the projection of the standard causal graph [27, 28, 29] onto the
black variables — is acyclic, and whose black variables satisfy a certain invertibility
condition. Specifically, we show that any fully relaxed (aka monotonic) plan for a
problem in this fragment can be “repaired” into a valid red-black plan with only a
polynomial runtime overhead.

Investigating the corresponding heuristic function from a practical perspective,
we find that its bias to follow decisions made in the “basis” monotonic plans can
be harmful, leading to dramatic over-estimation even in very simple toy bench-
marks. Targeting this pitfall, we devise an improved red-black planning algorithm
that relies less on monotonic plans, getting rid of much of this over-estimation
phenomenon. We fill in important realization details, pertaining in particular to
planning with acyclic causal graphs and invertible variables (a sub-procedure of
our heuristic function). We devise optimizations enhancing red-black plan appli-
cability, short-cutting the search if the red-black plan is applicable in the original
planning task.

To obtain an automatic planning methodology, we finally require painting
strategies for automatically deciding which variables should adopt each color. We
devise a family of such strategies, and analyze their performance. We finally run
comparative experiments against the state of the art on the IPC benchmarks, show-
ing that our new heuristic functions bring significant advantages over standard
delete-relaxation heuristics, as well as over alternative partial delete-relaxation
heuristics, in several domains and overall.

The rest of the paper is structured as follows. In Section 2 we provide the
necessary background, and in Section 3 we formally introduce red-black planning
as a framework for relaxation. We analyze the complexity of satisficing red-black
planning (Section 4), discuss the practical aspects of generating heuristic functions
in this context (Section 5), investigate painting strategies (Section 6), and run
experiments against the state of the art (Section 7). We conclude with a brief
summary and discussion of future work (Section 8). Some proofs are replaced by
proof sketches in the main text. The full proofs are in Appendix A.

4

2. Background

A planning task in finite-domain representation (FDR) is given by a quadru-
ple IT = (V, A, I, G), where:

e VU is a set of state variables, with each v € V being associated with a finite
domain D(v).

— A partial variable assignment p is a function on a variable subset V(p) C
V that assigns each v € V(p) a value p[v] € D(v).

— For a partial assignment p and a variable subset V' C V(p), by p[V’]
we denote the assignment provided by p to V”.

— We identify partial assignments with sets of facts “variable v takes
value d”, denoted by (v/d).

— Complete assignments to V' are called states.

e [is an initial state. The goal G is a partial assignment to V.

e A s a finite set of actions. Each action a is a pair (pre(a), eff(a)) of partial
assignments to V' called precondition and effect, respectively.

The semantics of FDR tasks is as follows. An action a is applicable in a state s
iff s[V(pre(a))] = pre(a), i.e., iff s[v] = pre(a)[v] forallv € V(pre(a)). Applying
a in state s changes the value of every v € V(eff(a)) to eff (a)[v]; the resulting state
is denoted by s[a]. If a has a precondition on v but does not change it, we say that
a is prevailed by v; the set of all such preconditions is denoted prevail(a).

By s[{ai, ..., ax)] we denote the state obtained from sequential application of
the (respectively applicable) actions a4, . . ., a starting at state s. Such an action
sequence is an s-plan if s[{ay,...,a;)][V(G)] = G, and it is an optimal s-plan
if its length is minimal among all s-plans. The computational task of (optimal)
planning is finding an (optimal) /-plan.

Example 1 Figure I illustrates an example that we use throughout the paper.
The example is akin to the Grid benchmark, and is encoded in FDR using
the following state variables: R, the robot position in {1,...,7}; A, the key A
position in {R,1,...,7}; B, the key B position in {R,1,...,7}; F in {0,1}
encoding whether the robot hand is free; O in {0, 1} encoding whether the lock is
open. The robot can move from i to i + 1, or vice versa, provided that either the

1 A 2 3 4 5 6 7

7~

ﬁéﬁ /AA\L At

v

Figure 1: An illustrative example: “SimpleGrid”.

lock is open or {i,i + 1} N {4} = 0. The robot can take a key if its hand is free,
drop a key it is holding, or open the lock if the robot is at 3 or 5 and holds key A.
The goal requires key B to be at 1. An optimal plan for the robot is to move to 2,
take key A, move to 3, open the lock, move to 7, drop key A and take key B, move
back to 1, and drop key B.

A monotonic finite-domain representation (MFDR) planning task is given
by a quadruple TT = (V, A, I, G) exactly as for FDR tasks, but the semantics is
different.* Informally, the state variables in MFDR tasks accumulate their values,
rather than switching between them. That is, if an FDR action switches the value
of a variable v from z to y, then the monotonic version of that action “extends”
the value of v from {z} to {z, y}. More specifically,

e An MFDR state s is a function that assigns each v € V' a non-empty subset
s[v] € D(v) of its domain.

e An MFDR action « is applicable in state s iff pre(a)[v] € s[v] forall v €
V(pre(a)).

e Applying an MFDR action « in state s changes the value of v € V(eff(a))
from s[v] to s[v] U {eff(a)[v]}.

Respectively, an MFDR action sequence (ai, ..., a;) applicable in state s is an
s-plan if G[v] € s[{ay, ..., ax)][v] for all v € V(G). In all other respects, MFDR
and FDR semantics are identical.

3Note that we make the non-standard (but sensible) requirement for the lock to be open also
when moving away from it. This is used later on to comprehensively illustrate our algorithms.

4 As was recently noted [30], it is not entirely clear to whom the original formulation of mono-
tonic relaxation for multi-valued variable domains should be attributed, but it can be traced back
at least to Malte Helmert’s work on the Fast Downward planning system [29], to Jorg Hoffmann’s
planning lecture (winter 2004/05), and to work applying the monotonic relaxation in the context
of timed automata [31].

While FDR planning is PSPACE-complete even for binary state variables,
satisficing plan generation for MFDR tasks is polynomial time (this follows di-
rectly from Bylander’s [7] results). Exploiting the latter for deriving heuristic
estimates is a key ingredient of many competitive satisficing planning systems,
via the notion of monotonic, or delete, relaxation. Given an FDR planning task
IT = (V, A, I,G), the monotonic relaxation of IT is the MFDR task ITt = TI.
The optimal delete relaxation heuristic /1 (I1) is defined as the length of an
optimal plan for IT*. For arbitrary states s, h*(s) is defined via the MFDR task
(V, A, s,G).

For a state s and applicable action sequence 7 in II, we sometimes use s[7]
to denote the outcome of executing 7 in the same state of IT*. In general, if 7+
is a plan for IT*, then 7 is referred to as a relaxed plan for IT. For example,
a relaxed plan for our SimpleGrid task in Example 1 is for the robot to move to
2, take key A, move to 3, open the lock, move over to position 7, take key B
(without having to first drop key A), and then immediately drop key B at position
1 (without having to first move back there).

To characterize fragments of planning, we use two standard graphical struc-
tures induced by the description of FDR tasks.

e The causal graph CGy; of II is a digraph with vertices V. An arc (v,v’)
is in CGyy iff v # ¢’ and there exists an action a € A such that (v,v') €
V(eff(a)) UV (pre(a)) x V(eff(a)), that is, a affects v" while either affecting
v or being preconditioned by the value of v.

Special cases of interest will be those where the causal graph is acyclic (a
DAG), or where the causal graph is arcless, i. e., does not contain any arcs
at all.

e The domain transition graph DTGy(v) of a variable v € V is an arc-
labeled multi-digraph with vertices D(v). DTGyy(v) has an arc from d to d’
induced by a iff eff(a)[v] = d’, and either pre(a)[v] = d or v & V(pre(a)).
We denote such arcs by (d, a,d’), and by (d, d’) for convenience where the
action referred to is clear from context, or where there is no need for re-
ferring to a particular action. Each arc is labeled with its outside condi-
tion ocon(d, a,d’) = pre(a)[V \ {v}] and its outside effect oeff(d, a,d’) =
eff(a)[V\ {v}].

Example 2 Figure 2 (a) illustrates the notion of causal graphs in the SimpleGrid
task from Example 1. R is a prerequisite for changing every other variable. Each

key is interdependent with F' because taking/dropping them affects both. Key A
influences O, and O influences R.

A F B 1
(R/x), (y/R)? (R/x), (y/x)?
(y/z)! (y/R)!
O«—— R 0
(a) (b)
1 2 3 4 5 6 7
(0/1)? ~ (0/1)?
(©

Figure 2: Causal graph (a), and domain transition graphs of variables F' (b) and R (c) in Simple-
Grid (Example 1). Outside conditions are displayed with a question mark “?”, outside effects are
displayed (in red and) with an exclamation mark “!”. In (b), each of the two arcs in the picture cor-
responds to several arcs in the DTG, namely one for each combination of location z € {1,...,7}
and key y € {A, B}.

Figures 2 (b) and 2 (c) illustrate the definition of domain transition graphs on
the variables F' and R in the SimpleGrid task. Note that the transitions of F' in
(b) are each induced by several actions—all drop(x,y) actions for the transition
0 — 1 and all take(x,y) actions for the transition 1 — 0), whereas each of the
transitions of R in (c) is induced by a single move(i, j) action. The label (O /1)
in DTGy (R) is the same for the transitions 3 — 4 and 4 — 3 (as well as for the
transitions 5 — 4 and 4 — 5) because moving away from the lock also requires it
to be open.

Adopting the notation of Chen and Giménez [32], for a digraph G, let #vertices(G),
cc-size((F), and scc-size(G) denote the number of vertices, the size of the largest
connected component in (the undirected graph induced by) G, and the size of
the largest strongly connected component in G, respectively. For a set of di-
graphs G, we say that #vertices(G) is bounded if there exists a constant k& such that
#vertices(G) < k for all G € G. Bounded cc-size(G) and bounded scc-size(G)
are defined similarly. PlanExist(G) and PlanGen(G) are the plan existence and
plan generation problems restricted to FDR planning tasks whose causal graphs
are elements of G.

3. Red-Black Relaxation

In FDR respectively MFDR, all state variables adopt the value-switching re-
spectively the value-accumulating semantics. Formulated that way, it is obvious
that FDR and MFDR can be viewed as the two extreme ends of an entire spectrum
of relaxations, choosing the semantics on a variable-by-variable basis. We baptize
this approach red-black planning.

A red-black finite-domain representation (RB) planning task is given by a
quintuple II = <VB, VR AT, (), where VB and VR are sets of finite-domain state
variables, called black variables and red variables, respectively, and A, I, and G
are exactly as in FDR and MFDR tasks, specified with respect to the union of the
black and red variables. The semantics of RB is as follows:

(i) A state s assigns each v € VB U VR a non-empty subset s[v] C D(v), where
|s[v]| = 1 forall v € VB,

(ii) An action a is applicable in state s iff pre(a)[v] € s[v] for all v € V(pre(a)).

(i11) Applying an action a in state s changes the value of each black variable
v € VB(eff(a)) to {eff(a)[v]}, and changes the value of each red variable
v € VR(eff(a)) to s[v] Ueff(a)[v].

(iv) Anaction sequence (a1, ..., a) applicable in s is an s-plan if G[v] € s[(ay, . ..
forall v € V(QG).

Example 3 Consider again the SimpleGrid task from Example 1. Recall that the
optimal relaxed plan for this task takes key A, opens the lock, and moves over to
position 7. It then takes key B (without having to first drop key A), and drops key
B at position 1 (without having to first move back there).

Now, say we paint variables R, A, B, O red, but paint F' black. The robot in
the resulting RB task needs to drop key A before taking key B. If R is also painted
black, then the robot also needs to move back to position 1 before dropping key B.

Obviously, if (V, A, I, G) is an FDR task, then we obtain an equivalent RB
task as (V,0), A, I,G), and if (V, A, I,G) is an MFDR task, then we obtain an
equivalent RB task as (), V, A, I, G). In other words, RB generalizes both FDR
and MFDR.

In what follows, we use RB tasks primarily as relaxations of FDR tasks. Given
an FDR planning task IT = (V, A, I, G) and a subset VR C V of its variables, the

red-black relaxation of T relative to VR is the RB task ITVs = (V\VR VR A I,G).

The optimal red-black relaxation heuristic 23%(I) of II relative to VX is de-
fined as the length of an optimal plan for II}%. For arbitrary states s, Al (s) is
defined via the RB task (V' \ VR VR A s G). When the set of red variables is
clear from context, and when our discussion pertains to arbitrary such sets, we
drop the subscript “VR”. If 7RB is a plan for [IRB, then we refer to 788 as a

red-black relaxed plan for II. It is easy to see that:

Proposition 1 h@%* is consistent and dominates h™. If VR C VR then h@iﬁ
dominates h¥5. If VR = 0, then h¥% is perfect.

Proof: Regarding the last part of the claim, if VR = () then II}% is obviously
equivalent to I and in particular h?)ﬁ* is perfect. Domination of 2+ holds because,
as follows directly from definition, if 7RB is a red-black relaxed plan for any state
s, then 7RB also is a relaxed plan for s, i.e., is a valid plan in II*. The same
argument shows that, if VR C VR, then hﬁ?{f dominates hi3".

Regarding consistency, we need to show that, for any state s and applicable
action a in II, denoting s’ := s[a] we have that h{%*(s) < 1+ ht¥*(s'). Let
mRB(s") be an optimal s’-plan in TI}%. Then (a) - 7™%"(s’) is necessarily an s-plan

in ITY%, because, for every variable v € VB U VR, '[v] C s[a][v]. O

Some words are in order regarding the previous works of Fox and Long [21,
22] and Keyder and Geffner [23], which can also be viewed as “un-relaxing”
some of the state variables. Keyder and Geffner allow to un-relax any single
variable v moving which does not have any side effects on other variables. Fox
and Long automatically recognize transportation sub-problems, and un-relax all
vehicle position variables v. Note that the un-relaxed variables v have no direct
influence on each other. This is in contrast to some of the tractable fragments of
red-black planning that we will identify. In both approaches, the actions moving
v in a relaxed plan 7" are replaced by an approximate TSP solution visiting the
subset of values from D(v) required in 777; denote that set by D(v,7"). This
is different from painting v black because it disregards repetitions and ordering
of these values. For example, say v is a worker that must perform a sequence
Ji,---,Jn of jobs, each at a location d;, where d; and d; may be the same for
i # j. Then the TSP approximation follows some path visiting each member
of the set D(v,7%) = {dy,...,d,} once. In a red-black plan, v follows a path
visiting the sequence dy,...,d,.°> Indeed, in the relaxed plan repair algorithm

Fox and Long do tackle ordering constraints within the transportation sub-problem, e. g. that

10

introduced in Section 4.3, moves for the black variables are inserted following the
sequence of values required in the relaxed plan. The outcome of that procedure,
given the same relaxed plan as input, can only be larger than the outcome of the
TSP treatment.

Computing hl‘{/%* is NP-hard even in the simplest case, where there are no black
variables, simply because that special case corresponds to 2". We therefore adopt
the popular strategy of upper-approximation by satisficing relaxed planning. That,
in turn, requires to investigate the tractability boundary of satisficing planning for
RB tasks, and we proceed with this task in the next section.

4. Tractability

Central to our investigation of tractable fragments of RB is the notion of causal
graph. While the causal graph CGy of an RB task 11 is defined exactly as for FDR,
it is essential to exploit the red/black coloring of its vertices. In particular, by the
black causal graph CGE of TI, we refer to the sub-graph of CGy; induced by only
the black variables VB of II. Another notion that we use in some parts of our
analysis is the application of monotonic relaxation to RB instead of FDR. This
just means to paint all black variables red, i. ., the monotonic relaxation of an RB
task 1 = (VB VR A I G)isthe MFDR task It = (VBU VR A I, G).

Our investigation is sub-divided into three parts, which we present in different
sub-sections. The first two parts are oriented at Chen and Giménez’ complexity
characterization theorems for FDR, analyzing planning complexity as a function
of the causal graph structure, with and without imposing the additional require-
ment of reversibility [32]. Throughout, we consider the structure of the black
causal graph, hence imposing no restrictions on the red variables. In Section 4.1
we find that causal graph structure on its own is insufficient for tractability. In
fact, we show that, even if the black causal graph does not contain any arcs at all,
both the number and domain size of the black variables must be bounded to obtain
a tractable problem. In Section 4.2 we examine the prospects of the reversibility
requirement, adapted to the specifics of RB. In analogy to the results of Chen and
Giménez’, we find that it suffices to bound the size of the strongly connected com-
ponents in the causal graph. While that result is positive — it suggests, €. g., that
it suffices to paint at least one variable on each cycle red — (a) reversibility can-
not be easily tested, and (b) the result pertains to plan existence only, not to plan

“load” actions must precede “unload” actions for the same object. They cannot, of course, capture
ordering constraints caused by aspects of the planning task outside the transportation sub-problem.

11

generation, while it is the latter that is needed to devise a goal distance estimate.
We fix these issues in Section 4.3 where we replace reversibility with a stronger
and easily testable notion of invertibility, under which satisficing red-black plan
generation is tractable.

Our practical heuristic functions, which will be the concern of the entire rest of
the paper after this section, rely on the results of Section 4.3 exclusively. There-
fore, to not distract from the flow of the paper, we do not give full details in
Sections 4.1 and 4.2, instead providing only the core of the proofs and delegating
technical details to Appendix A.

4.1. Bounding Variable Number and Size

A first question one might ask is, what about restricting the number of black
variables? For example, is the red-black planning problem still easy when taking
into account the deletes on a single binary-valued variable? It is this question that
initiated our investigation, and it turns out the answer is “yes”. We now prove the
following more general result:®

Theorem 1 Plan generation for RB tasks with a fixed number of black variables,
each with a fixed size domain, is polynomial-time.

Proof: A set {vy,...,v,} of black variables can be compiled into a single black
variable v with domain)", D(v;) [33]. This compilation is exponential in n,
but incurs polynomial overhead for fixed n. Thus, it suffices to prove the claim
for RB tasks IT = ({vg}, VR A, I, G) with a single black variable vg, |D(vg)| =
k = O(1). For ease of presentation, in what follows we assume that actions A,
affecting vg are also all preconditioned by the value of vg; this assumption is
without loss of generality because any action a € A,, with no precondition on vg
can be replaced with £ actions that are preconditioned on different values of vg,
and otherwise are identical to a.

A straightforward property of RB tasks with a single black variable that plays
an important role in the proof is that the outside conditions of all the actions A,
are all red. Thus, in particular, once an action from A, is applied along a plan for

®Note that, trivially, FDR planning with a fixed number of variables is polynomial-time (simply
because the state space size is polynomial in the size of the input then). Theorem 1 deals with
the strictly more general case of red-black planning, and allows to add an arbitrary number of
red variables, arbitrarily used in the task’s actions, on top of the fixed number of (black) FDR
variables. In difference to the simpler FDR special case, this generality necessitates the restriction
to fixed domain sizes.

12

IT, it can then be re-applied any time, as long as its inside condition on the value
of vp is satisfied.

Now, let 7+ = (ay, ..., a,) be a relaxed plan for II, i. e., a plan for the mono-
tonic relaxation IT™ of our RB task II, and, for 0 < i < n, let ;" = {ay,...,a;)
denote the corresponding prefix of 7.

e For 0 < 7 < n, let I'; be the subgraph of the domain transition graph
DTGy (vg) induced by the actions A,, N{a1,...,a;}. Thatis, the subgraph
[y comprises only the vertex I[vg], and, in general, each subgraph I'; has
the value set I[7;"][vg] as its vertices, and its arcs constitute the 7 -induced
subset of the arcs between these vertices in DTGry(vg). From that, it is
immediate that each I'; is a subgraph of I';,, with the latter extending the
former with at most one vertex and at most one arc.

e Let m be the number of times the number of strongly connected compo-
nents (SCCs) changes from I';_; to I'; along 7", and o be the (increas-
ing) function that captures the indexes of the corresponding SCC-changing
actions {ay(1),...,0o(m)} along 7. In what follows, we also use two
dummy indexes: ¢(0), with a, () for “establishing” the initial state /, and
o(m + 1) = n, with o(m + 1) denoting “the last action of 71

Suppose that,

e forall0 < i < mandall 0(i) < j < o(i + 1), the action a; either has
no precondition on vg, or pre(a;)[vs] and eff(a,(;))[vs] belong to the same
SCC of I';(;y; and

o if g € V(G), then G[vg| and eff(a,(,))[vs] belong to the same SCC of
Fa(m)

Referring to such relaxed plans 7+ as SCC-aligned, in Lemma 2, p. 63, we show
that (a) any SCC-aligned relaxed plan can be extended, with only a polynomial
overhead, into a proper plan for II, and (b) the monotonic relaxation 7" of any
plan 7 for II is SCC-aligned. Therefore, in particular, any sound and complete
procedure for SCC-aligned relaxed planning for RB tasks with singleton VB ex-
tends with only a polynomial overhead to a sound and complete red-black plan-
ning procedure for that fragment of RB.

Now, let 7" be an SCC-aligned relaxed plan for II. Given the sequence of the

SCC-changing actions (as(1), - - -, Ge(m)) along 7, consider a different relaxed
plan for II,
pT =05 (o) P (Go@) - Pt (Gotm) P (D

13

where, inductively, p; is a relaxed plan from I[pg - asa) - py « ... - ap)] to
the relaxed planning fixpoint, using only those actions from A that are neither
preconditioned by values of vg outside of the SCC of eff (a,(;))[vs] in I'; nor have
such values among their effects.

It is not hard to verify (and we anyway show this in Lemma 3, p. 65), that p™ is
also an SCC-aligned relaxed plan for IT and that the SCC-changing actions of p*
are precisely the SCC-changing actions of 7. Thus, p™ can be seen as a canonical
representative of the set of all the relaxed plans for II that have (ag(l), cee ao(m))
as their sequence of SCC-changing actions. Given that, instead of searching for
a general SCC-aligned relaxed plan for II, we can restrict our search to only the
canonical SCC-aligned relaxed plans as in Equation 1 by, e.g.,

1. enumerating all possible candidate sequences (Gy(1), - - - , do(;)) of SCC-changing
actions, and

2. checking whether the corresponding canonical action sequence p* is a plan
for IT+.

Note that each action a, ;) along a valid candidate (a(,(l), e aa(l)> either extends
the set of SCCs of I';(;—1) with a new SCC in I',(;), or combines several SCCs in
I's(i—1) into a single SCC in I',(;). The former type of changes can happen at most
k — 1 times because it corresponds to extending I',(;_;) with a new vertex, and
[y already contains the vertex I[vg]. In turn, the latter type of changes can also
happen at most k£ — 1 times because it decreases the number of SCCs from I';(;_1)
to I's(;) by at least one. In sum, we have [< 2(k — 1), and thus the number of
candidate action sequences is O(|A,,|**72). Given that k = O(1), and that test
(2) corresponds to [+ 1 calls to (polynomial-time) monotonic planning, putting
things together results in a polynomial-time procedure for solving RB tasks with
a single fixed-domain black variable. U

We remark that the algorithm we just described differs from that in our pre-
vious conference paper [1], and provides a stronger bound, 2k — 2 instead of
(k+ 1)(k — 1), on “the amount of search” needed. The bound 2k — 2 is tight in
the sense that there are cases where 2k — 2 SCC-changing actions are required to
solve II.

While our algorithm runs in polynomial time for fixed £, it is exponential in
that parameter, which itself is exponential in the number of black variables in case
we have to pre-compile a fixed number of these. This makes it doubtful whether

14

the algorithm is of practical value for computing heuristic functions.” Having this
in mind, a natural next question is whether the tractability result of Theorem 1
can be extended either to a fixed number of black variables with unrestricted do-
mains, or to an unrestricted number of black variables with fixed-size domains.
Theorems 2 and 3 below show that the answer to this question is “no”, even under
some additional restrictions on the black variables.

Theorem 2 Plan existence for RB tasks with a fixed number of black variables is
NP-complete.

The NP-hardness part of the proof of Theorem 2 is by a reduction from CNF
satisfiability testing; the proof appears in Appendix A, p. 66.

Theorem 3 Plan existence for RB tasks where all black variables have fixed-size
domains is PSPACE-complete, and it is NP-complete even if CGE is arcless.

The first part of the proof for Theorem 3 is straightforward: If we fix the
domain size of the black variables, but not their number, then we obtain a problem
that is as hard as FDR with fixed-size domains, which is PSPACE-hard [7]. In turn,
PSPACE membership is straightforward because the addition of red variables still
allows for a proof similar to that for FDR. The proof of NP-hardness for the
second part of the claim is, again, by a reduction from CNF satisfiability testing.
The complete proof is given in Appendix A, p. 67

We now relate the statement of Theorems 2 and 3 to the main characterization
theorem of Chen and Giménez (2010) on the relation between the FDR planning
complexity and the structure of the causal graph:

Theorem 4 (Chen and Giménez, 2010) Let G be a set of directed graphs. If
cc-size(G) is bounded, then PlanGen(G) is polynomial-time solvable. Otherwise,
PlanExist(G) is not polynomial-time decidable (unless W[1] C nu-FPT).

WI1] & nu-FPT is a standard assumption on parametric complexity hierar-
chy [34]. Note that Theorem 4 is not a dichotomy result: unless P = NP, there
are digraph sets G for which PlanExist(G) is neither in P nor NP-hard. As the

"Matters may be different if the actual planning problem we want to solve can be framed as
a member of this tractable fragment. A relevant example where that is the case is monotonic
planning with a small number of non-replenishable resources.

15

tractability result in Theorem 4 covers only trivial planning problems, the theo-
rem shows that valuable islands of tractability within FDR must be characterized
in terms that go beyond the structure of the causal graph.

Focusing on the structure of CGo, let RB-PlanExist(G) and RB-PlanGen(G)
be respectively the plan existence and plan generation problems restricted to RB
planning tasks whose black causal graphs are elements of G. Note that these
problems put no restriction on the structure of the causal graph itself beyond be-
ing a super-graph of some element of G. Theorem 5 below refines the complexity
characterization for RB with respect to the structure of the black causal graph, pro-
viding a valuable fragment of tractability via Theorem 1, and establishing P/NP
dichotomies for both general RB, as well as for RB restricted to fixed-size domain
variables. The first part of Theorem 5 is by the polynomial-time plan generation
for MFDR and Theorem 2, and the second part is by Theorems 1 and 3.

Theorem 5 Let G be a set of directed graphs.

o [f#vertices(G) = 0, then RB-PlanGen(G) is polynomial-time solvable. Oth-
erwise, RB-PlanExist(G) is NP-hard.

o [f#vertices(G) is bounded, then RB-PlanGen(G) restricted to RB tasks with
bounded black variable domains is polynomial-time solvable. Otherwise,
RB-PlanExist(G) for RB with bounded black variable domains is NP-hard.

4.2. Causal Graph Structure and Reversibility

Departing from the conclusive yet pessimistic statement of Theorem 4, Chen
and Giménez (2010) considered so-called reversible FDR tasks: An FDR task
IT = (V, A, I,G) is reversible if, for every state s reachable from I, there exists
an action sequence 7 that “reverts” s back to I, i.e., s[r] = I. The characteriza-
tion theorem of Chen and Giménez for this fragment of FDR, Theorem 6 below,
establishes a valuable tractability result. In fact, this fragment has already been
successfully exploited for devising heuristic functions [29].

Theorem 6 (Chen and Giménez, 2010) Let G be a set of directed graphs. If
scc-size(G) is bounded, then PlanGen(G) restricted to reversible FDR is polynomial-
time solvable (under a succinct plan representation). Otherwise, PlanExist(G) for
reversible FDR is not polynomial-time decidable (unless W[1] C nu-FPT).

Adopting the notion of reversibility in red-black planning requires a slight,
natural adaptation: Since the value sets of the red variables in states reachable

16

from [will always include their initial values anyway, reversibility should be
requested only on the task’s black variables. That is, we say that an RB task
I = (VB VR A I, G) is reversible if, for every state s reachable from I, there
exists an action sequence 7 so that s[r][V®] = I[VE].

While this extension of reversibility to RB may at first sight appear minor and
insignificant, at closer inspection it turns out to be quite substantial. In particular,
reversibility of FDR tasks with acyclic causal graph can be tested in linear time at
the level of the individual domain transition graphs of the variables: such a task
is reversible if and only if the reachable part of each domain transition graph is
strongly connected. In contrast, even if RB is restricted to tasks with arcless black
causal graphs, testing reversibility is not (likely to be) polynomial-time:

Theorem 7 It is co-NP-hard to test whether an RB task is reversible, even when
restricting the input to RB tasks whose black causal graph is arcless.

The proof of Theorem 7 is by a reduction from DNF tautology testing; see
Appendix A, p. 67. We now show that, somewhat surprisingly given Theorem 7,
plan existence for reversible RB tasks with acyclic black causal graphs can be
decided in polynomial time.

Theorem 8 Let G be a set of directed graphs. If scc-size(G) is bounded, then
RB-PlanExist(G) restricted to reversible RB is polynomial-time solvable. Oth-
erwise, the problem RB-PlanExist(G) for reversible RB is not polynomial-time

decidable (unless W[1] C nu-FPT).

Note that Theorem 8 substantially extends Chen and Giménez’ tractability
result for PlanExist(G) (Theorem 6 here) to the red-black setting, because The-
orem 8 puts no constraints on the overall structure of the causal graph. At the
same time, note also the subtle difference between the claims of Theorem 6 and
Theorem 8 regarding solving plan generation vs. deciding plan existence. Both
the negative and positive parts of Theorem 8 consider plan existence, whereas the
positive part of Theorem 6 makes a stronger claim of tractability of plan genera-
tion. It is an open question whether plan generation is tractable in the setting of
Theorem 8; we conjecture that it is not. We will get back to this at the end of this
section, and for now consider plan existence only.

The negative part of Theorem 8 follows immediately from the negative part
of Theorem 6. As for the positive part, given bounded scc-size(G) we can with
polynomial overhead compile each strongly connected component into a single
black variable. Since the compilation leaves the semantics of the task intact, if the

17

original task was reversible, so is the compiled task. Thus, it suffices to consider
acyclic black causal graphs. In turn, for this setting, we now show that red-black
plan existence is equivalent to relaxed plan existence:®

Theorem 9 Any reversible RB task with acyclic black causal graph is solvable if
and only if its monotonic relaxation is.

Proof: The “only if” direction is trivial. For the “if” direction, we start with a
simple observation that, in any reversible RB task 11, we can achieve all reachable
red facts up front. Let R C |J,. = P(v) be the minimal set of red facts such
that, for every state s reachable in I, we have S[VR] C R. If s is reachable in II,
then we can “complete” it into R(s) := s U R by reverting the black variables to
I[VB], then reaching R () by going to every reachable state in turn, reverting the
black variables to I[V®] in between every two states, and then re-achieving the
black facts s[V'B], arriving into R(s) as desired. In sum, if s is a reachable state
in a reversible RB task, then R(s) is reachable in that task as well. Hence, the
existence of a plan for R(s) implies the existence of a plan for s. So, without loss
of generality, we can consider only R-completed states, and, in particular, assume
that [= R(I).

LetI1 = (VB VR A I G) be areversible RB task with [= R(I) and acyclic
black causal graph, and {vy, . ..,v,} be a topological ordering of V'® with respect
to CGE. If 7+ = (a4, ..., a,,) is a relaxed plan for II, consider a red-black action
sequence

T =Tp " Tp—1"..."T1

constructed as follows.

For 1 < i < n, assume inductively that 7,, - ... - m;_; is applicable in . If
v; € V(G), then we set m; := (). Otherwise, by the acyclicity of the black causal
graph and the R-completeness of I, we can revert any top subset of the black
variables while leaving the remaining ones untouched. In particular, by Lemma 4
(Appendix A, p. 68), there exists an action sequence p; that reverts the black
variables {vy, ..., v;} to their initial values, and neither is preconditioned by nor

8Note that the theorem shows, in particular, that plan existence for reversible FDR tasks with
acyclic causal graphs is equivalent to relaxed plan existence. This special case is rather easy to
see, but has to our knowledge not been pointed out previously.

18

A F B

NV

O«——R

Figure 3: Causal graph (and the induced black causal graph) of the red-black planning task ob-
tained from our SimpleGrid running example by painting all variables except F' and O black.

affects the topologically lower black variables {v;1, ..., v,}. Thatis,

[[[ﬂ'n'..."/TiJrl]][Uj], 7>

1oy, j<i @

Imy - oo - pi]l[vg]) = {

Given that, if G[v;] = I[v;], then we set m; := p;. Otherwise, by the virtue
of ©* being a relaxed plan for II, we must have an action a; in 7 achieving
G[v;] for some 1 < k < m, and, by the acyclicity of CG2, the black precondi-
tions of a; may involve only variables {vy,...,v;}. In turn, by Lemma 5 (Ap-
pendix A, p. 69), there exists an action sequence ,, that is applicable in / and
achieves pre(ay) while neither being preconditioned by nor affecting the topologi-
cally lower black variables {v;,1, ..., v, }. By Equation 2 we then have 7,, being
applicable in I, . ..-m;1-p;], and, for each black variable v € V(pre(a;))NVE,

Imy, - oo i1 - pi - o, V] = pre(ax)[v].

Given that, we set m; := p; - ,, - (ax). It is easy to verify that the action sequence
7 constructed via this iterative bottom-up achievement of the black sub-goals is
applicable in I and is a plan for II. UJ

Example 4 To illustrate with our SimpleGrid example the construction in the
proof of Theorem 9, say we paint all variables except F' and O black. This yields
a reversible RB task with acyclic black causal graph as in Figure 3. Assume that
I is R-complete, I = R(I), i.e. I[F| = {0,1} and I[O] = {0,1}. (If this is
not the case, we can complete I as described in the proof, or more effectively by
moving to position 2, taking key A, moving to position 3, opening the lock, and
then reverting R and A to their initial values.)

Consider a goal for the robot to reach location 7 with both keys being picked
up. Let " be the relaxed plan reaching this goal by moving to position 2, taking
key A, moving to position 7, and taking key B.

19

The construction of T for this goal G = {(R/7), (A/R), (B/R)} proceeds as
follows. Presume that we process the black goals in the order B, A, R. (The only
other choice would be A, B, R.) Starting with the goal fact (B/R), we commit to
using ©1’s action a achieving that fact, namely taking key B at position 7. This
action’s precondition generates the new sub-goal (R/7). To achieve that sub-
goal, we first revert R to its initial value (for which the empty action sequence
suffices, in this case), and then following 7+ we achieve (R/T) by moving R from
1 to 7. This move sequence has no black outside conditions (if there were such
conditions, they would be handled recursively), and all red outside conditions
(on O, in this case) are true because I = R(I). Once the move sequence has
executed, we can apply a, finishing with our treatment of variable B.

We next process the goal fact (A/R), committing to w"’s action a' taking key
A at position 2. The new sub-goal (R /2) is achieved by reverting R to its initial
value (moving back from 7 to 1), then following 7" to move R from 1 to 2. We then
apply a' and are done with A. Finally, processing the goal fact (R/7), we revert
R to its initial value by moving it from 2 to 1, then establish the precondition of
the s action a” that moves R from 6 to T by moving R from 1 to 6. We finalize
the red-black plan by applying a”.

As the example illustrates, while the constructed 7 is a red-black plan, it cer-
tainly is not a good red-black plan, which it should be in order to avoid over-
estimation when used inside a heuristic function. Much worse, while the proof of
Theorem 9 is constructive, executing that construction involves enumerating all
reachable red-black states, so the overall construction of 7 is not polynomial time.

As pointed out, it is an open question whether plan generation for reversible
RB with acyclic black causal graphs is tractable, and we conjecture that it is not.
To understand this pessimism, recall that the overall causal graph — over black and
red variables — may contain cycles (e. g., Figure 2 (a)). Thus, it is unclear how to
tackle red and black variables in combination, rather than separating the red vari-
ables out using R-completeness. In particular, we can not in general follow the
ordering of goal and sub-goal values achieved in the relaxed plan, because achiev-
ing these might require reverting black variables, which in turn might require red
values not achieved by the relaxed plan yet.

4.3. Causal Graph Structure and Invertibility

To resolve the issues just observed regarding reversibility, we now replace
reversibility with a stronger restriction, i. e., a sufficient criterion for reversibility.

20

This criterion is easily testable, and we show that, given the criterion applies,
satisficing red-black plan generation is tractable for acyclic black causal graphs.

Our criterion is based on the idea of invertibility, where every action applica-
tion can be directly “undone”. Invertibility criteria have been devised previously,
e. g. by Koehler and Hoffmann [35]. Straightforwardly translated to FDR, Koehler
and Hoffmann’s criterion postulates, for every action a, the existence of a corre-
sponding inverse action a’. That action must be always applicable behind a, en-
sured in FDR by pre(a’) C prevail(a) Ueff(a); and it must undo a exactly, ensured
in FDR by V(eff(a’)) = V(eff(a)) C V(pre(a)) and eff(a’) = pre(a)[V(eff(a))].
For any reachable state s, we can then revert to the initial state / simply by invert-
ing the path that lead from I to s.

It turns out that our setting admits a much less restrictive definition. What’s
more, the definition is per-variable, identifying a subset V; C V' of FDR variables
(the invertible ones) that can be painted black in principle. This enables efficient
red-black relaxation design: Identify the set V7, paint all other variables red, keep
painting more variables red until there are no more cycles in the black causal
graph.

Note that, once the selection of red variables is completed, every action will
affect at most one black variable, or otherwise there would be cycles between the
black effect variables. Since red variables accumulate their values anyway, there
is no need to “undo” any effects on them. Therefore, inverting an action a now
comes down to undoing its single effect (if any) on a black variable. Denoting
that variable by vg, inverting a corresponds to inverting an arc (d, a,d’) in the
domain transition graph of vg. Furthermore, both the outside condition and the
outside effect of (d, a, d’) will remain true and can be used as conditions for the
inverse arc: For (u/e) € oeff(d, a,d’), this is simply because u is affected by a
but u # vg, and so u must be red. For (u/e) € ocon(d,a,d'), if u is red there is
nothing to show, and if u is black then (u/e) must be a prevail condition because
all the outside effects are red. Putting these observations together leads us to the
following definition.

An arc (d,a,d’) is relaxed side effects invertible, or RSE-invertible for
short, if there exists an arc (d', a’, d) with outside condition

ocon(d',d’,d) C ocon(d, a,d’) U oeff(d, a,d).

A variable v is RSE-invertible if all arcs in DTGyy(v) are RSE-invertible, and an
RB task is RSE-invertible if all its black variables are.

21

Theorem 10 Any RSE-invertible RB task with acyclic black causal graph is re-
versible.

Proof Sketch: The proof in Appendix A, p. 70 shows that, for any state s and
action a applicable in s, from s[(a)] one can reach a state s’ so that s'[VB] = s[VB]
and, for every v € VR, s'[v] D s[v]. This is trivial if all variables in V(eff(a)) are
red. Otherwise, exactly one variable vg affected by a is black. Considering the
arc (d, a,d’) in DTGy (vg) taken by a in s, there exists an inverse arc (d’, a’, d) by
prerequisite, and the claim follows easily from the arguments outlined above. [

Obviously, RSE-invertibility can be tested in polynomial time. Note that it
generalizes the earlier definition for actions, given above: vg being the black effect
variable of a, and assuming as above that V(eff(a)) C V(pre(a)), it corresponds to
the requirement that pre(a’) C pre(a)Ueff(a) (compared to pre(a’) C prevail(a)U
eff(a)) and eff(a’)[vg] = pre(a)[vg] (compared to eff (a’) = pre(a)[V(eff(a)))).

Example 5 Consider the SimpleGrid example from Figure 1, and the domain
transition graphs of F' and R as illustrated in Figure 2 (b) and (c). These variables
are RSE-invertible. For R, arcs (i,i+ 1) and (i +1,i) where {i,i+ 1} N {4} =0
have empty outside conditions, and thus are trivially RSE-invertible. The other
arcs all have outside condition {O = 1}, and so they are RSE-invertible, too.

For F, arcs (1,0) induced by take(x,y) are inverted by arcs (0, 1) induced by
drop(z,y): ocon(0,1) = {(R/z), (y/R)} is contained in ocon(1,0) = {(R/x), (y/x) }U
oeff(1,0) = {(y/R)}. Similarly vice versa, i.e., arcs (0,1) are inverted by the
corresponding arcs (1,0). Note here that ocon(0, 1) Z ocon(1,0), i. e., it is impor-
tant to allow the inverse arc to make use of conditions established by the original
arc’s outside effect.’

The outside condition of DTGy (R) arcs (4,3) and (4,5) in our example is
non-standard in the sense that it is not explicitly specified in the IPC version of the
Grid domain. There, instead, that condition is an invariant based on the implicit
assumption that the robot is initially in an open position. We have chosen this
example to illustrate that, like previous similar notions, RSE-invertibility can be
subject to modeling details. It would be an option to use invariance analysis (e. g.,

9We remark that the more restrictive version, requiring ocon(d’, a’, d) C ocon(d, a, d') instead
of ocon(d’, a’,d) C ocon(d, a,d")Uoeff(d, a,d"), corresponds to Hoffmann’s [36] notion of DTG
invertibility.

22

[37, 38, 39, 40]) to detect implicit preconditions, but we have not done so for the
moment.
Together with Theorem 9, Theorem 10 immediately implies that:

Corollary 1 Any RSE-invertible RB task with acyclic black causal graph is solv-
able if and only if its monotonic relaxation is.

In other words, existence of a relaxed plan implies existence of a red-black
plan. These results, however, do not tell us anything about how to actually find
such a plan efficiently. Indeed, recall our conjecture that there is no polynomial-
time “how to” when relying on reversibility only. The stronger notion of RSE-
invertibility solves that issue: If all black variables are RSE-invertible, then we
can efficiently repair a relaxed plan to form a valid red-black plan. We will spell
this algorithm out in detail below. In a nutshell, we simply execute the relaxed plan
action-by-action. Whenever the black precondition of the next action (or, at the
end, the goal) is not satisfied, we project the planning task onto the black variables,
and then project these variables’ domains onto the values already visited along
our red-black plan prefix. We then solve this projected task to move the black
variables into place. The projected tasks have black variables only, so are in FDR.
Their causal graph is acyclic because the black causal graph of the original task
IT is. Thanks to RSE-invertibility, all their domain transition graphs are strongly
connected. These two properties together ensure that we can solve each projected
task efficiently:

Lemma 1 Let G be a set of directed graphs. If all graphs in G are acyclic, then
PlanGen(G) restricted to FDR with strongly connected domain transition graphs
is polynomial-time (under a succinct plan representation).

Proof: By Chen and Giménez [32], as stated in Theorem 6, PlanGen(G) restricted
to reversible FDR is polynomial-time, under a succinct plan representation. So
it suffices to show that any FDR task II with acyclic causal graph and strongly
connected domain transition graphs is reversible. Say that s is any reachable state
in Il = (V,A,I,G). We construct a modified task as II" = (V| A, s, 1), i.e.,
we take s as the initial state and we take the original initial state as the goal.
Obviously, it now suffices to show that II" is solvable. Since IT', like IT itself,
has an acyclic causal graph and strongly connected domain transition graphs, that
follows directly from Observation 7 of Helmert [29], which shows that any FDR
task with these properties is solvable. 0

23

Results closely related to Lemma 1 have been mentioned at various places in
the literature (e.g., [27, 41, 28, 29, 32]), but to our knowledge the lemma has
never been stated in this precise form, as is needed in our context.

The succinct plan representation in Chen and Giménez’ proof exploits recur-
sive macros for value pairs within domain transition graphs. This representation
trick is required as plans in this setup may be exponentially long (e. g., [42, 36]).!°
We remark that, in our actual implementation (detailed below in Section 5.3),
we use an explicit plan representation, not relying on macros, as long plans do
not tend to occur in our context (inside the heuristic function), and building the
macros would incur way too much overhead. In that sense, the importance of
Lemma 1 is mainly theoretical. It enables us to prove the main result of this sec-
tion. We include the full proof here as it essentially consists of our relaxed plan
repair algorithm, and thus directly underlies our basic heuristic function:!!

Theorem 11 Let G be a set of directed graphs. If all graphs in G are acyclic,
then RB-PlanGen(G) restricted to RSE-invertible RB is polynomial-time (under a
succinct plan representation).

Proof: Figure 4 provides pseudo-code for an algorithm that turns, with polyno-
mial overhead, a relaxed plan into a red-black plan. We use the notations from the
figure in what follows.

Consider an iteration ¢ of the main loop. Any red preconditions of a; are true
in the current state /7] because the red-black plan prefix 7 includes the relaxed
plan actions a4, ..., a;_1 processed so far. Unsatisfied black preconditions g are
tackled by ACHIEVE(T, g), solving an FDR task I1® with goal g. The returned
action sequence 7° is attached to 7.

We next prove that (i) IIB is well-defined, that (ii) all its domain transition
graphs are strongly connected, and that (iii) any plan 72 for IIB is, in our RB task
I1, applicable in the current state /[r]. This suffices to prove the claim: As the
causal graph of II® is (obviously) acyclic, with (ii) and Lemma 1 we know that

10The basic idea is to design chain causal graphs v; — vo — - -+ — v,, where, in a plan, every
move of v; requires several moves of v;_1 for achieving its precondition. In this situation, Chen
and Giménez’ macros for v; just record the necessary moves of v;_; via recursively pointing to the
macros for v;_1, without ever spelling out the actual action sequence represented by the macros
(this is akin to the commonly known recursive solution to Towers of Hanoi).

"Note that, in difference to Theorems 8 and 9, we require the causal graph to be acyclic, as
opposed to having bounded-size strongly connected components. As we show in Theorem 12
below, this restriction is necessary.

24

Algorithm : RELAXEDPLANREPAIR(IL, 771)
main
/T = (VB VR AT G)andnt = (ay,...,an)
m <+ (a1)
fori=2ton
if pre(a;)[VE] € I[x]
do then {ﬂ'B — ACI—éIEVE(pre(ai)[VBD
T T T
w1 {a;)
if G[VB] ¢ I[~]
then {TI'B — ACI—éIEVE(G[VB])
T T T

procedure ACHIEVE(T, g)

F+I1ul eff(a)

forv € VB

do DB(v) < D(v)NF

IB « Ix][VE

GB+g

AB < {aB | a € A, aB = (pre(a)[VB], eff(a)[VE]),

pre(a) C F,eff(a)[VE] C F}

1B « (VB AB 1B GB)

7B < an FDR plan for TIB //TI® is necessarily solvable
return 78

aEm

Figure 4: The relaxed plan repair algorithm for solving a red-black planning task II. The algorithm
underlies the proof of Theorem 11.

we can solve I1B in polynomial time (under a succinct plan representation), and
so the overall algorithm runs in polynomial time. As I1B ignores the red variables,
but effects on these cannot hurt anyway, with (iii) a; is applicable in I[r - 7B].
Iterating that argument shows that the algorithm returns a red-black plan.

For (i), we need to show that all variable values (v/d) occurring in I1® are
indeed members of the respective variable domains, i.e., d € DB(v). This is
obvious for I8 and AB. It holds for G® because by construction these are facts
made true by the relaxed plan actions a4, . .., a;,—; already processed.

For (ii), observe that all values in DTGy (v) are, by construction, reached
from I[v] by a sequence of arcs (d,d’) induced by actions in 7. So it suffices
to prove that every such arc has a corresponding arc (d',d) in DTGy (v). Say
v € VB, and (d,a®,d') is an arc in DTGys(v) induced by a® where a € .
Because (d, a, d') is RSE-invertible in I, there exists an action a’ € A inducing an
arc (d’,a’,d) in DTGy (v) whose outside condition is contained in pre(a) U eff(a).
Since, obviously, pre(a) Ueff(a) C F, we get pre(a’) C F'. Since @’ can have only
one black effect, eff (a')[VB] = {(v/d)} which is contained in F'. Thus a’® € A8,
and (d', d) is an arc in DTGe (v) as desired.

Finally, (iii) holds because, with pre(a) C F for all actions where aB € AB,

25

the red preconditions of all these actions a are true in the current state /[7]. So
applicability of 78 in Ir], in II, depends on the black variables only, all of which
are contained in I18. This concludes the proof. 0

Example 6 Consider again the SimpleGrid example from Figure 1. For VB =
{R, F'}, the example is in our tractable fragment: the black causal graph is
acyclic (compare Figure 2 (a)), and R and F' are RSE-invertible (Figure 2 (b)
and (c), cf. Example 5).

Say the relaxed plan 7w is: (move(1,2), take(2, A), move(2,3), open(3,4, A),
move(3,4), move(4,5), move(5,6), move(6,7), take(7, B), drop(1, B)).

In RELAXEDPLANREPAIR(IL, 7T), there will be no calls to ACHIEVE(, g)
until a;=take(7, B). To achieve the precondition of that action, ACHIEVE(T, g)
constructs 11® with initial state {(R/7), (F/0)} and goal {{R/7),(F/1)}, and an
action set all of whose “drop” actions have the form “drop(x, A)” (because the
red fact B = R has not been reached yet). We get the plan 7® = (drop(7, A)).
Thus drop(7, A) and take(7, B) are added to 7. The next iteration calls ACHIEVE(T, g)
for the precondition of drop(1, B), constructing 118 with initial state { (R/7), (F/0)}
and goal {{R/1)}, yielding w® moving R back to 1. Subsequently, 7® and drop(1, B)
are added to m, and the algorithm stops. The returned action sequence is a real
plan and its length corresponds to the perfect heuristic value 17.

Theorem 11 does not hold for the weaker requirement of bounded-size strongly
connected components. This is because multiplying fixed-size sets of variables
into single variables may lose RSE-invertibility. Indeed:

Theorem 12 There exists a set G of directed graphs where scc-size(G) is bounded
by 2, and RB-PlanExist(G) restricted to RSE-invertible RB is NP-hard.

Proof Sketch: Given a CNF formula ¢, for each Boolean variable p occurring in
¢ we include two binary state variables x,, and y, with initial value 0, an action
apz1y41 With precondition {(x,/0), (y,/0)} and effect {(z,/1), (y,/1)}, an action
apz0 With precondition {(x,/1), (y,/0)} and effect {(z,/0)}, and an action a,,o
with precondition {(x,/0), (y,/1)} and effect {(y,/0)}. Each individual vari-
able z, and y, is RSE-invertible, but their product is not: we can transition to
{(x,/1), (y,/1)} but we cannot go back. Thus, for each p in ¢, we can encode
the decision whether to set p to true ((x,/1), (y,/1)}) or false ({(z,/0), (y,/0)}).
Adding, in a straightforward manner, variables and actions that allow to test sat-
isfaction of ¢ for given decisions on each p concludes the argument. The detailed
proof is given in Appendix A, p. 71. 0

26

We remark that the proof does not actually require any red variables, so the
same result holds for the special case of FDR planning. Note that the issue here
lies in the assumption underlying RSE-invertibility, that all outside-effect vari-
ables will be painted red: The transition (0, 1) of z,, (and likewise of y,) is RSE-
invertible because the outside condition (y,/0) of the inverse transition (1,0) is
contained in ocon(0, 1), and the over-writing effect (y,/1) € oeff(0, 1) is, under
our assumption, red and thus harmless. When merging z,, with y,, into a single
(black) variable, this assumption breaks because the “side effect” is now com-
piled into that single variable, with black semantics. It remains an open question
whether stronger notions of invertibility can yield the ability to naturally handle
bounded-size strongly connected components, and whether that yields any advan-
tage in practice.

5. Heuristic Functions

With tractability of (satisficing) red-black plan generation, Theorem 11 es-
tablishes an essential prerequisite for generating heuristic functions in analogy to
relaxed plan heuristics, and it already provides a red-black planning algorithm for
doing so. The resulting basic heuristic function, which we denote by hp,, is
obtained for any state s by

e generating a relaxed plan 7 for s,

e returning h> . (s) := oo if no relaxed plan exists and hence (by Corollary 1)

no red-black plan exists either,

e else using relaxed plan repair to transform 7 into a red-black plan 7R for
s, and

e returning the length of %" as the heuristic value 35, (s).
We herein tackle the obstacles involved in making this practical. Foremost, we

observe in Section 5.1 that hgm is prone to dramatic over-estimation even in

trivial examples. This is due to bad decisions inherited from the relaxed plan 7,
which we fix in Section 5.2 by devising a refined algorithm, red facts following,
that relies less on 7; the refined heuristic is denoted hgy .- In Section 5.3, we
fill in some details, pertaining in particular to our handling of acyclic black causal
graphs. Section 5.4 concludes our treatment by empirically showing the merits of
hitow V8- Py, and of using acyclic black causal graphs as opposed to arcless
ones (which were used in our prior works on red-black plan heuristics). We will

keep the “winning techniques” (hfy ., acyclic black causal graphs) fixed for the

rest of the paper, simplifying and focusing the subsequent empirical evaluations.

27

5.1. Over-Estimation in Relaxed Plan Repair

As a first illustration, consider that in Example 6 we used the relaxed plan
(move(1,2), take(2, A), move(2, 3), open(3,4, A), move(3,4), move(4,5), move(5, 6),
move(6,7), take(7, B), drop(1, B)). We showed that relaxed plan repair (with R
and £’ painted black) ends up returning an optimal real plan. What we did not say
is that this relies on a particular sequencing of the relaxed plan. Under the delete
relaxation, the relaxed plan may just as well start with (move(1,2), move(2, 3),
take(2, A), open(3,4, A)) instead. If that happens, then a call to ACHIEVE(T, g)
before take(2, A) will insert move(3, 2), and another call before open(3, 4, A) will
insert move(2, 3), needlessly undoing and re-doing the work involved in getting
from position 2 to position 3. While this may seem benign, similar forms of over-
estimation are triggered massively by the typical behavior of standard relaxed plan
extraction schemes. Consider the following illustrative example:

Example 7 In Figure 5, truck T needs to transport each package X € {A, B,C, D}
to its respective goal location x € {a,b, ¢, d}. The truck can only carry one pack-
age at a time, encoded by a binary variable I' (“free”). A real plan has length
15 (8 load/unload actions, 7 drive actions). A relaxed plan has length 12 (4 drive
actions suffice as there is no need to drive back).

(b)

Figure 5: (a) An illustrative example “StarShapeLogistics”, and (b) its causal graph

Standard relaxed plan extraction schemes (e. g. [6, 23]) can be characterized
as starting at the goal facts, selecting a “best supporter” action a for each (mini-
mizing precondition achievement cost, estimated using h™™ or h** [5]), marking
a’s preconditions as new sub-goals, and iterating until the sub-goals are true in
the initial state. Doing this in a breadth-first fashion, and scheduling the actions
a in reverse order of selection, we obtain a sequential relaxed plan 7™ as needed
as input for relaxed plan repair. In our example here, ©+ will start with the 4
drive(init, x) actions, followed by the 8 load(X,init) and unload(X, x) actions.

Say we paint T' and F' black and paint the packages red, obtaining an RSE-
invertible task with acyclic black causal graph as desired. Example issues are:

28

(A) Say that 7 = (drive(init,a), ..., drive(init,d), load(A, init), unload(A, a),
..., load(D,init), unload(D, d)). Handing this over to relaxed plan repair,
processing the drive(init, x) actions will result in a valid path of drives navi-
gating the truck across the entire map — without performing any actual loads
or unloads! Subsequently, when load(A,init) comes up, we drive back to
init, and drive on to A for unload(A, a); and similarly for B, C, D. The re-
sulting red-black plan duplicates the effort for driving across the entire map.

(B) Matters are even worse if 7+ schedules load(A,init), ..., load(D,init) in
front of unload(A,a), ..., unload(D,d): When load(B, init) comes up, we
need to achieve the black precondition (F'/1), the shortest plan for which
is to apply unload(A,init). Note that, after the latter action, A is “still in
the truck” because the position of A is painted red. The resulting red-black
plan duplicates drives and contains superfluous unloading actions (which
furthermore cause the red-black plan to be inapplicable in the original task).

(C) Finally, say we extend the example by including N endpoint locations, N
packages that need to be transported to these, and N trucks, where all pack-
ages and trucks are initially in the middle. Then all optimal plans use one
truck per package. An optimal relaxed plan, however, can use a single truck.
Starting from this, relaxed plan repair will use a single truck as well.'?

To mention a concrete [IPC benchmark in which such things happen, consider,
e.g., IPC’11 Elevators. Assume we paint the lift positions black and paint every-
thing else red. Like in Example 7 (A), board/leave actions (‘“loading/unloading”
passengers) will tend to be scheduled behind the elevator moves, resulting in a
red-black plan that first moves the elevators all over the place without actually
transporting anybody. Similarly as in Example 7 (B), since the relaxed plan is
free to choose any board/leave actions, it may decide to use the same lift capacity
precondition (typically, the one initially true one for that lift) for all boarding ac-
tions. This forces the red-black plan to achieve the desired capacity by applying
useless instances of board/leave.

An issue not represented in Example 7 are cumbersome solutions enforced by
the need to incorporate the relaxed plan actions, whereas not incorporating them

12Similar phenomena may occur in any domain with alternative resources that can be flexibly
assigned to sub-tasks. Relaxed plans, generated using standard techniques such as extraction from
arelaxed planning graph [6], will tend to always use the same resource for all sub-tasks (assuming
they always use the same arbitrary tie-breaking). That bad decision will be inherited in relaxed
plan repair.

29

allows much simpler (and shorter!) solutions. A prime example for this is IPC’11
VisitAll, painting the robot position black. If, for example, in the current state the
robot is located in the right bottom corner of a grid, then the relaxed plan is likely
to visit the grid in a breadth-first fashion, going outwards in all directions from
that corner. Given this, during relaxed plan repair, when the robot reaches, say,
the top right corner, instead of just moving one step to the left (to the nearest yet
un-visited grid cell), we move it all the way back to the bottom before moving out
from there again.

5.2. A Refined Algorithm: Red Facts Following

The major source of the observed difficulties is that relaxed plan repair com-
mits to the particular actions chosen by the relaxed plan, as well as to their order-
ing. We now define an algorithm, red facts following, that makes do with a much
weaker commitment, namely to the set of red facts employed by the relaxed plan.
Namely, we consider the set

R™ = G[VRU U pre(a)[VF]

acnt

of red facts that are required either by the goal, or by an action precondition in
713 Pseudo-code for our algorithm is shown in Figure 6.

The algorithm maintains two monotonically increasing sets of variable values:
R is the set of all currently already achieved red variable values, and B is the
set of all black variable values currently achievable under R, i.e., that we can
achieve based on using only (red) outside conditions from R. Both R and B are
maintained by the UPDATE procedure. Consider that procedure first. For v € VB,
DTGy (v)|rup is obtained as follows. Let G be the subgraph of DTGy (v) obtained
by removing all arcs whose outside condition is not contained in RUB. The graph
DTGy (v)|gup is obtained from G by removing all vertices (and incident arcs) that
are not reachable from /[v]. Abusing notation, we use DTGy (v)|gup to denote
both the DTG subgraph and the set of vertices (variable values) of that graph. The
updating is done in a topological order, i.e., from the roots of the black causal
graph to its leaves, because each variable depends on its parent variables so we
need to determine the reachable values for the parent variables first.

13 Any relaxed plan 7+ works for us, and different relaxed plans may yield different sets RT. In
that sense, in particular, our approach is unrelated to landmarks (e. g., [43, 44, 45, 11]), which are
concerned with things that happen in all possible (relaxed) plans.

30

Algorithm : REDFACTSFOLLOWING(IT, RT)
main
/= (VB VR AT G)
global R+ 0, B+ 0, m+ ()
UPDATE()
while R 2 Rt
Ap = {a € A|pre(a) C BU R, eff(a) N (Rt \ R) # 0}
Selecta € Ag
if pre(a)[V®] £ I[x]
then 78 < AcHIEVE(pre(a)[VB]), 7 + 7 - 7B
w7 {(a)
UPDATE()
if G[VB] Z I[x]
then 78 < ACHIEVE(G[VE]), 7 + 7 - 7B
return

do

procedure UPDATE()
R« I[x][VR]
B+ BUI[r][V®]
for v € VB, ordered topologically by the black causal graph
do B+ BU DTGH(U)‘RuB
procedure ACHIEVE(g)
VR U, cve VR(ocon(DTGH (v)] rus))
forv e VB U VR
DB(v) + D(v)
do S ifve VB
then DB(v) + DB(v) N B
18« I[x][vB U VR, GB « ¢
AB < {aB|ac A, aB = (pre(a)[VB U VR],eff(a)[VB U VR)),
preg) CRUBorex. v € VB:ac ADTG(v)|ruB)}
1B « (VB, VR AB [B GB)
(a’lB, RN a;CB> < an RB plan for I8/ TI® is necessarily solvable
return (a,...,a})

Figure 6: The red facts following algorithm for solving a red-black planning task II, refining
relaxed plan repair (cf. Figure 4) to reduce over-estimation. The algorithm assumes that RT™ =
GIVRIUUuen+ pre(a)[VR] where 7+ is a relaxed plan for II. For explanation of notations, see
text.

Getting back to the main procedure, consider the while loop. Our candidate
actions for inclusion in the red-black plan prefix, in every iteration of the loop,
are given by the set Ay of actions whose preconditions are contained in B U R
(the red precondition is true and the black precondition is achievable), and that
achieve at least one fact from R™ \ R (the action makes progress on R*). Once an
action a € A, is selected, the call to ACHIEVE(pre(a)[V®]) serves to find a plan
fragment 78 establishing its black precondition, if needed. We append 78 to the
red-black plan prefix 7, and we append a itself, then we iterate. In other words,
the red facts R+ employed in the relaxed plan serve as targets which we are free
to achieve in any order, and using any actions we like, as long as we know we will

31

be able to achieve their black preconditions. Once all of R has been achieved,
we know that we will be able to achieve the black goal.

It remains to explain the ACHIEVE(g) procedure, responsible for generating
the plan fragments 7& establishing black sub-goals g corresponding to either the
precondition of an action in Ay, or to the black part of the original goal. Simi-
larly as in relaxed plan repair, this is accomplished via a projected planning task
I1B designed for that purpose. However, the design is more complicated than be-

fore. By DTGy (v)|rup, We denote the set of “complementary inverse transitions”
(d',d,d) for DTGy (v)|gup: For every arc (d, a,d’) in DTGy (v)|rup, we include
into DTGy (v)|rup all inverse arcs (d',a’,d) (i.e., arcs with ocon(d’,a’,d) C
ocon(d, a,d’) U oeff(d, a,d')) that are not already contained in DTGy (v)|gup it-
self. Such inverse arcs must make use of at least one yet non-established red
outside condition (v/d) € ocon(d’,d’,d) \ R, where by construction we must

have (v/d) € oeff(d,a,d’)."* By VR(ocon(DTGr(v)|ruz)), we denote the set of
%
red variables appearing in the outside conditions of the arcs DTGy (v)|grup. By

A(DTGr(v)|rup), we denote the set of actions inducing the arcs in DTGy (v)| gus-

Let us explain why the more complicated construction of I1® is required. In re-
laxed plan repair, the sub-goals g to be achieved always consist of facts (variable
values) already visited on the plan prefix w. However, in the present algorithm
g may contain facts that we can reach given the current R, but that we haven’t
actually visited yet. This leads to complications with our generous definition of
invertibility, where the inverse transition (d’, d) may make use of red outside con-
ditions that will be established only through the red outside effect when executing
the original transition (d,d'). To capture this behavior, we need to keep track of
which potential red outside conditions of inverse transitions — values of variables

%
VR(ocon(DTGy(v)|rup)) — are currently true, and we need to include the ac-

tions A(DTGn(v)|rup) which will then be usable to execute the activated inverse
transitions. This is best understood through an example:

Example 8 Consider an RB task with two black variables b,,by and one red
variable r. All variables are binary-valued and initialized to 0. The goal is
(b1/0), (ba/1). The actions are aj y,,q with precondition (b, /0) and effect (b, /1), (r/1);

“As (v/d') is in B but (d’,a’,d) is not in DTGy (v)|rup, (d',a’,d) must have at least one
outside condition p ¢ R U B. By construction, p € ocon(d,d’) U oeff(d,d"). We cannot have
p € ocon(d,d’) as ocon(d,a,d’) C RU B. Hence p € oeff(d, a,d'); by construction, all these
outside effects must be red.

32

a1pwa With precondition (b1/1), (r/1) and effect (b1/0); assnqa With precondition
(b2/0), (b1/1) and effect (by/1); and agpy,q with precondition (by/1),(b;/1) and
effect (by/0). The black causal graph is acyclic and both black variables are
RSE-invertible. Say the relaxed plan is (a fia, G2wa), hence Rt = 0, and hence
the while loop in Figure 6 terminates immediately and we get a single call of
ACHIEVE(g), on the original goal.

Assume for the moment that, in ACHIEVE(g), we would be using a simpler
construction T1® with only the black variables, and not including the actions

A(DTGy (v)|ruB). Then I1B would have variables by and by, including their val-
ues (by/1) and (by/1) because (b;/1) can be reached given R = {(r/0)} and
(by/1) can be reached given (by /1), but not including ayy,q because that requires
the red outside condition {r /1) & R. This 1B is unsolvable because, while we can
bring by to value 1 as required for moving by, we cannot bring by back into value
0 as required for its own goal.

To ensure solvability of 1B, we must ascertain that we can always “go back”.
RSE-invertibility does ensure that, but subject to red outside conditions that will
be established “on the way out”. Using ACHIEVE(g) as stated in Figure 6,

DTG (by)|rup consists of the single arc (1,0) with outside condition r = 1,
and DTGy (by)|pup is empty. Thus 118 has all three variables because r € VR =
VR(ocon(DTGy (by)|rus))U VR(ocon(DTGr(b2)| rup)), and includes all actions
because a1ppq € A(DTGri(b1)|ruB)-

Note that TI® here is not a standard FDR task, but is a red-black planning
task itself. It is a benign kind of red-black planning task though, because its
black causal graph is acyclic, there aren’t any goals on the red variables, and
for each black DTG we know that (a) from our initial position we can reach all
values, and (b) once we traversed any arc (d,d’) we will have the red outside
conditions required for at least one inverse arc (d’',d). Like acyclic FDR tasks
with strongly connected DTGs, such RB tasks are always solvable (and, as we
shall describe further below, can be solved very similarly). Hence our algorithm
works as desired:

Theorem 13 Let 11 = (VB VR A I G) be an RSE-invertible RB planning task
with acyclic black causal graph, ™" be a relaxed plan for 11, and R = G[VR] U
Udert Pre(a)[VR]. Then, assuming a complete solver for the sub-tasks II® gen-
erated, REDFACTSFOLLOWING(II, R*) terminates, and the action sequence T it
returns is a plan for 11.

33

Proof Sketch: The proof is very similar to that of Theorem 11, and it is given

in Appendix A, p. 72. The major differences lie in the structure of the main

loop (following R* instead of the actions in the relaxed plan) and in the details
regarding the sub-tasks I1B.

The while loop terminates because, as long as R 2 R™, we always have
Ag # 0. This is simply because there always exists an action in 7+ which is
a member of Ay: As 7T achieves all of RT, there must be at least one action
a; € ©* with eff(a;) N (RT \ R) # 0; for the smallest such index i, it is easy to
see that the 77 prefix up to 7 cannot make use of any preconditions outside RU B.
Similarly, once the while loop has terminated, we must have G[VR] C R simply
because G[VR] C R*, and we must have G[VB] C B because 7" cannot make
use of any preconditions outside R U B.

The correctness of precondition and goal achievement, i. e., the correct func-
tioning of the calls to ACHIEVE(g), follows, similarly as in the proof of Theo-
rem 11, from three properties of the sub-tasks I1B: (i) IIB is well-defined; (ii) IIB®
is solvable; and (iii) any plan 7® for IIB is, in the RB task II, applicable in I[r].
Thanks to (i) and (ii), we will obtain a plan 78 for IT1B. Thanks to (iii) it is valid to
append 7B to 7. Furthermore, while I1B ignores some of the red variables, effects
on these cannot hurt anyway, so (in the while loop) the action a is applicable in
I[r - =B].

The proofs for (i) and (iii) are minor extensions to those in the proof of The-
orem 11. The proof of (ii) is by an extension of Helmert’s Observation 7. Recall
that, by this observation, any FDR task with acyclic causal graph and strongly
connected domain transition graphs is solvable. This follows from:

(1) Acyclicity of the causal graph implies that we can solve the planning task
“top-down”, from causal graph leaves to roots, fixing a DTG path for each
variable v and propagating the required preconditions as sub-goals to v’s par-
ents.

(2) As every DTG is strongly connected, every required path is available, i.e.,
every variable can always move from its current value to any other value it is
required to achieve as a sub-goal (or its own goal).

(1) is preserved in our setting, for the black variables; the red variables are handled

exclusively as part of our adaptation of (2) below, which is possible as they have

no own goals (G® does not mention the red variables). To ascertain (2), we employ

the following two observations, valid for every black variable v € VB.

(a) From v’s start value, IB[v] = I[r][v], all values d € DB(v) of v’s reduced
domain are reachable in DTGy (v)|rup-

34

(b) Assume that 7® is any applicable action sequence in I which has, at some
point, executed action a® traversing DTG (v)|pup arc (d,d’). Then there
exists an action a’® € A®B inducing an inverse arc (d’, d) whose red outside
conditions are contained in the outcome I8[78] of applying 78 in IIB.

To see that (a) and (b) together show (2), as the paths whose existence are postu-
lated in (2) may make use of arbitrary black outside conditions, we need to worry
only about red outside conditions. When v makes its first move, by (a) any path
that may be required is available and relies only on the red facts R which are true.
In any subsequent move of v, for all DTGy (v)|grup arcs we have traversed so far,
by (b) there exists a suitable inverse action o’ relying only on red outside condi-
tions that are already true. So, to reach any value d, that may be required, we can
go back to the start value B[v] exploiting (b), and subsequently move from I8[v]
to d, exploiting (a).

It remains to prove (a) and (b). Both arguments are very similar to how we
showed in Theorem 11 that DTGs are strongly connected: Once we actually
executed an action in IIB, the red outside conditions needed for the inverse ac-
tion are true. This shows (a) because, by construction, all values in DB(v) =
DTGy (v)|gup are reachable from [[v], and as 7 induces a path from [[v] to
I[7][v] in DTGp(v)|grup We can invert that path to go back from I[x][v] to
I[v]. For (b), once we applied a® in II® where o’ is the corresponding inverse
action, if pre(a’) € R U B then the claim is trivial. If pre(a’) € R U B then
a' € A(DTGr(v)|ruB), so we have a’® € AB and V(pre(a’)) N VR C VR, This
concludes the proof as, by construction, pre(a’)[VR] C pre(a) U eff(a). O

Does our refined algorithm actually yield a benefit? Does hRS

follow Teduce over-
estimation, compared to hgair? Further below, we provide empirical data strongly
supporting that the answer is “yes”. For now, let’s reconsider the examples from

Section 5.1.

Example 9 In the StarShapeLogistics example from Figure 5, no matter how we
order the relaxed plan, the set R™ will consist of the facts {(A/init), (A/T), (A/a)
..., (D/init),(D/T),(D/d)}. The truck moves are then completely up to the
calls of the ACHIEVE(g) procedure, and the while loop is free to choose the or-
der in which to tackle the sub-goals (loading a package, bringing it to its goal
position). Hence, assuming that ACHIEVE(g) finds short plans, and the choice
of a € Ay is done intelligently enough to prefer delivering a package once it is
loaded — which we do accomplish in our implementation, see Section 5.3.2 — the
issues pointed out in Example 7 (A) and (B) are solved.

35

The issue pointed out in Example 7 (C), however, persists. If the relaxed plan
uses a single truck T only, then R™ will have the same form as above, fixing usage
of T through the red facts (A/T), ..., (D/T). It remains an open question how to
solve this, and related issues of resource assignment. Perhaps low-conflict relaxed
plans [18] could deliver input better suited to that purpose.

As far as the two IPC benchmarks we pointed out are concerned, matters are
fine. In Elevators, painting the lift positions black and painting everything else
red, R consists of passenger initial, intermediate (in a lift) and goal locations, as
well as of lift capacities required along 7. The actions achieving these facts are
board|/leave; these are the actions selected by the main loop, and moving the lifts
is entirely up to ACHIEVE(g), solving issue (A). Regarding issue (B), assume that
all board actions in 7+ are preconditioned by the initially true capacity of that lift
(¢;). Then all leave actions in 7 will be preconditioned by the ¢; — 1 capacity,
and ¢; and ¢; — 1 are the only capacity-related facts in R™. As ¢ is true in the
initial state, and ¢; — 1 is achieved by the first board action into the respective lift,
after that action there are no more capacity-related facts in Rt \ R. Thus action
selection in the main loop will be based exclusively on following red facts related
to the passenger locations.

In VisitAll, painting the robot variable black and everything else red, R con-
sists of “visited(location)” facts exclusively, and the robot moves are mainly de-
termined by how the next such fact is selected for achievement, i.e., how we
select a € Ay. Based on the selection criteria we use in our implementation (Sec-
tion 5.3.2), the red-black planner will always move to a yet non-visited location
nearby, and the issue is solved.

5.3. Realization Details

We first fill in the details how we handle the sub-tasks II® that need to be
solved for black precondition (and goal) achievement within both relaxed plan re-
pair and red facts following. We then describe important optimizations regarding
the choice points in red facts following.

5.3.1. Solving the Sub-Tasks 118

Consider first the sub-tasks I1® in relaxed plan repair, which are FDR tasks
with acyclic causal graph and strongly connected DTGs (namely, DTGy (v) is
the subgraph of DTGy (v) induced by the values D(v) N F, cf. Figure 4). As dis-
cussed in the context of Lemma 1, plan generation for such tasks is polynomial
time, using a succinct plan representation (required as plans may be exponentially

36

Algorithm : ACYCLICPLANNING(IIB)
main

T ()
for i = n downto 1
// Denote 78 = (a1, ..., ay)
d + I[vi}
forj=1tok
mj ()
do if pre(a;)[v;] is defined
do ;4 7o, (d, pre(a;)[vs])

then {d « pre(a;)[vi]
Tht1 < ()
if G[v;] is defined

then 7,1 <+ 7y, (d, Gv;])
78 m-(a1) ... mp - {ag) TRl
return 78

Figure 7: Planning algorithm for FDR tasks II® with acyclic causal graph CGps and strongly
connected DTGs. vy, ..., v, is an ordering of variables V' consistent with the topology of CGps.
7y (d, d") denotes an action sequence constituting a shortest path in DTGpe (v) from d to d'.

long). The succinct plan representation, devised by Chen and Giménez [32], con-
sists of recursive macro actions for pairs of initial-value/other-value within each
variable’s DTG. That approach, while superior in theory, has several disadvan-
tages that make its practicality in our setting more than doubtful. First, generat-
ing the macros involves the exhaustive enumeration of shortest paths for initial-
value/other-value pairs in all DTGs, which must be done anew for every call of
ACHIEVE(g) (i.e., several times inside each invocation of the heuristic!), as each
task I1® has its own individual initial state and DTGs. Second, the macros yield
highly redundant plans moving parent variables back to their initial value in be-
tween every two sub-goal requests. For example, if a truck unloads two packages
at the same location, then it is moved back to its start location in between the two
unload actions. Finally, the tasks I1® will typically have small plans anyhow — af-
ter all, we merely wish to achieve the next action’s black preconditions — so why
should we bother to represent these plans compactly?

Given these considerations, we decided to use an explicit plan representa-
tion instead, trading the theoretical worst-case efficiency of Chen and Giménez’
macros against the practical advantages of less overhead and (potentially) shorter
plans. After exploring a few options, we settled on the simple algorithm in Fig-
ure 7. Starting at the leaf variables and working up to the roots, the partial plan 7%
is augmented with plan fragments (DTG paths) bringing the supporting variables
into place. This is essentially the same algorithm as described by Helmert [29]

37

as a proof for his Observation 7 (Helmert did not actually implement and use that
algorithm, though). It is easy to see that:

Proposition 2 The algorithm ACYCLICPLANNING(I1B) is sound and complete,
and its runtime is polynomial in the size of 11® and the length of the plan 7°
returned.

Proof Sketch: In Appendix A, p. 75, we show by induction that, at the end
of each iteration i of the for-loop, 72 is a plan for II® projected on variables
Vi, ..., V. Thisis trivial for : = n. Given it holds for ¢+ 1, . . ., n, it also holds for
1 because, by acyclicity of the causal graph, the actions inserted to move v; do not
affect any other variables, and do not rely on any preconditions on the variables
Vitly -y Un. L]

As indicated, the length of 78 here is worst-case exponential in the size of 115,
and so is the runtime of ACYCLICPLANNING(IIB).!S Unlike the macro-based al-
gorithm of Chen and Giménez, our algorithm does not superfluously keep switch-
ing supporting variables back to their initial values. But it is not especially clever,
either: If variable vy supports two otherwise independent leaf variables v; and v,,
then the sub-plans for v; and v, will be inserted sequentially into 72, losing any
potential for synergies in the values of v, required. We performed a limited inves-
tigation into more flexible algorithms addressing that weakness through using a
partially-ordered 75, but these algorithms required non-trivial book-keeping, and
initial implementations did not yield any apparent benefits. It remains an open
question whether something can be gained by a more complex machinery here.

In red facts following, the sub-tasks II® are red-black planning tasks, with the
weaker properties discussed above: the black causal graph is acyclic, there aren’t
any goals on the red variables, and for each black DTG we know that (a) from
our initial position we can reach all values, and (b) once we traversed any arc
(d,d") we will have the red outside conditions required for at least one inverse arc
(d',d). As argued in the proof of Theorem 13, these tasks are still guaranteed to
be solvable. We can use the same decomposition method (solving I1® from leaves
to roots of the black causal graph), and whenever we need a DTG path from the
current value to a sub-goal value d, of a black variable v, by (b) we know that

50ne could choose to merely estimate the plan length of II® (e.g., using Helmert’s causal
graph heuristic [29]), computing a red-black plan length estimate only. But that would forgo the
possibility to actually execute red-black plans (cf. below), which is a key advantage in practice.

38

v can “go back” to its start value, and by (a) v can reach d, from there. There-
fore, to appropriately extend the algorithm as depicted in Figure 7, there is no
need to consider the red-black planning tasks I1® as defined in Figure 6. Instead,
we focus on the black variables in these ITB tasks, and initialize their DTGs as
DTGpe(v) := DTG (v)|rup- We collect, for each variable v; individually (i.e.,
within each iteration of the for loop in Figure 7), the red side effects R,, of the
current 72 prefix affecting v;, extending DTGys (v) with the transitions whose red
outside conditions are contained in R U R?,,. In fact, we do so only in case there
is no path in DTGpe(v) to the current sub-goal value d,,. This is to avoid unnec-
essary computational overhead: In all IPC benchmarks, and in all search states
that were encountered in these benchmarks during our experiments, the necessary
DTG paths during ACYCLICPLANNING(IIB) were present in DTGy (v)|gup al-
ready, without enabling any new transitions based on red side effects. (In other
words, situations as in Example 8 appear to be extremely rare in practice.)

In previous works on red-black plan heuristics [2, 3], we made use of a sim-
pler tractable fragment of red-black plan generation, namely that where the black
causal graph is arcless. In this special case, the planning tasks solved inside
ACHIEVE(g) are trivial: All black variables v are completely independent, and
it suffices to find a DTG path from v’s current value to g[v] (if defined) for each
v individually. This reduces the computational effort required to compute the
heuristic function, at the price of a potential loss in accuracy. As we shall see
below in Section 5.4, the more complex heuristics based on acyclic black causal
graphs tend to pay off in domains where non-trivial acyclic black causal graphs
occur. (In case the black causal graph is arcless, our more complex heuristics
simplify to the heuristics defined for that special case.)

5.3.2. Instantiating the Choice Points

The main choice points are (i) selecting actions a € Ag in the while loop
(pertains to red facts following), and (ii) selecting DTG paths for black variables in
the solution to I1B, i.e., inside ACHIEVE(g) (pertains to both, red facts following
and relaxed plan repair). We would like to make both choices in a way such that
the returned red-black plan 7 is (a) short, and (b) executable as much as possible
in the original FDR planning task we are trying to solve.

The importance of (a) should be self-evident (avoiding over-estimation). (b) is
important because red-black plans, compared to fully-delete relaxed plans, have a
much higher chance of actually working in reality. We exploit this property by a
simple method we refer to as stop search: If the red-black plan 7 generated for a
search state s is a plan for s in the original FDR task, then we stop and output 7

39

pre-fixed by the action sequences that lead to s. For illustration, in StarShapel.-
ogistics (Figure 5), a fully relaxed plan will not work unless we have already
transported all but one package. If we paint just 7" black, then the red-black plan
for the initial state might work (in case it happens to make the right choices where
to place the load and unload actions). If we paint both 7" and F' black, then every
optimal red-black plan for the initial state definitely works, and we can stop the
search before we have even started it. (The restriction to optimal red-black plans
is needed here because, package variables being red, non-optimal red-black plans
may contain superfluous load and unload actions.)

Towards finding (a) short red-black plans, our simple measure in choice point
(i1) is to find shortest DTG paths (cf. Figure 7). Choice point (i) is more important,
and more difficult to handle. The set of actions A, achieving some fact from
R\ R often is quite large (for example, in VisitAll when painting just the robot
position black, A, contains every action moving into any yet non-visited position
in the grid). The straightforward criterion is to select an action achieving whose
precondition takes the smallest number of steps. We approximate this number,
for any action a € Ay, by pre-computing all-pairs shortest path distances for each
black variable v, and summing up the distance from [7][v] to pre(a)[v] over all
of a’s black precondition variables v € VBNV (pre(a)). (Note that these estimates
are exact if, and only if, the paths underlying these distances do not rely on any
outside conditions that we would need to establish.)

Towards enhancing (b) FDR-executability of the red-black plan, we designed
a simple criterion for each of the choice points (i) and (ii). To illustrate our cri-
terion for (i), say that, in StarShapeLogistics, T" and F' are painted black, Rt =
{(A/init), (A)T),{(A/a), ..., (D/init),(D/T),(D/d)}, and red facts follow-
ing started by selecting load(A, init). Then unload(A, a) might be selected next,
but the algorithm might just as well select load(B, init) because the (estimated
and real) number of steps for achieving the precondition is 1 for each of these
actions: Exactly one black precondition needs to be achieved, namely (7'/a) for
unload(A, a) and (F'/1) for load(B, init), and each of these takes a single transi-
tion in the respective DTG, induced by drive(init, a) respectively unload(A, init).
Regarding unload(A, init), note that variable A is red, so the detrimental side ef-
fect is ignored, and later on the red-black plan will apply unload(A, a) without
re-loading A in between, losing FDR-executability. In other words, unless we
manage to distinguish between drive(init, a) respectively unload(A, init) here,
we suffer from a similar issue as pointed out in Example 7 (B). The same phe-
nomenon may occur in any domain with renewable resources. We tackle it by
giving a preference to actions a € Ay getting whose black preconditions does not

40

involve deleting R facts already achieved beforehand. To avoid excessive over-
head, we approximate this by recording, in a pre-process, which red facts may be
deleted by moving each black variable, and prefer an action if none of its black
preconditions may incur any such side effects. In our example, moving /' may
incur such side effects, but moving 7" may not.

In choice point (ii), we enhance FDR-executability simply by preferring exe-
cutable DTG paths. This pertains exclusively to the red outside conditions on the
paths. We say that such a condition is “active” if it is true when executing the cur-
rent red-black plan prefix under the FDR (fully un-relaxed) semantics. As long as
there exists at least one DTG path all of whose red outside conditions are active,
we use a shortest such path. (E.g., if a storage-capacity variable is red, then this
will prefer loads/unloads that use the actual capacity instead of an arbitrary one.)

5.4. Evaluation

As indicated, we include experiments at this point already in order to evaluate
specific aspects of our algorithm design so far, and to simplify the experiments
in the remainder of the paper by fixing the “winning techniques”. We evaluate,
in this order, (i) the advantage of red facts following over relaxed plan repair,
(i1) the impact of the stop search method and the associated FDR applicability
enhancements, and (iii) the advantage of using acyclic black causal graphs over
using arcless black causal graphs.

All our techniques are implemented on top of Fast Downward (FD). All exper-
iments in this paper are run on a cluster of Intel E5-2660 machines running at 2.20
GHz, with runtime (memory) limits of 30 minutes (2 GB). We run all satisficing-
track STRIPS benchmarks from the FD benchmark collection, i. e., benchmarks
from the IPC satisficing/deterministic/sequential tracks (where distinguished from
other forms of planning). We consider uniform costs throughout, ignoring action
costs where specified. Since we cannot paint any variable black if there are no
RSE-invertible variables, we omit instances in which that is the case, and we omit
domains where it is the case for all instances. These domains are (all variants of)
Airport, Freecell, Openstacks, Parking, and Pathways.

To keep things simple, in all of (i) — (iii) here we fix a canonical search al-
gorithm, namely FD’s greedy best-first search with lazy evaluation and a second
open list using preferred operators [29, 46]. We also fix a simple painting strat-
egy, i. e., a method for deciding which variables to paint red or black. The strategy
is based on Fast Downward’s /evel ordering of the variables [12, 29]. It prefers
to paint red the variables with higher level, 1. e., the variables “close to the causal
graph leaves”. We will describe the strategy in detail, along with all other painting

41

strategies we use, in Section 6. The qualitative picture of the following results is
similar for our other painting strategies.

Coverage Average h(I) Coverage Evaluations Solved in T

No PO RDL/ Coverage Plan length
Domain #||FDL RDL|FDLS RDLS| FDLS RDLS||RDL RDLS- RDLS|RDLS- RDLS|RDLS- RDLS |RDL/RDLS
Barman 20 20 19 20 20 363 363 20 20 20 1.0 1.0 0 0
Blocksworld 35 27 33 31 35 180 180 35 35 35 1.0 1.0 1 1 1.0
Depots 22 115 18 18 486 372 18 18 18 1.0 1.0 1 1 1.0
Driverlog 20 15 18 20 20 56.7 388 19 20 20 1.1 1.1 1 2 0.9
Elevators08 30 18 29 28 30(202.1 852 30 30 30| 398.0 398.0 30 30 1.0
Elevators11 20 2 10 8 20| 501.6 209.6 20 20 20| 2899.0 4079.5 16 20 1.1
Floortile 20 4 4 6 70 1476 641 6 6 7 1.0 1.1 0 0
Grid 5 4 4 5 5 31.0 310 5 5 5 1.1 1.1 0 0
Gripper 20 20 20 20 20 137.8 91.0 20 20 20(930 930 20 20 1.0
Logistics98 35 5 35 35 35| 148.1 103.1 35 35 35| 167.0 167.0 35 35 1.0
Logistics00 28 28 28 28 28 546 439 28 28 28] 995 995 28 28 1.0
Miconic 150(| 150 150| 150 150 985 55.1(| 150 150 150 1135 113.5 150 150 1.0
Mprime 35 31 30 35 35 7.3 7.0 35 35 35 1.2 1.3 0 0
Mystery 28 18 18 17 16 82 7.3 16 16 16 L5 L5 0 0
NoMystery 20 9 14 6 13 726 36.6 13 13 13 L1 710 0 10 1.0
ParcPrinter08 20 15 20 20 20 542 504 20 20 20 1.1 1.1 0 0
ParcPrinter1 1 13 4 13 13 13 932 872 13 13 13 1.0 1.0 0 0
PegSol08 30 30 30 30 30 119 114 30 30 30 1.0 1.0 0 0
PegSoll1 20 20 20 20 20 144 138 20 20 20 1.0 1.0 0 0
Pipesworld-NoTankage 40 18 22 33 33 266 24.1 33 33 33 1.2 1.2 0 0
Pipesworld-Tankage 40 15 16 29 30 304 259 30 30 30 1.0 1.0 0 0
PSR 50 50 50 50 50 3.1 3.1 50 50 50 1.0 1.0 0 0
Rovers 40 16 20 40 40 1438 86.7 40 40 40 1.1 1.1 3 3 0.8
Satellite 36 26 34 36 36| 236.1 128.0 36 36 36| 131 13.1 10 10 1.0
Scanalyzer08 21 18 19 21 21 27.6 217 21 21 21 1.0 1.0 0 0
Scanalyzerl 1 14 112 14 14 33.0 255 14 14 14 1.0 1.0 0 0
Sokoban08 30 29 28 29 27 712 429 29 29 27 1.0 1.0 0 0
Sokobanl1 20 19 18 19 17 852 502 18 19 17 1.0 1.0 0 0
Tidybot 20 14 15 14 13 327 327 13 13 13 1.0 1.0 0 0
TPP 30 21 23 30 30 79.0 66.4 30 30 30 1.0 1.0 5 5 1.0
Transport08 30 21 25 26 30| 262.8 86.2 28 28 30 400 319.0 12 30 1.0
Transport1 1 20 4 7 9 20| 768.1 212.7 15 15 20 7.9 3038.0 0 20 1.2
Trucks 30 14 15 16 18 769 56.8 18 18 18 1.0 1.0 0 0
VisitAll 20 19 20 20(19476.8 1102.9 19 20 20| 1684.0 1684.0 20 20 1.0
‘Woodworking08 30 30 30 30 30 563 470 30 30 30 1.0 1.0 1 1 1.0
‘Woodworking11 20 20 20 20 20 90.0 76.7 20 20 20 1.0 1.0 0 0
Zenotravel 20 20 20 20 20 452 333 20 20 20 1.6 410 6 20 1.0
) 1082]] 778 903] 966 1004] [[997 1000 1004] [339 406] |

Table 1: Data analyzing (i) the advantage of red facts following over relaxed plan repair (left
half) and (ii) the impact of stop search and its FDR applicability enhancements (right half). The
averages in “Average h(I)”, and all ratios, are over those instances commonly solved by the pair
of planners involved; for ratios we show the median per domain. “#” is the number of instances
in our benchmark set. The two “No PO” configurations do not use preferred operators. By S- we
refer to stop search without the enhancements to (b) as described in Section 5.3.2. The “Solved in
I data regards those instances where stop search fires on the initial state already.

Even though each of our experiments will focus on particular algorithm pa-
rameters and/or performance aspects only, for easier reference across experiments,
we employ a system of acronyms to identify configurations. Again for easier
cross-reference, we choose these acronyms to be consistent with those in our ear-
lier works [2, 3]. Red facts following is denoted by R and relaxed plan repair is
denoted by F (this seemingly unintuitive notation was used by Katz et al. [2] in
reference to a minor optimization of re-ordering the relaxed plan by Forwarding
actions with no black effects). The use of acyclic black causal graphs is denoted

42

D (for “DAG”) and that of arcless black causal graphs is denoted E. The painting
strategy described above is denoted L. If stop search is in use, we denote that by S.
For example, “FEL” is the configuration that uses relaxed plan repair with arcless
black causal graphs and painting strategy L and stop search switched off, whereas
“RDLS” is the configuration that uses red facts following with DAG black causal
graphs and painting strategy L and stop search switched on. (Other configuration
parameters are less important so we don’t define acronyms for them.) Table 1
shows our data regarding (i) and (ii).

Consider first the left half of the table. In the “No PO” configurations, we
measure the quality of the respective heuristic functions /0, (F) vs. A, (R) in
the most basic setting possible, plugging them into a plain best-first search without
the two search enhancements (preferred operators and stop search). The coverage
data resulting from this — overall, 778 for i3, vs. 903 for hgp,,, — impressively
confirms the advantage of red facts following over relaxed plan repair. This drastic
advantage gets watered down when turning on the search enhancements, as these
can yield substantial improvements even where the underlying heuristic has low
quality (e. g., in VisitAll, see also next).

The “Average h(I)” columns illuminate the difference between hi>, and
in terms of their plan length estimation in the initial state. As is evi-
Noair in many domains.
never yields larger average red-black plan
hRB . overesti-

RB
hfollow

dent, hRB does yield much shorter red-black plans than /
Consistently across all domains, h{y.,
length. Consider VisitAll, where the behavior is most extreme. fop,;,
mates dramatically so is not useful in search, in contrast to hRE cf. our discus-
sion of over-estimation in this domain (Sections 5.1 and 5.2) and the coverage
data for FDL and RDL. Stop search fixes this issue in FDLS, but the plans cor-
respond to the “Average h(/)” column so are of extremely poor quality. Note that
shorter red-black plans (even if they are not FDR-executable) are always better
in the sense that, ideally, we would like our heuristic to return A*8*: any value
larger than this, even if it happens to be closer to h* than hRB*, is not justified
by the red-black relaxation and must be attributed to arbitrary phenomena in the
practical heuristic, as opposed to systematic estimates of goal distance.

Consider now the right half of Table 1. For coverage, the RDLS column is
identical to that in the left half of the table, we repeat it here just for ease of read-
ing. As can be seen, the impact of stop search in terms of coverage is small. With-
out our FDR-executability enhancements, i.e., for RDLS-, coverage is identical
to RDL except in Driverlog, Sokobanl1, and VisitAll, in each of which RDLS-
solves a single instance more. With the executability enhancements, coverage gets

worse in Sokoban but a bit better in Floortile and a lot better in Transport, result-

43

ing in an overall “net win” for RDLS by a small margin. In other words, when
using ARB with DAG causal graphs, coverage is already too high to allow to dis-
criminate between stop search vs. no stop search (we show data for some larger,
non-IPC, test instances below in Table 2). The more fine-grained data regarding
the number of evaluated states goes to show that, actually, search space size de-
creases substantially across a range of IPC domains and IPC test instances: 9 of
our 29 domains here, not counting IPC’08/IPC’11 duplicates. In 3 of these 9 do-
mains (NoMystery, Transport, and Zenotravel), RDLS has a significant advantage
over RDLS-. As the “Solved in /I data shows, in most (though not all) of these
9 domains, stop search always fires on the initial state. Consistently across all the
domains where it sometimes fires on the initial state, stop search returns plans of

very similar quality as would be returned by the search itself.

IPC instances Extended instances
Coverage Evaluations Coverage Evaluations
Domain #|RELS RDLS |RELS/RDLS #|RELS RDLS RDL |RELS/RDLS RDL/RDLS
Barman 20 20 20 1.0
Driverlog 20 20 20 1.0
Elevators08 || 30 30 30 520.5
Elevators11 || 20 19 20 9435.0 100 39 100 31 11880 6044
Gripper 20 20 20 369.5|(100 11 100 54 70963 2449
Rovers 29 29 29 1.0
Tidybot 20 13 13 1.0
TransportO8 || 30 28 30 633.5
Transportl1|{| 20 12 20 5458.0 100 3 10026 13149 S748.5
Trucks 30 21 18 0.6
> [[239] 212 220] [[300] 81 300 111]]

Table 2: Data analyzing (iii) the advantage of using DAG black causal graphs (D) over using arc-
less black causal graphs (E). The “extended instances” in the right half of the table were generated
by choosing very large parameters (e. g., up to 3942 balls in Gripper), to demonstrate the advan-
tage of DAG causal graphs in extreme situations where stop search (S) succeeds on the initial
state. Ratios are per-domain median over those instances commonly solved by the pair of planners
involved.

Consider finally the issue (iii) of DAG black causal graphs (D) vs. arcless
black causal graphs (E), Table 2. The table is much smaller because, for this
comparison, we need to consider only those IPC instances whose causal graph has
at least one directed arc (v,v") between RSE-invertible variables v and v', with no
backwards arc (v',v). These are exactly the tasks for which there exists a choice
of black variables so that (a) the resulting red-black planning task is inside our
tractable fragment, and (b) the black causal graph is a non-arcless DAG. Table 2
contains only these tasks. In other tasks, each of our D configurations simplifies
exactly to the corresponding E configuration.

The “main” data for this part of our evaluation, considering IPC benchmark

44

instances, is in the left half of Table 2. In terms of coverage, the richer structure
underlying the DAG heuristic pays off mainly in Transport, and a little bit in
Elevators; it leads to somewhat worse performance in Trucks. The evaluations
data illuminates the advantage in terms of search space size, which extends also
to the Gripper domain. This advantage is due to stop search, which in the three
domains in question — Elevators, Gripper, Transport — always fires on the initial
state (cf. our discussion of Table 1 above). To shed some more light on this,
the right half of Table 2 considers extreme cases in these domains, with instances
much larger than those used in the IPC. Stop search still fires immediately, scaling
to almost arbitrary instance sizes which are completely unfeasible for search, i.e.,
when either using the weaker E relaxation (RELS) where stop search does not
fire, or when switching stop search off (RDL). As the number of evaluations for
RDLS is constant 1, the evaluations data here also shows us that, even without
stop search, the DAG heuristic has an advantage over the arcless one.

We remark that Table 2 is the only point here where the particular painting
strategy L we chose for this presentation does make a substantial difference. Stop
search for the DAG heuristic fires on the initial states of Elevators and Transport
for about half of our painting strategies (including L). Using one of the painting
strategies from the “bad half” does not affect coverage in the IPC instances, but it
does affect coverage on our extended instances, and it of course affects the number
of state evaluations in those two domains (see also Table 4 in the next section).

6. Painting Strategies

As yet, we have not specified how to automatically choose which variables to
paint red, and which variables to paint black. We refer to strategies for making
that choice as painting strategies. We now introduce a family of such strategies
and examine their behavior. We start in Section 6.1 by making a few basic obser-
vations and describing our strategies. We evaluate the strategies in Section 6.2,
drawing the high-level conclusion that “the performance differences between dif-
ferent painting strategies are typically minor, and sometimes brittle with respect
to small changes”. To shed additional light on this, we also examine the behav-
ior of random painting strategies. Similarly as we did for the red-black planning
variants in Section 5, we make a selection of “winning strategies” and keep these
fixed for the rest of the paper.

45

6.1. Fainting Strategy Design

The first observation to be made when designing painting strategies is that
there actually are two kinds of variables that can be immediately excluded from
those that might end up being painted black. The first condition is obvious and
was already discussed beforehand: As our tractable fragment requires all black
variables to be RSE-invertible, variables that are not RSE-invertible can immedi-
ately be painted red. The second condition is slightly less obvious:

Theorem 14 Let 11 be an FDR planning task and let VR be a subset of its vari-
ables. If all variables in VR have no outgoing arcs in CGyy, then h@lﬁ* is perfect.

Proof: It clearly suffices to show that, in this setting, all non-redundant red-black
relaxed plans, i.e., red-black relaxed plans that do not contain any superfluous
actions, are valid plans for the original FDR task II. Which is true because the
leaf variables v in CGyy are neither (1) used to support value changes of any other
variables, nor (2) affected as a side effect of changing any other variables. Due
to (1), any non-redundant red-black relaxed plan either changes v along a simple
(acyclic) path from v’s initial value to its goal value, or leaves v untouched in
case it has no goal. That same path will be executable within II. Due to (2), such
execution is not interfered with by any other actions in the red-black relaxed plan.
This concludes the argument. U

In other words, causal graph leaves can be painted red without affecting the
(ideal) red-black plan heuristic.

Our second observation regards paintings that are maximal in the sense that, if
we paint one more variable black, then the black causal graph is no longer acyclic.
Such paintings are always preferable over non-maximal ones, at least in theory,
because hRB* grows monotonically with the set of black variables, cf. Proposi-
tion 1. We therefore design our painting strategies in a way guaranteeing maxi-
mality. We get back to the practical implications of this below, after explaining
our painting algorithm.

All our painting strategies proceed by iteratively painting variables red (start-
ing from the set of variables identified above), until all cycles in the causal graph
are broken. We then employ a simple post-processing step to ensure maximality.
See Figure 8.

Note that this pseudo-code is used for configurations D, i. e., DAG black causal
graphs, which we keep fixed for the rest of the paper. For configurations E, we
simply test whether the black causal graph is arcless, as opposed to acyclic. The

46

Algorithm : PAINTING(II)
main
/T =(V,A1,G)
VR < {v | vis not RSE-invertible or v is a leaf vertex in CGyy}
listf « ()
while the sub-graph of CGyy induced by V' \ VR is not acyclic
Select v € V' \ VR // choice point
do { VR « VRU {v}
list® < list? o (v)
// post-process ensuring maximality of the painting
for v in list from back to front

V! VR {v}
do [if the sub-graph of CGyy induced by V' \ V' is acyclic
then VR « Vv’
return 1IR3 = (V\ VR VR A 1.G)

Figure 8: The algorithm underlying all our painting strategies.

post-processing step checks, for each variable that was selected to be painted red,
whether that variable can now be removed from the set of red variables (i. e., be
painted black) without breaking acyclicity. The ordering of these checks is not
important as far as the maximality guarantee is concerned. We order them from
back to front because, in all our painting strategies, the “least important” variables
are painted red first. Given this, the ordering from back to front gives a preference
to removing the more important variables from VR,

The post-process is required for maximality because a new variable v added
into VR might break all cycles concerning a previously-added variable v’. For
example, in StarShapeLogistics (Figure 5), there is a cycle between every package
X € {A, B,C, D} and the capacity variable F'. If the algorithm selects, say, A,
B, and C first, and only thereafter selects F’, then painting A, B, and C' red has
become redundant. This will be recognized by the post-process.

We remark that, in our prior works on red-black plan heuristics [2, 3], we did
not use the post-processing step because we overlooked the lack of maximality
in this setup. Thus, we effectively employed painting strategies geared at finding
maximal paintings, but not giving a guarantee. Now, while in theory the heuris-
tic function can only get better with more black variables, in practice of course
this is not as clear. As far as the IPC benchmarks are concerned, our modified

47

(maximality-guaranteeing) painting strategies here give performance very similar
to the previous ones, better in some domains, and never worse except for a mi-
nor performance loss in Trucks. We also performed limited experimentation with
painting strategies geared at finding non-maximal paintings: these keep painting
variables red even when the black causal graph is already acyclic, stopping at a
randomly selected time point. It appears that maximal paintings tend to work
better. But exploring this comprehensively is an open topic.

It remains to instantiate the choice point in Figure 8. We have devised a variety
of methods for doing so. The common rationale behind all of these is the attempt
to paint black as many variables as possible, and/or for the black variables to be
as “important” as possible. The strategies differ in how they attempt to achieve
these objectives:

e L: Selects v with highest level in the causal graph heuristic [12], 1. e., “clos-
est to the causal graph leaves”. This aims at painting red the “client” vari-
ables, which do not tend to move back and forth to suit the needs of other
variables.

e A: Select v with the maximal number A(v) of incident arcs to black vari-
ables, i.e., to variables in V' \ VR. The intuition behind this is to remove
many arcs from the black causal graph quickly so that we minimize the
number of red variables. We break ties by smaller variable domain size, and
if ties still remain then, break them by the L strategy.

e C: Select v with the minimal number C(v) of conflicts, i.e., relaxed plan
actions with a precondition on v that will be violated when executing the
relaxed plan with black v. The intuition is for the “least critical” variables
to be red. We break ties by the L strategy.

e C[N]: Extends C by sampling N random states, then selecting v with the
minimal average number of conflicts in the relaxed plans for the sample
states. The motivation is that C depends on the relaxed plan for the initial
state, in which conflicts (e. g., on resources) that will necessarily occur later
on may not be visible. We run N € {5,25,100} in our experiments.

o CA[p]: Interpolation between C (with p = 0) and A (with p = 1). Selects v
maximizing P(v) := p* A(v) + (1 —p) * (1 — C(v)), where A(v) and C(v)
are normalized counters of the number of incident edges and the number of
conflicts, respectively: fl(v) is the number of incident edges of v divided
by the maximal number of incident edges among all variables in V \ VR,

48

and C (v) is the number of conflicts of v divided by the maximal number of
conflicts among all variables in V' \ VR,

A subtlety in CA[p] regards the tie breaking. Ties are broken differently in
A and C, cf. above. In CA[p], we adopt the tie breaking of A. Thus CA[1]
is equivalent to A, but CA[0] is a variant of C using the tie breaking from
A.Werun p € {0,0.25,0.5,0.75} in our experiments.

We also experiment with corresponding inverse strategies, as well as with random
strategies, intended as sanity checks:

e L: Like L but selecting v with lowest level, i. e., “closest to the causal graph
roots”: What happens if we paint the “servant” variables red?

e A: Like A but selecting v with the minimal number A(v) of incident arcs
to black variables: What happens if we try to maximize the number of red
variables?

e C: Like C but selecting v with the maximal number of conflicts: What
happens if we paint the “most critical” variables red?

e RND: Selects v at random, uniformly from V' \ VR,

6.2. Evaluation

Table 3 shows coverage data for all our painting strategies, with the canoni-
cal search algorithm as well as the fixed best-performing configuration parame-
ters RDS as per Section 5. The message of this table is easiest to appreciate by
observing the sparsity of boldface numbers, which indicate best per-domain cov-
erage performance where there are differences: In all except Barman, Scanalyzer,
Sokoban, and Tidybot, coverage is constant across all painting strategies, includ-
ing the average of 10 runs of our random painting strategy RND. Indeed, as the
“RND Std dev”” column shows, the per-domain standard deviation in the distribu-
tion of random-painting coverage is 0 except in Barman, Scanalyzer, and Sokoban
(IPC’11 only). In the next column to the right, “|Vi,|”, we see that this is not for
lack of RSE-invertible variables (i. e., candidates for being painted black): in most
domains, there is quite a few of these. We elucidate this further in the rightmost
column, where we indicate the number of maximal paintings per domain. We ap-
proximate that number through running RND 10000 times (without running the
actual planner), and counting how many different paintings were generated. In
most domains, this count is very small. Indeed, in the majority of the domains,

49

Coverage Vil [1P

CAlp] C[N] RND RND 10K

Domain # A]0.75 0.5 0.25 0| C| 5 25 100 L‘ A C L|Average Stddev||Average Average
Barman 20(20 20 8 8 8 9/ 9 9 9 200 8 20 20 19.0 1.2 66.0 2.0
Blocksworld 35 35| 35 35 35 35| 35| 35 35 35| 35/ 35 35 35 350 0.0 20.3 11.6
Depots 22 18| 18 18 18 18| 18| 18 18 18| 18| 18 18 18 18.0 0.0 2.8 1.0
Driverlog 20 20 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 18.4 2.0
Elevators08 30 30 30 30 30 30| 30| 30 30 30| 30| 30 30 30 30.0 0.0 25.7 2.0
Elevators11 20 200 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 50.3 2.0
Floortile 20 7 7 1 770 71 7 7 7 77 707 7.0 0.0 4.8 1.0
Grid 5 5 5.5 5 51 55 5 5 51 5 5.5 5.0 0.0 12.0 12.0
Gripper 20 200 20 20 20 20| 20] 20 20 20| 20| 20 20 20 20.0 0.0 3.0 1.0
Logistics98 35 35| 35 35 35 35(35|35 35 35| 35[35 35 35 350 0.0 51.5 1.0
Logistics00 28 28| 28 28 28 28| 28| 28 28 28| 28| 28 28 28 28.0 0.0 13.4 1.0
Miconic 150(| 150{ 150 150 150 150{150|{150 150 150| 150{150 150 150 150.0 0.0 1.0 1.0
Mprime 35 35| 35 35 35 35| 35|35 35 35| 35[35 35 35 350 0.0 21.1 2.0
Mystery 28 16| 16 16 16 16| 16| 16 16 16| 16| 16 16 16 16.0 0.0 20.9 2.0
NoMystery 20 13 13 13 13 13| 13| 13 13 13| 13| 13 13 13 13.0 0.0 11.5 1.0
ParcPrinter08 20 20 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 5.5 1.0
ParcPrinter11 13 13 13 13 13 13| 13| 13 13 13| 13| 13 13 13 13.0 0.0 9.2 1.0
PegSol08 30 30 30 30 30 30| 30| 30 30 30| 30| 30 30 30 30.0 0.0 7.9 15.0
PegSolll 20 20 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 8.0 16.0
Pipesworld-NoTankage 40 33| 33 33 33 33| 33| 33 33 33| 33| 33 33 33 33.0 0.0 22.5 1.8
Pipesworld-Tankage 40 30 30 30 30 30| 30| 30 30 30| 30| 30 30 30 30.0 0.0 15.0 29
PSR 50 50/ 50 50 50 50| 50| 50 50 50| 50| 50 50 50 50.0 0.0 6.0 1.0
Rovers 40|| 40| 40 40 40 40| 40| 40 40 40| 40| 40 40 40 40.0 0.0 8.7 1.0
Satellite 36 36| 36 36 36 36| 36/ 36 36 36| 36/ 36 36 36 36.0 0.0 29.8 1079.4
Scanalyzer08 21 191 20 20 20 20| 20 21 21 21| 21|19 19 19 19.4 0.5 12.0 12.0
Scanalyzerl1 14 12 13 13 13 13| 13| 14 14 14| 14| 12 12 12 122 0.4 13.6 13.6
Sokoban08 30| 27| 27 26 26 26| 26| 26 26 26| 27|26 27 26 27.0 0.0 9.8 334.6
Sokoban11 20 17| 17 16 16 16| 16| 16 16 16 17| 16 17 16 16.9 0.3 13.1 500.5
Tidybot 20 13| 13 13 13 13| 14| 14 14 13| 13| 13 13 13 13.0 0.0 102.6 9046.9
TPP 30 30 30 30 30 30| 30| 30 30 30| 30| 30 30 30 30.0 0.0 4.3 1.0
Transport08 30 30 30 30 30 30| 30| 30 30 30| 30| 30 30 30 30.0 0.0 17.6 2.0
Transportl 1 20 20 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 27.3 2.0
Trucks 30 18 18 18 18 18| 18| 18 18 18| 18| 18 18 18 18.0 0.0 26.0 8.6
VisitAll 20 200 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 1.0 1.0
‘Woodworking08 30 30 30 30 30 30| 30| 30 30 30| 30| 30 30 30 30.0 0.0 9.0 2.0
‘Woodworking11 20 20 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 14.2 2.0
Zenotravel 20 200 20 20 20 20| 20| 20 20 20| 20| 20 20 20 20.0 0.0 13.2 1.0
) 1082]]1000] 1002 988 988 988990992 992 991]1004]986 1000 998] 999.5 i [|

Table 3: Coverage results for different painting strategies. Best values highlighted in boldface
where there are differences. All configurations shown run FD’s greedy best-first search with lazy
evaluation and a second open list using preferred operators, and use R red facts following, D DAG
black causal graphs, as well as S stop search. The configuration using the random painting strategy
RND has been run 10 times. The |Vi,y| column shows the average number of RSE-invertible
variables. The |P| column shows the average number of different paintings generated in 10000
runs of RND.

the average is 1.0 or 2.0, and in all but one of these (Pipesworld-NoTankage) the
count is constant 1 respectively 2 across all instances. This gives a very strong
indication that the number of maximal paintings tends to be small, at least in the
IPC benchmarks. As an example of how this happens, consider StarShapeLogis-
tics (Figure 5). We can paint 7" and [’ black, or paint 7" and the packages black.
All other paintings either do not yield a DAG black causal graph, or are not set-
inclusion maximal among such paintings.

That said, as we see in Barman, already a very small number of paintings to
choose from (2, in this case) can make a huge performance difference (20 vs. 8
instances solved). Furthermore, Table 3 gives too simple a picture, due to the

50

Average number of evaluations | P|
CA[p] CIN] RND

Dom # Al 0.75 0.5 0.25 0 C 5 25 100 L| A C L| AvgStddev|| Avg
Bar 8|| 163839 163839 1756579 1756579 1756579|1756579|1756579 1756579 1756579| 163839(1756579 163839 163839| 401635 205973 2
Blo 35|| 284425| 284425 318 318 318 318 318 318 318| 284425| 284425 63744 284425| 150687 110090 12
Dep 18| 126356| 126356 126356 126356 126356| 126356 126356 126356 126356| 126356| 126356 126356 126356| 126356 0 1
Dri 20([249242| 249242 248775 248800 248800| 248800(248981 249519 249519| 245766 432 3000 432| 198794 103143 2
Elv08 30 992 992 13 1 1 1 1 1 1 1 998 975 998 843 84 2
Elvll 20 4913 4913 1 1 1 1 1 1 1 1 4913 4913 4913 4131 484 2
Flo 714896204 4896204 4896204 4896204 4896204 [4896204 4896204 4896204 4896204 (4896204 |4896204 4896204 4896204 4896204 0 1
Grd 5 1886 1886 1886 1886 1886 2021 2021 2021 2021 2021 1886 2021 1886 4432 4871 12
Grp 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Log98 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Log00 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Mic 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Mpr 35 33 33 36 36 36 36, 36 36 36, 33 33 33 33 33 1 2
Mys 18| 996622| 996622 996751 996751 996751| 996751| 996751 996751 996751| 996610| 996622 996622 996622| 996676 75 2
NoM 13 657 657 657 657 657 657 657 657 657 657 657 657 657 657 0 1
Prc08 20 192 192 192 192 192 192 192 192 192 192 192 192 192 192 0 1
Prcll 13 22732 22732 22732 22732 22732| 22732 22732 22732 22732| 22732 22732 22732 22732 22732 0 1
Peg08 30[| 32384 32419 32419 32419 32419 34568 2797 7785 796332| 135069 32384 6893 32384 138939 253907 15
Pegll 20| 48632| 48690 48690 48690 48690 51832 4181 11628 1194534| 202522| 48632 10250 48632| 310721 316455 16
PNT 33|| 135939(135939 135981 135981 135947| 135989| 135948 135946 135946| 135939| 135946 135947 135946| 135943 19 2
PT 30, 3706 3706 3632 3632 3632| 3636| 3632 2233 2233| 3706] 3632 3707 3632| 3682 35 3
PSR 501 274 274 274 274 274 274 274 274 274 274 274 274 274 274 0 1
Rov 40 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 0 1
Sat 36, 70 70 12 1 1 1 1 1 1 70 1 61 1 51 11{[1079
Sca08 19| 51579 24207 24207 24207 24207| 24207 3918 154 154 154| 51579 55101 51579 40601 19750 12
Scall 12f| 81639 38235 38235 38235 38235| 38235 6184 223 223 223| 81639 87209 81639| 66465 38537 14
Sok08 26[| 600814 600814 370087 370087 370087| 370087| 370087 370087 370178 601278 370087 601098 370087| 584072 79089|| 335
Sok11 16[| 959266| 959266 584652 584652 584652| 584652| 584652 584652 584800 960145| 584652 959853 584652| 877611 176406|| 501
Tidy 11 1516 1516 2118 2118 2405 2404 1661 2342 2403 1887 2376 1354 2376 1512 447](9047
TPP 30, 990 990 990 990 990 990! 990 990 990! 990 990 990 990! 990 0 1
Tra08 30 589 589 583 296 1 1 1 1 1 1 590 539 590! 451 54 2
Trall 20 2035 2035 2035 1668 1 1 1 1 1 1 2035 2035 2035 1804 181 2
Tru 18| 755013| 755013 755013 755013 755013| 755013| 755013 755013 755013| 755013| 755013 755013 755013| 755013 0 9
Vis 20! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Woo08 30 10760| 10760 10760 10760 10760 10760 10760 10760 10760 10760 10760 10760 10760 10760 0 2
Wooll 20 18517 18517 18517 18517 18517 18517 18517 18517 18517| 18517 18517 18517 18517 18517 0 2
Zen 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

[Ave O86[[255492] 253582 272435 272417 272371] 272519] 268942 269010 322300] 258562] 275474 241413 232427] 263572 T

Table 4: Search space size results for different painting strategies. Best values highlighted in
boldface where there are differences. Lines separate domains with vs. without an actual choice of
painting (|P| > 1 vs. |P| = 1). Configurations as in Table 3. “#” gives the number of instances
commonly solved by all painting strategies shown (including the 10 runs of RND). All averages
are taken over that instance set. The total number of these instances is 986 (out of 1082).

abstraction level implied by looking at coverage only. Do the 1000s of choices
in Satellite really have no effect on performance? Or are we only observing the
lack of instances at the borderline of feasibility for the group of planners and
computational resources considered? Table 4 shows average search space size, to
address these questions.

There can of course not be any performance differences between painting
strategies in those domains where there is no actual choice (|P| = 1). We keep
these in the table merely to point out that our painting strategies do not discover
anything not discovered by the 1000 random runs underlying | P|, and to give ex-
plicit search space size data (as opposed to relative data such as for RDL/RDLS
in Table 1) for these domains as well.

For the domains where different painting choices do exist, an interesting ob-

51

servation is that a small choice | P| of different paintings available does not imply a
small scale of performance differences in the domain, as a function of that choice.
For a quick look, just compare column “|P|” with column “RND Std dev”, and
consider the extreme cases Barman and Driverlog (|P| = 2, standard deviation
> 100000). There is of course also a long list of domains with both small |P)|
and little performance variation (e. g., Mystery, Mprime, Woodworking), but then
again there are cases like Satellite and Tidybot (|P| > 1000, standard deviation
< 500) where a huge amount of choice results in comparatively little performance
variation. Altogether, the best conclusion we can draw from this is that the perfor-
mance of different painting strategies is rather unpredictable, and in some domains
is extremely brittle even when there is little choice to be made.'®

Considering our sanity test strategies A, C, and L, the only “expected” obser-
vation is that, in terms of coverage, A and L are indeed consistently dominated by
their more intuitive counterparts A and L. However, in coverage, C almost consis-
tently dominates (namely in all domains except Tidybot) its counterpart C, and in
terms of search space size almost all of the strategies are pairwise complementary,
with better or worse performance depending on the domain. Ironically, L ends up
doing best when averaging the per-domain average search space size across all
domains (see next).

In terms of competitive performance evaluation, our primary intention for in-
cluding the “global average” row at the bottom of Table 4 is to point out that,
overall, the differences are minor. The more interesting parameter to look at is
best performance per domain, where dramatic differences do exist. With this in
mind, our selection of strategies to focus on in the remainder of the paper is L, L,
and C[5]: In 18 out of the 20 domains where performance differences do exist,
these three configurations represent the best performance observed.!” Further-
more, L and C[5] together represent all best performances in terms of coverage,
L is best in terms of overall coverage, and L is best in terms of the global average
for evaluations.

Note that we restrict to a selection of just three strategies here to make the re-

160ne particular note here regards domains with search space size average “1”. This means
that, as previously discussed in the context of Table 1, stop search always fires on the initial state.
As we can see in Table 4, in domains with more than one choice of painting — Elevators, Satellite,
Transport — this ability of stop search hinges on the painting strategy.

7The only exceptions are Pipesworld-Tankage, where C[25] and C[100] do marginally better
(2233 vs. 3632 evaluations on average), and Tidybot, where C does marginally better (1354 vs.
1661).

52

maining experiments more feasible and accessible. Given the observations of un-
predictable cross-strategy variance in Table 4, it could make sense to design meth-
ods trying different painting strategies on a domain, e. g., employing re-starting or
auto-tuning. We leave this as an open topic for future work.

7. Comparison to the State of the Art

To conclude the empirical evaluation of our work, we now compare its most
competitive configurations against the state of the art. Section 7.1 examines the
main performance parameters against related heuristic functions and a represen-
tation of the state of the art in satisficing planning. Section 7.2 analyzes simple
methods for combining our new methods with existing ones, highlighting the mu-
tual benefits. Both of these experiments maintain the benchmarks from the pre-
vious experiments, i. €., the FD collection of satisficing-planning STRIPS bench-
marks up to IPC 2011. In Section 7.3 we provide an additional brief evaluation
on the IPC 2014 benchmarks, in which one of our techniques, implemented in the
“Mercury” planner, participated successfully.

7.1. Competitive Performance

As before, we exclude benchmarks without RSE-invertible variables, and we
use FD’s greedy best-first search with lazy evaluation and a second open list us-
ing preferred operators [29, 46] as our base search algorithm. Into that search
algorithm, we plug:

e A as abaseline;

e K% asacompetitive heuristic function from earlier work on (not-interpolating)
partial delete relaxation heuristics;

e two versions of AFF(I1<), namely the configurations performing best (over-
all) in the original experiments [25] (referred to as “Hcc;l”) respectively the
more recent experiments [26] (referred to as “TI<2”), representing the only
competing interpolation framework for partial delete relaxation heuristics.

We run the first search iteration of LAMA [11] which we refer to as “LAMA-1st”
(short: “LLA-17), as a representation of the state of the art in “agile” satisficing
planning, 1. e., focusing on runtime performance without investing any extra effort
into optimizing plan quality. Exclusively for a comparison regarding plan quality,
i.e., the length of the plans returned (recall that we ignore action costs), we also

53

Coverage Total Time
LAMA-1st/
R pees 1 12 RDLS RDCI51S RDLS

Domain _ #||Mp A he* 1 IS 2 LA-1 RDLS RDC[5]S RDLS|| # Med Min Med Max
Bar 0[] 0 20 0 15 18 20 20 9 20]] 0

Blo 350[34 35 35 35 35 35 35 33 35| 4/29 31 07 08 00 21[00 00 LI
Dep 2|[21 18 18 21 21 21 18 18 18|| 14/ 09 03 10 18 038 08/ 00 08 23
Dri 20(| 16 20 20 20 20 20 20 20 20{| 10| 1.6 1.8 08 15 22 16/ 00 17 124
ENOS 30[| 14 30 30 30 30 30 30 30 30| 17|12 1.6 0ol 01 06 38 16 43 116
EvIl 20| 1 19 20 20 20 20 20 20 20]| 19| 13 24 o1 01 06 1L1| 1.6 119 552
Flo 0([16 6 6 20 20 5 7 7 7|| 5| 15300 3515 3515 238 29[05 29 615
Grd 5l 4 5 5 5 5 5 5 5 5/ 5|06 05 03 03 04 05/ 03 05 09
Grp 20([14 20 20 20 20 20 20 20 20|| o

Log98 35|20 33 35 35 35 35 35 35 35([20) 15 26 01 01 33 33/ 09 34 247
Log00 28[| 28 28 28 28 28 28 28 28 28| 0

Mic 150{[132 150 150 150 150 150 150 150 150(| 20| 13 13 03 04 13 13 11 13 16
Mpr 35031 35 35 35 35 35 35 35 35([22/ 08 1.0 04 03 05 06/ 02 05 12
Mys 28|17 16 19 19 19 19 16 16 16|| 6/ 08 09 03 03 04 07[0.1 06 09
NoM 20 2 9 7 6 6 13 13 13 13| 1|27 40 23 06 15 15 1.5 15 15
Prc08 20(| 20 20 16 12 11 20 20 20 20(o

Pell 13|13 13 5 2 1 13 13 13 13| o

Peg08 30[| 30 30 30 30 30 30 30 30 30|| 8/25 77 59 72 34 58(0.0 5.4 38264
Pegll 20| 20 20 20 20 20 20 20 20 20| 8/ 25 77 63 73 34 58(0.0 5.4 3829.6
PNT 40/ 32 33 30 31 32 34 33 33 33|l 200 37 28 22 26 27 27000 27 481
PT 40|20 29 23 30 31 33 30 30 30| 17| 1.4 06 06 13 12 13/ 05 08 256
PSR 50(| 48 50 50 50 50 50 50 50 50|l 2{ 16 17 06 08 10 10/ 07 09 12
Rov 40/| 28 40 40 40 40 40 40 40 do|| 19|22 16 o1 01 08 08/ 05 08 15
Sat 36(| 23 36 36 36 36 36 36 36 36|| 22| 26 40 o1 02 94 94 10 92 997
Sca08 21f| 17 19 21 20 21 21 19 21 21]| 9{03 08 ol 02 09 10[07 11 27
Scall 4[| 11 12 14 13 14 14 12 14 14| 8/03 08 01 02 07 1107 11 17
Sok08 30[| 7 20 5 27 27 29 26 26 27|| 5|15 03 05 12 07 0.7/ 04 08 09
Sokil 20| 2 19 3 17 17 19 16 16 17| 3|19 o1 L1 15 09 09| 04 08 09
Tidy 0/ 7 14 16 15 14 16 13 14 13| 9/08 11 04 09 05 05/ 05 06 09
TPP 30/ 13 30 28 30 30 30 30 30 30([1417 o1 01 01 10 10[0.5 09 14
Tra08 30[| 11 28 29 26 27 30 30 30 30[[16) 15 12 01 02 10 31| 08 31 132
Taall 20| 0 11 17 9 10 17 20 20 20f| 8/ 20 24 02 01 10 6530 63 477
Tru ([8 18 15 14 14 15 18 18 18|| 8[132 40 12 10 45 46| 05 45 169
Vis 0(0 3 3 20 20 20 20 20 20| 2{02 01 03 05 39 39/ 22 39 56
Woo08 30[| 10 30 22 30 30 30 30 30 30| 6] 03 09 03 04 02 02[01 02 28
Wooll 20| 1 20 8 20 20 20 20 20 20{| 7|05 07 02 03 04 04 01 04 17
Zen 20[| 17 20 20 20 20 20 20 20 20| 7[27 28 o0l 02 30 29/ 07 29 59
[1082][688 968 879 971 977 1013 998 992 1004][351] I]

Table 5: Coverage and runtime performance in comparison to the state of the art. Best values
highlighted in boldface where there are differences. The ratios (per-domain median “Med”, min-
imum “Min”, maximum “Max”) are over the set of instances commonly solved by all planners in
the right half of the table, excluding instances solved by all these planners in < 0.1 seconds.

run LAMA in full (referred to simply as “LAMA”). Finally, to represent the re-
cent competitive approach to satisficing planning via SAT, we run Rintanen’s Mp
solver [47]. Tables 5, 6, and 7 show the data.

Let us start with a quick look at coverage in Table 5. Mp lags far behind the
heuristic search planners in terms of coverage already, so we will not consider it in
the remainder of these experiments. 7 overall performs substantially worse than
RhFF (it has significant advantages in some domains but too many losses in others).
RFE(TIS) leads to an overall win over AT, but only a slight one, excelling mainly
in Floortile. Our red-black plan heuristics substantially improve over kY. They
almost never have worse coverage (the only exceptions are Sokoban, Barman for
RDC[5]S, and Tidybot for RDLS and RDLS). They have much better coverage
in VisitAll, Transport, and NoMystery, as well as smaller improvements in a few

54

Evaluations Plan length
nfF/ LAMA/

Domain #common||h%* TIC1 1S2 RDLS RDC[51S RDLS||A™ hee? 1< 1 1S 2 LAMA-Ist RDLS RDCI5]S RDLS
Bar 0

Blo 350 07 29 28 0.7 0.9 07|/ 06 05 10 10 07 09 1.0 09
Dep 18| 17 24 24 13 13 13|/ 08 08 08 08 08 08 08 08
Dri 20/ 0 26 22 107 12 13// 07 07 09 08 07 08 08 08
EIv08 (| 27 13 12 10 5705 5705(| 10 1.0 10 10 10 10 L1 11
Elvil 19/| 34 14 10 14 65940 6594.0(| 10 1.0 10 10 10 10 L1 11
Flo 5(|38.3 101853 17382.2 3.9 3.9 39([09 10 09 09 10 09 09 09
Grd 5[04 13 14 11 11 L1|| 08 08 08 07 07 08 08 08
Grp 20(| 37 07 09 3445 3445 3445/| 08 08 09 08 10 08 08 08
Log98 33|| 34 29 27 4350 4350 4350(| 1.0 10 10 10 10 10 10 10
Log00 28| 16 15 15 1370 1370 1370/| 1.0 09 09 09 L0 10 10 10
Mic 150| 14 12 12 2535 2535 2535[[09 09 09 09 09 10 10 10
Mpr 35| 24 24 23 13 13 13([09 10 10 10 09 09 09 09
Mys 16/ 1.6 16 16 L5 15 15/ 09 1.0 10 10 09 09 10 09
NoM s[| 71 31 07 7100 7100 7100([09 09 09 09 09 09 09 09
Prc08 10/ 06 07 04 13 13 13| 10 10 10 10 10 10 10 10
Prcll 0

Peg08 3/ 0 13 14 1.0 1.1 10/ 08 08 08 08 08 08 08 08
Pegl | 20/ 12 24 23 1.0 13 14/ 08 08 08 08 08 08 08 08
PNT 9| 12 08 08 15 15 15/ 07 06 06 06 06 08 08 08
PT 2| 05 10 11 13 13 L1|| 08 07 07 07 08 08 08 08
PSR 50 0 10 10 1.0 1.0 10/ 10 10 10 10 10 10 10 1.0
Rov 40/ 08 11 11 14 14 14[[09 09 09 09 09 09 0.9 09
Sat 36(| 14 18 12 3035 3035 283|| 1.0 1.0 10 10 10 09 09 1.0
Sca08 18|| 23 28 27 24 2.6 35/ 10 10 L1 11 10 10 111
Scal | 1| 60 29 138 3.0 28 115)| 1.0 1.0 11 11 10 10 L1 11
Sok08 5[l o6 07 15 15 15 12| 09 08 06 08 07 08 08 08
Sokl1 3l 02 10 15 15 15 12|| 07 05 05 06 06 07 07 06
Tidy off 09 13 19 10 12 11| 08 09 07 08 08 08 08 08
TPP 28| 02 10 09 10 10 10[| 09 07 08 08 09 09 09 09
Tra08 5|l 16 12 12 14 4210 4210(| 09 10 10 09 0 10 1111
Trall 8| 2.1 15 06 18 22930 22930/| 09 1.0 08 08 10 09 13 13
Tru 13| 03 13 04 10 1.0 10[[09 09 09 09 09 09 09 09
Vis 2| 1.6 250 291 1007235 100723.5 100723.5(| 03 0.1 05 05 09 12 12 12
Woo08 2|| 12 2121 2148 10 10 10[| 0 10 12 12 10 10 10 10
Wool 1 8|| 1.1 1964 1964 1.0 1.0 10/ 1.0 09 11 11 10 10 10 1.0
Zen 0/ 12 12 12 615 615 615[| 09 09 09 09 09 1.0 10 1.0

Table 6: Search space size and plan length performance in comparison to the state of the art. Best
values highlighted in boldface where there are differences. The ratios (per-domain median) are
over the set of instances commonly solved by all planners in the table.

other domains. LAMA is still best overall, profiting from its use of two different
heuristics as opposed to a single one like for all other heuristic search planners
here. Our new heuristics beat LAMA’s coverage (to small extents) in Floortile,
Transport, and Trucks.

We consider runtime and plan length in terms of ratios vs. a representation of
the state of the art, namely LAMA-1st respectively LAMA. We consider search
space size, i.e. the number of state evaluations (calls to the heuristic function),
in terms of ratios vs. the baseline hfF. All these ratios, see Tables 5 and 6, are
taken over the set of instances commonly solved by all heuristic search planners
in our experiments. So the ratios are directly comparable across columns. In some
domains, due to the smaller coverage of hfF, h*®?, and hFF(I1S), the set of common
instances is small. For these domains, Table 7 shows data over the larger set of
instances commonly solved by the most competitive planners, i.e., LAMA and
the three variants of our new heuristics (we do not show evaluations data here as

55

Total Time Plan Length
LAMA-1st/
RDLS RDC[5]S RDLS LAMA/
Domain # Med Min Med Max|| #|LAMA-Ist RDLS RDC[5]S RDLS
Barman 9 0.7 0.0 0.0 0.7 13[| 9 1.0 1.0 1.0 1.0
Elevators11 20 0.6 14.8| 1.6 15.7 55.2||20 1.0 1.0 11 1.1
Logistics98 23 33 33| 0.6 34 24.7|(35 1.0 1.0 1.0 1.0
NoMystery 8 1.6 17| 0.2 1.6 25.7||11 1.0 1.0 1.0 1.0
ParcPrinter08 2 1.3 13[1.3 1.3 14([20 1.0 1.0 1.0 1.0
ParcPrinter] 1 4 0.7 0.7 0.0 0.7 1.6|[13 1.0 1.0 1.0 1.0
Pipesworld-NoTankage | | 25 2.7 2.6/ 0.0 2.7 48.1|(33 0.6 08 0.8 08
Pipesworld-Tankage 25 14 14| 0.5 1.2 528.7||30 0.7 08 0.8 08
Scanalyzer08 11 0.7 1.0} 0.3 11 27(|19 1.0 1.0 1.2 1.2
Scanalyzer11 9 0.7 1.1 0.7 1.2 27||12 1.0 1.0 1.1 1.1
Sokoban08 23 0.7 0.7/ 0.2 0.8 11.9|[26 0.6 0.7 0.7 06
Sokobanl11 16 0.7 0.7/ 0.2 0.9 114||16 0.6 0.6 0.6 06
Tidybot 11 0.5 0.5 01 05 09|11 0.8 08 0.8 08
TPP 17 1.0 1.0 0.5 0.9 1.5[(30 0.9 09 09 09
Transport08 21 1.2 4.0 0.8 4.0 249.4|(30 1.0 1.0 1.1 1.1
Transport11 17 2.4 14.3| 3.0 14.3 316.7||17 1.0 09 1.3 1.3
Trucks 9 5.2 54| 05 52 169|(14 0.9 09 0.9 09
VisitAll 20 3.0 31| 1.5 31 5.6/(20 1.0 1.3 1.3 1.3
‘Woodworking08 25 0.6 0.5/ 0.0 0.6 6.6](30 1.0 1.0 1.0 1.0
‘Woodworking11 19 0.4 04| 01 04 17.1[[20 1.0 1.0 1.0 1.0

Table 7: Supplementary data for Tables 5 and 6. Performance better than LAMA highlighted in
boldface, performance worse than LAMA highlighted in italics. We give the same measures of
total time respectively plan length, over the set of instances (total number: 973) commonly solved
by the most competitive planners, i. e., LAMA and the three variants using our heuristic. We show
only the domains where that set of instances is larger than the set of commonly solved instances
in Table 5 (right half) and Table 6. As in Table 5, for runtime we exclude instances solved by all
involved planners in < 0.1 seconds.

the ratio to AT is not defined on this instance set).

Regarding search time, at a high level the picture is somewhat similar to what
we observed for coverage. Considering Table 5, we see advantages of h°* over
LAMA in some domains, and we see the enormous advantage of hfF(II¢) in
Floortile. Our new heuristics yield significantly better runtime than all other plan-
ners in Elevators, Satellite, Transport, and VisitAll.

To discuss this in some more detail, consider RDLS, the most competitive
variant of our heuristics in terms of coverage. In the median runtime ratio, RDLS
does worse than LAMA-1st in 14 domains (i. e., instance suites), and better in 18.
Table 7 complies with these observations, RDLS being worse than LAMA-1st in
8 of the shown instance suites, and better in 12. To shed some light on the distribu-
tion of ratios, we also include the per-domain minimum and maximum in Tables 5
and 7. This data mainly goes to show that there is a lot of per-domain variance,
with very good and very bad behavior mixed in many domains. In Table 5, there
are only 5 instance suites (Table 7: 1 suit) where RDLS is consistently worse,
maximum < 1; and 6 instance suites (Table 7: 4 suites) where RDLS is consis-
tently better, minimum > 1. The “consistently better” cases arise in Elevators,
Miconic, NoMystery, ParcPrinter, Transport, and VisitAll. In the remaining do-
mains — with ratios on both sides of 1 — we see that the median typically is indica-

56

tive of whether or not large improvements occur: For median ratios close to 1, the
maximum typically is below 3. There are some exceptions to this, most notably
Driverlog in Table 5 as well as NoMystery, Pipesworld-Tankage, and Sokoban in
Table 7. And there are domains like PegSol where the intra-domain variance is
huge (the ratios > 3800 are extreme outliers, the next highest ratio is < 20 in
each of these suites). Overall, it is not clear to us what causes this variance, nor
how one could get rid of it. A simple promising approach would be to run several
different heuristics in parallel. We leave this open for future research.

The data regarding the number of evaluations in Table 6 shows that the do-
mains basically fall into two classes: a large class of domains where the infor-
mativity gain over A is smallish and roughly similar for all the partial delete re-
laxation heuristics considered here; and a smaller class of domains where at least
one of these heuristics yields dramatic gains. The latter is the case for AT (1<)
in Floortile and Woodworking, and for our new heuristics in Elevators, Grip-
per, Logistics, Miconic, NoMystery, Satellite, Transport, VisitAll, and Zenotravel
(which almost coincides with the domains with a consistent runtime advantage, cf.
above). Note that these latter advantages are mostly due to stop search (compare
Table 1).

Regarding plan length, the right half of Table 6, as well as that of Table 7,
show that LAMA has a very consistent advantage over all other planners, which
is expected, as none of these planners make any effort to minimize plan length
after the first solution is found. But LAMA’s advantage tends to be small. There
are few cases of median ratios worse than (.8; the largest advantage by far arises
in VisitAll for AfF and A, For our new heuristics, median ratios worse than 0.8
occur only in Sokoban. In a few cases (Elevators, Scanalyzer, Transport, and Vis-
itAll) the plans found using our heuristics are somewhat shorter than those found
by LAMA. Note that, in most of these latter cases, the plans are actually found
by stop search, showing that this technique can be useful not only for runtime but
also for plan length.

7.2. Simple Combinations

We so far ran our new heuristics against competing state-of-the-art techniques,
but of course one can instead combine all these techniques to exploit their com-
plementary strengths. We explore two straightforward forms of such combina-
tion, showing the potential benefits. For simplicity, we consider only the overall
strongest variant of our heuristic function, RDLS, and we consider only its com-
binations with LAMA.

57

T T T
Coverage

1020 -

1015 -

1010 -

1005 -

1000 L L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800

Time share of RDLS

Figure 9: Coverage as a function of the RDLS time share 7" in a sequential portfolio of RDLS and
LAMA. T is scaled from 0 to 1800 seconds, in steps of 1.

The simplest form of combination is to replace hf in LAMA by RDLS. We
refer to this approach by the name “Mercury”, as used for a corresponding plan-
ner that participated in IPC 2014 (see also the next section). We remark that,
while LAMA implements an interaction (“synergy”) between h'F and its land-
mark heuristic, and while that interaction could presumably be adapted to our red-
black plan heuristics, we did not perform this adaptation yet. That is, in Mercury,
the two heuristics are strictly separate.

Our second combination method is the classical, and highly successful, se-
quential portfolio idea, where the component planners are run in a fixed sequence,
each with a fixed time share of the total time (1800 seconds, in our case). We take
the two portfolio components to be RDLS and LAMA. We denote the time share
of RDLS (in seconds) by 7’; the time share of LAMA is 1800 — T". We do imple-
ment a basic form of interaction between these components: If RDLS succeeded
in solving the task at hand (within its time share), but we are trying to minimize
plan length, then the length of the plan found by RDLS is provided as an initial
upper bound on plan length to LAMA.

To clarify the influence of the parameter 7', Figure 9 shows portfolio coverage
as a function of that parameter. We obtained this data by running each of RDLS
and LAMA once, reconstructing, for each of the 1801 values of 7', the coverage
the portfolio would have had for that setting. Notice first of all that the y-axis
shows only the part of the coverage scale above 1000 instances — the differences

58

Coverage Plan length
LAMA/
Domain #||LAMA-1st Mercury-1st P-Unif P-Best #|Mercury P-Unif P-Best
Barman 20 20 20 20 20| 20 1.0 09 09
Blocksworld 35 35 35 35 35| 35 1.0 1.0 1.0
Depots 22 21 21 21 21| 20 1.0 1.0 1.0
Driverlog 20 20 20 20 201| 20 1.0 1.0 1.0
Elevators08 30 30 30 30 301| 30 1.1 1.1 11
Elevators11 20 20 20 20 201| 20 1.1 1.1 1.1
Floortile 20 5 5 7 7 4 0.9 09 09
Grid 5 5 5 5 5 5 1.0 1.0 1.0
Gripper 20 20 20 20 201| 20 1.0 1.0 1.0
Logistics98 35 35 35 35 35| 35 1.0 1.0 1.0
Logistics00 28 28 28 28 28| 28 1.0 1.0 1.0
Miconic 150 150 150 150 150{[150 1.0 1.0 1.0
Mprime 35 35 35 35 35| 35 1.0 1.0 1.0
Mystery 28 19 19 19 19(] 19 1.0 1.0 1.0
NoMystery 20 13 14 15 15| 12 1.0 1.0 1.0
ParcPrinter08 20 20 20 20 20| 20 1.0 1.0 1.0
ParcPrinter11 13 13 13 13 13(| 13 1.0 1.0 1.0
PegSol08 30 30 29 30 30(| 29 1.0 1.0 1.0
PegSoll1 20 20 19 20 20(| 19 1.0 1.0 1.0
Pipesworld-NoTankage 40 34 34 34 34| 34 1.0 1.0 1.0
Pipesworld-Tankage 40 33 32 31 32| 31 1.0 1.0 1.0
PSR 50 50 50 50 501| 50 1.0 1.0 1.0
Rovers 40 40 40 40 40(| 40 1.0 1.0 1.0
Satellite 36 36 36 36 36(| 36 1.0 1.0 1.0
Scanalyzer08 21 21 21 21 21| 21 1.0 1.1 1.1
Scanalyzerl1 14 14 14 14 141 14 1.0 1.1 1.1
Sokoban08 30 29 26 27 291 26 1.0 1.0 1.0
Sokoban11 20 19 16 17 19(] 16 1.0 1.0 1.0
Tidybot 20 16 14 16 16|| 14 1.0 1.0 1.0
TPP 30 30 30 30 30(| 30 1.0 1.0 1.0
Transport08 30 30 30 30 30(| 30 11 11 11
Transport11 20 17 20 20 20(| 17 13 13 13
Trucks 30 15 18 18 18| 14 1.0 1.0 1.0
VisitAll 20 20 20 20 20| 20 13 13 13
‘Woodworking08 30 30 30 30 30(| 30 1.0 1.0 1.0
Woodworking11 20 20 20 20 20| 20 0.9 1.0 1.0
Zenotravel 20 20 20 20 20(| 20 1.0 1.0 1.0

= 1082]] 1013 10091017 1022][997]]

Table 8: Performance for simple combinations of our new heuristics with LAMA. Performance
better than LAMA highlighted in boldface, performance worse than LAMA highlighted in italics.
“Mercury” is like LAMA but using the RDLS heuristic in place of hF (see text). “P-Unif” is the
sequential portfolio of LAMA and RDLS where each gets 900 seconds; “P-Best” uses a time share
of T' = 714 seconds for RDLS, which is best in terms of overall coverage (compare Figure 9).
Ratios (per-domain median) are over those instances commonly solved by all planners in the table.

in overall coverage are small (as expected, given Table 5). The sharp drops at each
extreme end of the 7' scale are due to losing coverage in domains where either
RDLS (7" close to 0) or LAMA (T close to 1800) excels, solving tasks within a
few seconds that are out of reach for the respective other component planner. In
between the extremes, the coverage curve is rather flat, with a performance peak
of coverage 1022 for RDLS time shares 663 < 7" < 714. The difference between
the two extreme values of 7" in this peak is small; in what follows, we selected
T = 714 as the “best” time share setting.

Consider Table 8. We do not show data for runtime because, on those in-
stances commonly solved by LAMA and either of the two portfolios in the table,
the vast majority of instances is solved by RDLS already. Hence the runtime ratio

59

over these instances would essentially come down to the ratios already shown in
Tables 5 and 7. Regarding plan length, as before we employ LAMA as a repre-
sentation of the state of the art. The picture is clear: most of the time the median
performance is identical to that of LAMA. There are only five cases (Barman for
the uniform portfolio, Floortile for all our planners, Woodworking11 for Mercury)
where plans become worse. In Elevators, Scanalyzer, Transport, and VisitAll,
plans become shorter (similarly as in Table 6). Note also that the disadvantage
on Sokoban when running RDLS alone (cf. Tables 6, and 7) disappears when us-
ing the portfolio instead, showing that the “plan-improvement post-process” by
LAMA in that portfolio is effective.

Regarding coverage, the basic message is that replacing /™" with RDLS in
LAMA is marginally effective at best, while sequential portfolios of RDLS and
LAMA do yield substantial improvements. In a little more detail, Mercury im-
proves coverage over LAMA in NoMystery (1 instance), Transport (3), and Trucks
(3), but loses in PegSol (2), Pipesworld-Tankage (1), Sokoban (6), and Tidybot
(2), for an overall loss of 4. As for the portfolios, with 7' = 714 the portfolio
is at least as good as LAMA in all except Pipesworld-Tankage where it loses a
single instance, while it performs substantially better in 4 domains. In detail, cov-
erage goes down in Pipesworld-Tankage (by 2 instances for 7' = 900 and by 1
instance for 7' = 714) and Sokoban (by 4 instances for 7" = 900), but goes up in
Floortile (2 for each value of 1), NoMystery (2 for each), Transport (3 for each),
and Trucks (3 for each). Note that, in NoMystery, the portfolio solves more in-
stances than each of its components, showing that complementary strengths can
sometimes be exploited even within a domain.

7.3. IPC 2014

Mercury obtained the 2nd prize in the IPC 2014 sequential satisficing track,
being outperformed (in terms of IPC quality score which was used to rank the
planners in this track) only by the IBaCoP2 portfolio planner [48]. As stated
by the organizers in their results presentation, LAMA would have ranked much
worse, on place 12th out of 21 in that track. Given our observations above — Mer-
cury having only a marginal performance advantage over LAMA, the portfolio
approach being substantially more effective — this raises the questions (1) why
Mercury was superior to LAMA in IPC 2014 (due to the different benchmarks, or
due to the different ranking criterion?), and (2) how the portfolio approach would

60

Coverage IPC Quality Score
Domain # | LAMA Mercury P-Best | LAMA Mercury P-Best
Barman 20 19 20 18 18.22 17.88 17.66
CaveDiving 20 7 7 7 7.00 7.00 7.00
Childsnack 20 0 0 6 0.00 0.00 6.00
Citycar 20 3 5 3 3.00 4.56 3.00
Floortile 20 2 2 2 2.00 2.00 2.00
GED 20 20 20 20 18.18 19.29 15.38
Hiking 20 17 18 11 15.32 17.63 8.99
Maintenance 20 7 7 7 6.46 6.84 6.46
Openstacks 20 20 20 20 19.94 19.96 19.94
Parking 20 20 20 20 19.18 17.68 19.18
Tetris 20 9 17 11 8.43 15.81 9.79
Thoughtful 20 0 0 0 0.00 0.00 0.00
Transport 20 13 20 20 8.21 20.00 16.44
VisitAll 20 20 20 20 15.94 20.00 19.95
> 280 157 176 165 141.89 168.65 151.80

Table 9: Performance on IPC 2014 benchmarks, sequential satisficing track. IPC quality score
is relative to the three planners shown here (not relative to the participants in that IPC track).
All three planners use the same basic support for conditional effects, a straightforward “multiply
out” compilation realized in FD, in the context of IPC 2014, by Gabriele Roger. “P-Best” is the
same portfolio as in Table 8. If there are no RSE-invertible variables (which case previously was
excluded up front), the portfolio defaults to LAMA, i.e., assigns the full 30 minutes runtime to
LAMA,; this happens in all instances of Citycar, Maintenance, Openstacks, and Parking, as well
as in a single instance of Tetris. To stick as closely as possible to the IPC 2014 computational
setup, the data for LAMA and P-Best were obtained on the original IPC 2014 machines with
the original IPC 2014 settings; the data for Mercury is taken from the official IPC 2014 results
(adding 4 additional tasks in CaveDiving, solved by Mercury, after a bug fix to the conditional
effects compilation, quickly and with the same quality as for LAMA and the portfolio).

have fared. Consider Table 9.3

Considering question (1) first, the answer clearly is that Mercury’s superiority
over LAMA is due to coverage. Mercury never decreases coverage relative to
LAMA. It dramatically improves coverage in Tetris and Transport, and yields
smaller improvements in Barman, Citycar, and Hiking. In domains with equal
coverage, the IPC quality score picture is mixed; Mercury has the edge in VisitAll
and GED, but loses in Parking, and even in Barman despite its slight coverage
advantage. In the light of our results above, the conclusion is that the IPC 2014
benchmarks, most specifically Tetris, are qualitatively different from the earlier
IPC benchmarks, and that this qualitative difference leads to Mercury’s advantage
in coverage and hence its advantage in the official competition outcome.

Considering now question (2), a similar conclusion applies: In difference to
the earlier IPC benchmarks used above, Mercury ends up having the edge in cover-

181n Thoughtful, all planners here fail due to a parsing issue.

61

age over the portfolio. Substantial differences occur in three new domains, Child-
snack, Hiking, and Tetris. The portfolio is much more effective in Childsnack, but
is much more ineffective in Hiking and Tetris. The portfolio also tends to do a
bit worse than Mercury in the quality score, which makes sense as Mercury will
plausibly have a tendency to spend more time trying to improve the initial solu-
tion (and IPC quality score is more sensitive to that than the median plan length
ratios reported above). Overall, the portfolio still beats LAMA on these different
benchmarks and ranking criterion, but not as convincingly as Mercury does.

8. Conclusion

Taking “some deletes into account” has been a challenge ever since delete
relaxation heuristics were first invented. Red-black planning tackles this challenge
by relaxing only a subset of the state variables, thus generalizing both regular
and delete-relaxed planning, and allowing to smoothly interpolate between the
two. We have provided a first complexity analysis and, focusing on a particular
tractable fragment, have shown that practically useful heuristic functions can be
derived this way.

In our view, the main virtue of the red-black planning framework lies in its
elegance and simplicity. We believe that we have only scratched the surface of
both, its analysis, and its potentially useful applications.

On the theory side, a major construction site is the structural analysis of depen-
dencies across black and red variables. Can one restrict these in interesting ways
to obtain tractability? In particular, as we have shown, just by considering the
black causal graph, useful tractable fragments can be obtained. But what about
the combined red-black causal graph? Can one identify interesting fragments
based on criteria on that graph, taking the different vertex colors into account?

On the practical side, a major issue — not just for red-black planning but for
partial delete relaxation in general — is the runtime overhead incurred by the more
complex reasoning inside the heuristic function. This severely limits the amount
of “un-relaxation” one can apply, to the point of rendering the interpolation ability
useless. But no one forces us to use red-black planning that way! We believe that
there is a space of unlimited possibilities in alternate uses. Instead of generating a
new red-black plan for every search state, one could generate one red-black plan,
or a small set of red-black plans, for the initial state only, i.e., allow substan-
tial runtime to obtain highly “un-relaxed” plan templates. One could then design
distance-to-template heuristics for guiding state space search. Another possibility
is to use the templates as seed plans in plan-space searches such as partial-order

62

planning (e. g. [49, 50]) or LPG [10], or to seed Nakhost and Miiller’s plan neigh-
borhood graph search [51]. Finally, an exciting approach is incremental red-black
planning, where one would obtain a relaxed plan in iteration 0, paint one more
variable black in every iteration, and rely on the information obtained when solv-
ing iteration ¢ to provide search guidance for iteration 7 + 1.

In summary, red-black planning is an elegant approach to partial delete relax-
ation, whose exploration has only just begun. We hope that other researchers will
be inspired to join us in this effort.

Acknowledgments. We thank Mauro Vallati and Lukas Chrpa for running addi-
tional experiments for us on the IPC 2014 machines. We thank the anonymous
reviewers for their comments, which helped to improve the paper. Part of this
work was done while Michael Katz was working at Saarland University. This
work was partially supported by the German Research Foundation (DFG), under
grant HO 2169/5-1, and by the EU FP7 Programme under grant agreement no.
295261 (MEALS). The work of Carmel Domshlak was partly supported by the
ISF grant 1045/12.

Appendix A. Proofs
Lemma 2 For any RB task 11 = ({vg}, VR, A, I, G) it holds that
(1) the monotonic relaxation 7™ of any plan 7 for 11 is SCC-aligned, and

(2) any SCC-aligned relaxed plan 7 for 11 can be extended, with only a polyno-
mial overhead, into a plan for 11.

Proof: SCC-aligned relaxed plans, as well as all the auxiliary notions and nota-
tion, are defined in the proof of Theorem 1, p. 12.

(1) The proof of this part is straightforward. If 7 = (a4, ..., a,) is a plan for
IT, then 7% = (a1, ..., a,) is a relaxed plan for II. Let (a1, ..., dy(m)) be the
sequence of all the SCC-changing actions along 7.

For all 0 < i < m, and each o(i) < j < o(¢ + 1), the action a; either has no
precondition on vg or pre(a;) = eff(q;) for some o (i) <1 < j. If | = o (i), then
pre(a;)[vs] = eff(aq(;)[ve], and thus the two trivially belong to the same SCC
of I'y(;). Otherwise, if | > o(i), since | < o(i + 1), pre(a;)[vs] = eff(a;)[vg]
and eff(a,(;))[vg] belong to the same SCC of I',(;), or otherwise a; would be an
SCC-changing action.

63

Finally, let a; be the last vg-changing action along 7 (and thus along 7).

In particular, it means that j > o(m). Since 7 is a plan for II, if vg € V(G),
then eff(a;)[vg] = G[vg]. Following precisely the same argument as above: If
j = o(m), then trivially eff (a(m))[vs] = G[vg]. Otherwise, if j > o(m), then
eff(a,(m))[vs] and eff(a;)[vg] = Gluvg] belong to the same SCC of I',(,,,), or oth-
erwise aq(;,) would not be the last SCC-changing action along 7.

() Letn" = (a4, ..., a,) be a SCC-aligned relaxed plan for IT, and (a1, - - . , @o(m))
be the sequence of all the SCC-changing actions along 7. These m SCC-changing
actions divide 7 into m consecutive action subsequences 7TZ»+ = (Ao (i=1)+15 - - - » Qo(s))»
each ending with the corresponding SCC-changing action, plus, possibly an empty,
action subsequence 7, 1 = (Go(m)+1, Un)-

Given that, we construct a plan

T=T1-Tg" ... "Tp " Tptt

for IT such that, for all v € VR,

I{af,...;a)]], 1<i<n
and
(eff(a;)[vg], i€{o(l),...,0(m)},
Ivg], i <o(l),
_Jeff(as)[vs], o(j) <i<o(j+1)andj<m
fm - -ml el = eff(ay(m))vs], o(m) <i<n (A2
eff(ay(m))[ve], i =n+1andvg & V(G)
| G[vs], i=n+1land vg € V(G)

The plan 7 is constructed, and the satisfaction of Egs. A.1-A.2 is proven, induc-
tively, as follows. For i = 1, we use m; := (aq). This choice trivially satisfies
Eq. A.1, and, since 1 < (1), Eq. A.2 is satisfied as well (via either its first or
second cases). This provides us with a basis for our induction. Assuming now
that Eqs. A.1-A.2 hold for 7y - ... m;_1,¢ > 1, we construct 7; so that 7wy - ... - m;
also satisfy Eqgs. A.1-A.2. We do that as follows.

Considering i < n,leto(j) <i < o(j + 1) for some 0 < j < m. Given that,

we set
! a), = (i1
N A (A3)
- (a) -, i <o(j+1)

64

where, if a; is not preconditioned by vg (and thus, in particular, does not affect
vg), then 7, = 7/ = (), and otherwise, 7} and 7/’ are a pair of sequences of actions

from {as(1), ..., ao(;) } that change vg from eff(a,(;))[vs] to pre(a;)[vs] and back,
from eff (a;)[vg] to eff (ay(;))[vs], respectively.

First, by the structure of 7 and our inductive assumption on 7y - . . .- 7;_1 with
respect to Eq. A.1, all the (red) preconditions of a; hold in 7y - ... - m_1]. Sec-

ond, if @, is preconditioned by vg, then, by the SCC-alignment of 77, eff(ay(;)),
pre(a;)[vs], and, if i < o(j + 1), eff(a;)[vs], belong to the same SCC of I',(;).
Therefore, an action sequence 7, and, if needed, an action sequence 7. as in
Eq. A.3 are guaranteed to exit. Third, by our inductive assumption on Eq. A.2,
I[my - ... - mi—1][vs] = eff(ay(j))[vs]. Forth, since our inductive construction en-
sures that all the actions {a,(1), ..., as(; } are already executed along 7 prior to
executing 7, all the red preconditions of actions in 7, and 7/’ hold from I[7; -.. .-
;1] onwards.

Together, these four arguments imply that ; is applicable in Iy - ... - m;_4],
and, since the only action in 7; thatis novel to 7wy -. . .-m;_q 1S a;, 71 . . .- 7; satisfies
Eq.A.l. Inturn, if 7} = 7] = (), then I[m;-...-m;][vg] = I[m1-...-mi_1][vs], and
thus our inductive assumption on Eq. A.2 directly implies that Eq. A.2 is satisfied
by 7 - ... m. Otherwise, if i = o(j + 1), then, by Eq. A.3, 7; ends with a;, and
thus I[my - ... m][ve] = eff(a,(;4+1)) satisfies Eq. A.2. Finally, if i < o(j + 1),
then I[7 - ... m]|[vs] = eff(as(;), satisfying Eq. A.2 as well.

This finalizes both the construction step and the proof of its correctness for
i < n. Considering now the end-case of i = n + 1, if vg & V(G), then we set
Tnt1 = (). Otherwise, if vg € V(G), then 7, is set to an action sequence from

{ao(1y; - -, ao(m)} that change vg from eff(a, () to Glug]. Such a sequence of
actions from {a, (1), . . ., G(m) } €xists by the SCC-alignment of 7, and it is appli-
cablein I[m; -...-m,] because (1) by Eq. A.2, I -...-m,][vg] = eff(ac(m))[vB],
and (2) all the red preconditions of the actions in 7,1 hold in I[m - ... m,] since
m - ... T, already contains an instance of each action in {ag(l), . ,ag(m)}. The
latter argument also implies that /[- ... - m,,1] satisfies Eq. A.1, and the satis-
faction of Eq. A.2 is immediate by the construction of 7, 1. 0

Lemma3 Let 11 = ({vg}, VR A, I, G) be an RB task, 7+ = (a4, ..., a,) be an
SCC-aligned relaxed plan for 11, and (a,(1), - . ., Go(m)) be the sequence of all the
SCC-changing actions along 7. Let

P =05 (o) - PT - {Ge@) - Pt (Ga(m)) * P (A4)

be a sequence of actions from A in which, inductively, p; is a relaxed plan from

65

Ilpg -apy-py - - .- ag(s)] to the relaxed planning fixpoint, using only those actions
from A that are neither preconditioned by the values of vg outside of the SCC of
eff(ao(:)) [vs] in Ty, nor have such values among their effects.

Then, similarly to 7,

1. p" is an SCC-aligned relaxed plan for 11, and

2. {as(1), - - - Ag(m)) IS the sequence of all the SCC-changing actions along p™*.

Proof: First, if the action sequence p* constructed as above is a relaxed plan for
I1, then (2) is immediate by the very restrictions put on the segments p;". Now, let
=g - (aeq)) T ... Ty - (Goem)) - T,,. Showing by induction that, for

0<i1<m,

I (ay) w1 - {ao) i 1] € Ilog - (ae) o1 (ao@)-pi V] (A5)

forall v € {vg} U VR, we prove that p* is a relaxed plan for II.

For i = 0, by the definition of SCC-alignment, 7, comprises a subset of
actions that (a) appear on action sequences applicable in I [y |, and (b) neither are
preconditioned by, nor have among their effects, values of vg except for /[vg]. In
turn, by the construction, pa“ contains all the actions satisfying (a)-(b). Thus, we
have I[nj][v] C I[pg][v] forallv € VR, and I[r;][ve] = I[pg][ve] = {I[vs]}.

Assuming now that Eq. A.5 holds for : — 1 > 0, we show that it holds for i,
using the arguments very close to these used for the induction basis. Since, by the

induction hypothesis,

Img - Aao-1) - ma][v] € Ilpg - - {ao-1) - piia][]
for all v € {vg} U VR, we have a, ;) applicable in I[p - ... (a,—1)) - pi_,] and
Irg - {aon) - Ty - aop][v] € g - - {aoi-1) - p100m][0] (A6)

forall v € {vg} U VR, In turn, by the definition of SCC-alignment, 7;" comprises
a subset of actions that (a) appear on action sequences applicable in I[rg - ... -
;"1 - (as(i))], and (b) neither are preconditioned by, nor have among their effects,
values of vg outside of the SCC of eff (ay(;))[vs] in I'(;). By Eq. A.6, (a) implies
that ;" can be seen as comprising a subset of actions that (a’) appear on action
sequences applicable in I[pg -...- pi"; - (a,(;))], while, by the construction of p;",
pi contains all the actions satisfying (a’) and (b). This finalizes the proof of the
induction step, and thus, of the lemma. OJ

66

Theorem 2 Plan existence for RB tasks with a fixed number of black variables is
NP-complete.

Proof: For NP-hardness, we construct an RB task, with a single black variable,
that is solvable iff an input CNF formula ¢ is satisfiable. Consider a planning
encoding I1(y) with: (1) ternary-valued variables z1, ..., z, which encode the
propositional variables in ¢, the domain of each x; comprising true, false, and
“unassigned”; (2) Boolean variables cy, . .., ¢,, which encode satisfaction of the
clauses in ; and (3) a variable vg with domain {1,...,n + 1}. Initially, vg = 1,
all clause variables are false, and all the proposition variables are “unassigned”,
and the goal is to make all clause variables true. There are actions changing a
clause variable c; to true provided an z; variable corresponding to one of c;’s
literals is assigned the correct truth value. Other actions change the value of z;
from “unassigned” to either false or true provided vg = ¢, and applying such an
action also changes the value of vg to ¢ + 1. This encoding does not work in the
delete relaxation — that is, if we paint all variables of II(y) red — because x; may
be set to both truth values. However, if only vg is painted black, then plans are
forced to assign each x; exactly one truth value, yielding the desired equivalence.

For membership in NP, just observe that there always exists a polynomial-
length plan. We can pre-compile the fixed number of black variables into a single
black variable, whose domain size is polynomial. Since all causal graph neighbors
of that variable are red, the number of times it needs to change its value (i.e.,
traverse its DTG from some node to another one) is bounded by the sum of the
domain sizes of these neighbors. 0

Theorem 3 Plan existence for RB tasks where all black variables have fixed-size
domains is PSPACE-complete, and it is NP-complete even if CGy is arcless.

Proof: If we fix the domain size of the black variables, but not their number,
then we obtain a problem that is as hard as FDR with fixed-size domains, which
is PSPACE-hard [7], and PSPACE membership is straightforward because the
addition of red variables still allows for a proof similar to that for FDR. For the
second part of the claim, consider the CNF encoding from the proof of Theorem 2,
but now without the special variable vg. If all the clause variables c;, but none of
the variables x;, are painted red, then the black causal graph of the resulting RB
task contains no arcs — each arc in the causal graph involves a red clause variable.
At the same time, since the x; variables are all black, the plans are forced to assign
each x; exactly one truth value, and thus our RB task is solvable iff ¢ is satisfiable.
Membership in NP follows from basically the same argument as in the proof of

67

Theorem 2: for each black variable, all causal graph neighbors are red so we get
a polynomial bound on the number of moves required. 0

Theorem 7 It is co-NP-hard to test whether an RB task is reversible, even when
restricting the input to RB tasks whose black causal graph is arcless.

Proof: The proof is by reduction from DNF tautology testing. Given a proposi-
tional DNF formula ¢ over [clauses ¢y, . . ., ¢;, consider an RB planning encoding
II(p) with: black variables z1, ..., xz, with D(x;) = {unassigned, true, false},
encoding the propositional variables in ; and a Boolean red variable r, encoding
whether or not ¢ is satisfied under a given assignment to x4, ..., z,. All x; vari-
ables are initially unassigned, and r is initially false; the goal does not matter here.
The value of z; can be changed from unassigned to either false or true with no pre-
conditions, and back from false or true to unassigned with precondition . We can
set r to true using actions {ay, . .., a; }, where the precondition of a; requires that
all z; participating in c¢; are assigned to their values required by c;.

Let M be the set of all 2" valuations of ¢’s propositions. For every m € M,
let S,,, C S be the set of reachable states in which all variables x; are assigned as
in m. We observe:

(1) For every m € M that does satisfy ¢, the states in S,,, are reversible in the
red-black sense.

(2) Forevery m € M that does not satisfy ¢, none of the states in .S,,, is reversible
in the red-black sense.

(3) For every state s reachable in I1(¢p), and every m € M that complies with
the (partial) valuation to x4, . . ., z,, defined by s, there exists a state s,,, € .5,,
such that s,,, is reachable from s.

For (1), S,,, consists of two states in this case, one of which has r true and the
other of which has an applicable a; action achieving 7. This allows to assign the
x; variables back to their initial unassigned values. For (2), .S,, is a singleton in
this case, setting the x; to m and r to false. (3) is obvious.

If ¢ is a tautology, then by (3) and (1) every reachable state in [I(y) is re-
versible. If ¢ is not a tautology, then there exists a valuation m that does not
satisfy . Applying (3) to the initial state, we can reach a state s,, € .S,,, which
by (2) is not reversible.]

Lemmad Let 11 = (VB VR A I, G) be a reversible RB task with acyclic black
causal graph, {v, ..., v,} be a topological ordering of VB, and s be a reachable

68

state of 11 with R(s) = s. Then, for any v; € VB, there exists a sequence of
actions applicable in s such that

(i) s[x][vr, ..., 0] = I[v1, ..., vi], and
(ii) actions along T neither are preconditioned by nor affect variables v; 1, . . . ,vp.

Proof: By reversibility, there exists a reverting sequence 7’ for s, that is, a plan for
(VB VR A, s I[VB]). Let w be an action sequence obtained from 7’ by removing
all actions that have no effect on any of the variables vy, ..., v;. We show that 7
has the desired properties (i) and (ii). Provided 7 is applicable in s, its outcome
is I[v;] for all vars v; with j < 7 because the responsible actions from 7’ are
contained in 7, yielding property (i). To see applicability, first note that any red
preconditions along 7 are true simply because s = R(s). By acyclicity of CG
every action in A affects at most one black variable, and so, by the construction
of 7, every action a in 7 affects at most one v; where j < 4. But then, since
{v1,...,v,} is a topological ordering of V&, any black preconditions of @ are on
variables v; for [< j < ¢, and thus the actions supporting these preconditions in
7', if any, are contained in 7. Therefore, 7 is applicable in s. These arguments
also show that neither the effects nor the preconditions of the actions in p’ touch
the variables v;.1, ..., v,. Thus we have (ii), concluding the argument. O

Lemma 5 Let 11 = (VB VR A I G) be a reversible RB task with acyclic black
causal graph and I = R(I), 7" be an action sequence applicable in the mono-
tonic relaxation 11*, and g® be an assignment to V'8 such that g8 C I[n*]. Then,
there exists an action sequence m applicable in I such that

(i) I[][V?®] = ¢° and
(ii) IV 2 I[=][V

Proof:

Let {vy, ..., v,} be atopological ordering of VVB. We prove the stronger claim
that there exists 7 with the claimed properties (i) and (ii), as well as with the third
property that (ii1) actions in 7 neither are preconditioned nor affect black variables
v; with j > m(g®), where, for a partial assignment g,

m(g) max{i | v; € V(g) N VB, V(g)NVB £,
97 = 0, otherwise

69

denotes the index of the topologically lowest black variable assigned by g.

The proof is by induction over the length of 7™ = (a4, ..., ax). For the base
case, if 71 is empty, then the claim is trivially satisfied by the empty sequence .
Assuming now that the claim holds for all relaxed plans of length £k — 1 > 0, we
prove it for 7" of length k.

First, consider the sequence 7, , containing the first £ — 1 actions of 7.
Since 7 is applicable in I, we have pre(a;) C I[r;_,]. Thus, by the induction
assumption applied to 7, ,, there is an action sequence p;_; for II applicable
in [such that pre(ag1) C I[pe_1] and I[mf J[VR] C I[pr—1][VF]. In turn,
action sequence p;_1 - (ay) is thus applicable in I, and obviously, I[7*][VR] C
Ipr_1 - {ax)][VR]. In other words, the red variable values achieved by 7 are all
reachable in I1. But then, /[7*][VR] C I because, by prerequisite, the initial state
is R-completed, i.e., I = R([). Thus, part (ii) of the claim is trivially satisfied,
for any red-black action sequence 7 applicable in II.

Given that, the action sequence m = 7, - m,_1 - ... - m achieving gB 1S con-
structed in a way similar to the construction in the proof of Theorem 9. There,
however, the construction relied on Lemma 5 we prove here, while here, the cor-
responding reliance will be on the induction assumption.

For 1 < i < n, assume inductively that 7, -. . .-7;_; is applicable in [; the basis
case of the empty action sequence for i = n trivially holds. If v; & V(g®), then
we set m; := (). Otherwise, by Lemma 4 above, there exists an action sequence
p; that (1) reverts the black variables {v,...,v;} to their initial values, and (2)
neither is preconditioned by nor affects the topologically lower black variables
{vis1,...,v,}. Thatis,

I[[ﬂn-...-mﬂ]][vj],]>Z

Iy, j<i (A7)

Hmy, - oo - pilllvg] = {
Given that, if g8[v;] = I[v;], then we set 7; := p;. Otherwise, by the virtue of 7+
being a relaxed plan for I1, we must have eff(a;)[v;] = ¢gB[v;] for some 7’s action
a;, 1 < j < k. Furthermore, by the acyclicity of CGE, the black preconditions of
a; may involve only variables {vy, ..., v;}, and thus m(pre(a;)) < 4. In turn, by
our induction assumption on the prefix 7rj[j of 7 that precedes a;, there exists an
action sequence 7, that is applicable in I and achieves pre(a;) while neither being
preconditioned by nor affecting the black variables {v;, 1, ...,v,}. By Eq. A.7 we
then have 7, being applicable in I, - ... 741 - p;], and, for each black variable
v € V(pre(a;)) N VE,

Imn - o Tigr - pi -]| [v] = pre(ay)[v].

70

Given that, we set 7; := p; - Tq, - (a;). Based on the applicability of each m; in
I[my, - ... m1], the overall action sequence 7 constructed this way is applicable
in /. Finally, since 7; does not touch (neither in preconditions nor in effects) the
black variables {v;,1,...,v,}, it achieves gB[v;] while satisfying (iii), and thus,
in particular, invalidates invalidates no sub-goal already achieved by 7,, - ... - 711
on the topologically lower variables v;,1, ..., v,. Therefore, the action sequence
7 satisfies (i), concluding the argument. 0

Theorem 10 Any RSE-invertible RB task with acyclic black causal graph is re-
versible.

Proof: Say Il = (VB VR A I G). We prove that we can “undo” all action
applications. For any state s and action a applicable in s, we show that from
s[{a)] we can reach a state s’ so that s'[VB] = s[VB] and, for every v € VR,
s'[v] D s[v]. If all variables V(eff(a)) affected by a are red, there is nothing to
do. Otherwise, because the black causal graph is acyclic, exactly one variable
vg affected by a is black. Let (d, a,d’) be the corresponding arc in DTGy (vg),
and (d’, a’, d) be the inverse arc that exists by prerequisite. We show that we can
set s’ := s[[{a,a’)]. First, a’ is applicable in s[(a)]: The precondition of a’ is
pre(a’) = ocon(d’,a’,d) U {(vg/d’)}. Obviously, (vg/d') € s[{a)]. Further, we
have ocon(d’,a’,d) C ocon(d,a,d') U oeff(d,a,d’). If (v/d") € oeff(d,a,d),
then it is made true by a. If (v/d") € ocon(d,a,d'), then it is true in s, and
remains true if v is black because all variables affected by oeff(d, a, d’) must be
red. Applying a’ to s[[{a)], the black variable vg is reverted to its value d in s; all
other effects of a’ are red. This concludes the proof of Theorem 10. 0

Theorem 12 There exists a set G of directed graphs where scc-size(G) is bounded
by 2, and RB-PlanExist(G) restricted to RSE-invertible RB is NP-hard.

Proof: The proof is by a polynomial reduction from CNF satisfiability testing:
Given a CNF formula ¢, we construct an RSE-invertible RB task with strongly
connected black causal graph components of size 2 that has a plan iff ¢ is satisfi-
able.

For each Boolean variable p occuring in ¢, we include two binary state vari-
ables z,, and y,, with initial value 0. We furthermore include an action a,,;1,; with
precondition {(x,/0), (y,/0)} and effect {(x,/1), (y,/1)}, an action a,,, with
precondition {(z,/1), (y,/0)} and effect {(x,/0)}, and an action a,,, with prec
{(x,/0), (y,/1)} and effect {(y,/0)}. Each individual variable z, and y,, is RSE-
invertible, but their product is not; we can transition to {(z,/1), (y,/1)} but we

71

cannot go back. Thus, for each p in ¢, we can encode the decision whether to set
p 1o true ({{2,/1), (y,/1)}) or false ({ (z,/0), (3,/0)).

We conclude our construction by adding, in a straightforward manner, vari-
ables and actions that allow to test satisfaction of ¢ for given decisions on each p.
Namely, for each clause ¢ = {ly,...,[x} in ¢, we include a binary state variable
x. with initial value 0, and we include an action a,; for every literal /; in c. If
l; = p then a,; has precondition {(x,/1), (y,/1)} and effect {(x./1)}. If ; = —p
then a; has precondition {(z,/0), (y,/0)} and effect {(x./1)}.

We paint all variables black. The resulting RB task obviously has the desired
properties, concluding the proof. U

Theorem 13 Let 11 = (VB VR A I G) be an RSE-invertible RB planning task
with acyclic black causal graph, ™" be a relaxed plan for 11, and R* = G[VR] U
Uwers Pre(a)[VR]. Then, assuming a complete solver for the sub-tasks I1® gen-
erated, REDFACTSFOLLOWING(II, R™) terminates, and the action sequence T it
returns is a plan for 11.

Proof: We start by showing that, as long as R 2 R*, we always have Ay # ().
This is done with the help of the relaxed plan 7. Let a; € 7" be the action with
the smallest index ¢ such that eff (a;) N (R™\ R) # () (at least one such action must
exist as not all of R has been established yet). We show that a; € Ay, i.e., that
pre(a;) € R U B. First, regarding the red variables, assume to the contrary that
there exists v € VR(pre(a;)) such that pre(a;)[v] € R. Then pre(a;)[v] # I[v] and
thus there exists 1 < j < i — 1 such that eff(a;)[v] = pre(a;)[v] € R*. But then,
eff(a;) N (RT\ R) # 0, in contradiction to the assumption that i is the smallest
index ¢ with eff(a;) N (RT \ R) # . Second, regarding the black variables,

because 7" is a relaxed plan a; - ... - a;_; correspond, for each black variable
v € VB(pre(a;)), to a path in DTG(v) that visits the value pre(a;)[v]. Because
R U B is a superset of the facts achieved in the relaxed plan using a; - ... - a;_1,

the path DTGy (v) uses only actions with outside conditions in R U B. Therefore,
pre(a;) € RU B and we have a; € Ay as desired.

Consider an iteration of the while loop. By definition of A, any red precon-
ditions of the selected action a € A, are true in the current state /[r]. For the
unsatisfied black preconditions g = pre(a)[VB], we have ¢ C B, and they are
tackled by ACHIEVE(g), solving an FDR task I1® with goal g. We show below
that:

(i) IIB is well-defined;

(ii) TIB is solvable; and

72

(iii) any plan 78 for IIB is, in our RB task II, applicable in I[r].

Thanks to (i) and (ii), we will obtain a plan 78 for II1®. Thanks to (iii), while II®
ignores some of the red variables, effects on these cannot hurt anyway, so a is
applicable in [[r - 7&].

Since eff(a) N (RT\ R) # 0, |R*™ \ R| decreases by at least 1 in each iteration,
the while loop terminates after at most | R™| iterations. Upon termination, we have
R* C I[x][VR] = R. The latter implies that G[V'®] C B because the relaxed
plan achieves the goal without using any other red variable values: for each black
variable v € VBN V(G), 7 corresponds to a path in DTGy (v), visiting G[v] and
using red outside conditions from R* only. Calling ACHIEVE(G[V®]) (if needed),
as we will show the FDR task II® constructed will again have properties (i)—(iii),
so it is solvable and appending its solution will turn 7 into a plan for our RB task
I1.

Regarding (i), we need to show that all variable values occuring in II® are
indeed members of the respective variable domains, i.e., the reduced domains
DB(v) for black variables v. This is obvious for IB. It holds for G® = pre(a)[V®]
as a € Ay, and it holds for GB = G[V®] because, then, G[VB] C B. Finally,
for actions, for the red variables there is nothing to show as they keep their orig-
inal domains. For the black variables, if pre(a) C R U B then the (single) black

effect must be contained in B as well. If a € A(DTGp(v)|grup) then by con-

struction of DTGyy(v)|gusp its black precondition and effect on v are contained in
DTG (v)|rup, and any black (outside) preconditions on variables other than v are
contained in ocon(d, d’') Uoeff(d, d') for some arc (d, d') in DTGy (v)|ryp and are
thus contained in B; by construction, a cannot have any black outside effects.

Regarding (iii), for all actions a® € A® where we have pre(a) C RUB, the red
preconditions are true in the current state I[7]. For all other actions a® € A® we
have a € A(DTGr(v)|rup) for some black variable v, which implies that all red
(outside) precondition variables are contained in ‘VR. So applicability, in II, of 7B
in I[r] depends only on variables that are contained in I1%, which immediately
implies (iii).

We finally show (ii), i.e., that I1B is solvable. By Observation 7 of Helmert
[29], any FDR task with acyclic causal graph and strongly connected domain tran-
sition graphs is solvable. By contrast to relaxed plan repair (cf. the proof of The-
orem 11), IIB as constructed here does not fit that profile; however, the argument
can be easily adapted. Helmert’s observation relies on the facts that:

(1) Acyclicity of the causal graph implies that we can solve the planning task

73

“top-down”, from causal graph leaves to roots, fixing a DTG path for each
variable v and propagating the required preconditions as sub-goals to v’s par-
ents.

(2) As every DTG is strongly connected, every required path is available, i.e.,
every variable can always move from its current value to any other value it is
required to achieve as a sub-goal (or its own goal).

(1) is preserved in our setting, for the black variables; the red variables are handled
exclusively as part of our adaptation of (2) below, which is possible as they have
no own goals (G® does not mention the red variables). So how do we ascertain
(2)? We employ the following two observations, valid for every black variable
veVB:

(a) From v’s start value, I8[v] = I[r][v], all values d € DB(v) of v’s reduced
domain are reachable in DTGy (v)|rup-

(b) Assume that 7B is any applicable action sequence in II® which has, at some
point, executed action a® traversing DTG (v)|pup arc (d,d’). Then there
exists an action a’® € A® inducing an inverse arc (d’, d) whose red outside
conditions are contained in the outcome IB8[78] of applying 72 in TIB.

To see that (a) and (b) together show (2), observe first that the paths whose exis-
tence are postulated in (2) may make use of arbitrary black outside preconditions
(“arbitrary” subject to causal graph acyclicity, of course). To achieve this in our
setting, all we need to show is that we can reach any other value of v, from its
current value, without having to rely on any red outside conditions that are not al-
ready true. Now, when v makes its first move, by (a) any path that may be required
is available and relies only on the red facts R which are already true at the start.
In any subsequent move of v, for all DTGy (v)|grup arcs we have traversed so far,
by (b) there exists a suitable inverse action a’ (relying only on red outside condi-
tions that are already true) inducing the respective inverse arc. So, say we need
to reach any value d, that may be required as a sub-goal. We can go back to the
start value 78[v], exploiting the fact that by (b) we can invert any DTGy (v)|rup
arc we traversed, and exploiting the fact that any non-DTGy; (v)|rup arc (d, d) we
traversed must be the inverse of a DTG (v)|gyp arc (d, d’), so we can take (d, d’)
for our path back to 7®[v]. From I®[v], by (a) we can move to d,, concluding this
argument.

It remains to prove (a) and (b). Regarding (a), by construction DB(U) consists
exactly of the values in DTGy (v)|grup, Which by construction are all reachable

74

from I[v]. So it suffices to prove that DTGy (v)|gup contains a path from I8[v] =
I[7][v] to I]v]. Clearly, 7 induces a path from I[v] to I[r][v] in DTGy (v)|rus-
Let (d,d') induced by a® (where a € 7) be any arc on that path. We show
that there exists an inverse arc (d’, d) in DTGy (v)|rup- Because (d,d’) is RSE-
invertible in 11, there exists an action ¢’ € A inducing an arc (d’, d) in DTGy (v)
whose outside condition is contained in pre(a)Ueff(a). Since, obviously, {(v/d’) }U
pre(a) Ueff(a) C RU B, we get pre(a’) C RU B. Thus a’® € A®, and (d', d) is
an arc in DTGpe (v) as desired.

To show (b), a similar argument can be applied. If 7 is an applicable action
sequence in I1B, containing a® traversing the DTGy (v)|gup arc (d, d'), then by
RSE-invertibility there exists an inverse arc whose new red outside conditions (if
any) have been established by a®. In more detail, because (d, d’) is RSE-invertible
in II, there exists an action ¢’ € A inducing an arc (d’,d) in DTGy (v) whose
outside condition is contained in pre(a) U eff(a). If ocon(d’,d)[VR] C R, then
the claim is trivial as R C IB. If ocon(d’,d)[VR] € R, then (d’,d) is contained

in DTGy (v)|gup: It is an inverse arc to an arc in DTGy (v)|gup, and is not itself
contained in DTGy (v)|gyp. Thus its red outside condition variables are contained
in V(ocon(DTGu(v)[rup)) C VR, and a® € AP as o' € A(DTGu(v)|an).
By construction, ocon(d’,d)[VR] C pre(a) U eff(a). Obviously, all red facts in
pre(a) U eff(a) are true in I®[7B]. This concludes the proof. O

Proposition 2 The algorithm ACYCLICPLANNING(I1B) is sound and complete,
and its runtime is polynomial in the size of 11® and the length of the plan ©®
returned.

Proof: Note that all DTGs are strongly connected, and thus the required sequences
of actions 7, (d, d') exist for every pair of values d, d” € DTGy(v). The algorithm
starts with an empty sequence, and stops after n iterations. At each iteration the
current sequence ™ = (a; - ... - i) is extended with sequences 7;, 1 < j < k41,
resulting in a new sequence 7y - {ay) - ... - {ag) - Tx+1. We need to show that
the final sequence is a plan.

We show by induction that the sequence obtained at the end of each itera-
tion is a plan for II® projected on variables v;,. .., v,. For the first iteration,
with i = n we have the final sequence being empty if G[v,] is not defined, and
o, (I[vn), Gv,]) otherwise. Assume now that 7 = {(a; - ... - a) is a plan for T8
projected on variables v;;1,...,v,. Let m;, 1 < 5 < k + 1 be the sequences as
defined in iteration ¢ of the algorithm. Since the causal graph is acyclic, we know
that (a) all actions in 7; effect only the variable v;, and (b) none of the actions in

75

m; are preconditioned on any of the variables v; 1, ..., v,. Thus, focusing on the
projection I12 of TI® on variables v;, . . . , vy, the actions in 7;, 1 < j < k + 1 are
preconditioned only on the variable v;, and effect only that variable. In addition,
the sequence 7y - ... - w1 induces a path in DTGy, (v;) from I [v;] to G[v;].

Furthermore, if pre(a;)[v;] is defined, then the sequence 7y - ... - m; induces a
path in DTGy, (v;) from I [v;] to pre(a;)[v;].

Thus, 71 - (a1) - ... 7 - {ag) - Tx+1 is an applicable sequence of actions that
leads to the goal of TI%, hence is a plan for 15, 0

References

[1] M. Katz, J. Hoffmann, C. Domshlak, Who said we need to relax all vari-
ables?, in: D. Borrajo, S. Fratini, S. Kambhampati, A. Oddi (Eds.), Pro-

ceedings of the 23rd International Conference on Automated Planning and
Scheduling (ICAPS’13), AAAI Press, Rome, Italy, 2013, pp. 126-134.

[2] M. Katz, J. Hoffmann, C. Domshlak, Red-black relaxed plan heuristics,
in: M. desJardins, M. Littman (Eds.), Proceedings of the 27th AAAI Con-
ference on Artificial Intelligence (AAAI'13), AAAI Press, Bellevue, WA,
USA, 2013, pp. 489-495.

[3] M. Katz, J. Hoffmann, Red-black relaxed plan heuristics reloaded, in:

M. Helmert, G. Roger (Eds.), Proceedings of the 6th Annual Symposium
on Combinatorial Search (SOCS’13), AAAI Press, 2013, pp. 105-113.

[4] D. V. McDermott, Using regression-match graphs to control search in plan-
ning, Artificial Intelligence 109 (1999) 111-159.

[5] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence
129 (2001) 5-33.

[6] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253-302.

[7] T. Bylander, The computational complexity of propositional STRIPS plan-
ning, Artificial Intelligence 69 (1994) 165-204.

[8] J. Hoffmann, Where ‘ignoring delete lists” works: Local search topology in
planning benchmarks, Journal of Artificial Intelligence Research 24 (2005)
685-758.

76

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Helmert, R. Mattmiiller, Accuracy of admissible heuristic functions in
selected planning domains, in: D. Fox, C. Gomes (Eds.), Proceedings of the
23rd National Conference of the American Association for Artificial Intelli-
gence (AAAI-08), AAAI Press, Chicago, Illinois, USA, 2008, pp. 938-943.

A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search
and temporal action graphs, Journal of Artificial Intelligence Research 20
(2003) 239-290.

S. Richter, M. Westphal, The LAMA planner: Guiding cost-based any-
time planning with landmarks, Journal of Artificial Intelligence Research 39
(2010) 127-1717.

M. Helmert, A planning heuristic based on causal graph analysis, in:
S. Koenig, S. Zilberstein, J. Koehler (Eds.), Proceedings of the 14th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’04),
Morgan Kaufmann, Whistler, Canada, 2004, pp. 161-170.

A. Coles, M. Fox, D. Long, A. Smith, A hybrid relaxed planning graph’lp
heuristic for numeric planning domains, in: J. Rintanen, B. Nebel, J. C.
Beck, E. Hansen (Eds.), Proceedings of the 18th International Conference
on Automated Planning and Scheduling (ICAPS’08), AAAI Press, 2008,
pp- 52-59.

H. Nakhost, J. Hoffmann, M. Miiller, Resource-constrained planning: A
monte carlo random walk approach, in: B. Bonet, L. McCluskey, J. R. Silva,
B. Williams (Eds.), Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12), AAAI Press, 2012, pp.
181-189.

A.J. Coles, A. Coles, M. Fox, D. Long, A hybrid LP-RPG heuristic for mod-
elling numeric resource flows in planning, Journal of Artificial Intelligence
Research 46 (2013) 343-412.

M. B. Do, S. Kambhampati, Sapa: A domain-independent heuristic metric
temporal planner, in: A. Cesta, D. Borrajo (Eds.), Recent Advances in Al
Planning. 6th European Conference on Planning (ECP-01), Lecture Notes in
Artificial Intelligence, Springer-Verlag, Toledo, Spain, 2001, pp. 109—120.

M. van den Briel, J. Benton, S. Kambhampati, T. Vossen, An LP-based
heuristic for optimal planning, in: C. Bessiere (Ed.), Proceedings of the

7

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Thirteenth International Conference on Principles and Practice of Constraint
Programming (CP’07), volume 4741 of Lecture Notes in Computer Science,
Springer-Verlag, 2007, pp. 651-665.

J. A. Baier, A. Botea, Improving planning performance using low-conflict
relaxed plans, in: A. Gerevini, A. Howe, A. Cesta, 1. Refanidis (Eds.),
Proceedings of the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), AAAI Press, 2009, pp. 10-17.

M. Helmert, H. Geffner, Unifying the causal graph and additive heuristics,
in: J. Rintanen, B. Nebel, J. C. Beck, E. Hansen (Eds.), Proceedings of
the 18th International Conference on Automated Planning and Scheduling
(ICAPS’08), AAAI Press, 2008, pp. 140-147.

D. Cai, J. Hoffmann, M. Helmert, Enhancing the context-enhanced additive
heuristic with precedence constraints, in: A. Gerevini, A. Howe, A. Cesta,
I. Refanidis (Eds.), Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS’09), AAAI Press, 2009, pp. 50—
57.

M. Fox, D. Long, Hybrid STAN: Identifying and managing combinatorial
optimisation sub-problems in planning, in: B. Nebel (Ed.), Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IICAI-01),
Morgan Kaufmann, Seattle, Washington, USA, 2001, pp. 445-450.

M. Fox, D. Long, Stan4: A hybrid planning strategy based on subproblem
abstraction, The Al Magazine 22 (2001) 81-84.

E. Keyder, H. Geffner, Heuristics for planning with action costs revisited, in:
M. Ghallab (Ed.), Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI-08), Wiley, Patras, Greece, 2008, pp. 588—-592.

P. Haslum, Incremental lower bounds for additive cost planning problems,
in: B. Bonet, L. McCluskey, J. R. Silva, B. Williams (Eds.), Proceedings of
the 22nd International Conference on Automated Planning and Scheduling
(ICAPS’12), AAAI Press, 2012, pp. 74-82.

E. Keyder, J. Hoffmann, P. Haslum, Semi-relaxed plan heuristics, in:
B. Bonet, L. McCluskey, J. R. Silva, B. Williams (Eds.), Proceedings of
the 22nd International Conference on Automated Planning and Scheduling
(ICAPS’12), AAAI Press, 2012, pp. 128-136.

78

[26] E. Keyder, J. Hoffmann, P. Haslum, Improving delete relaxation heuristics
through explicitly represented conjunctions, Journal of Artificial Intelligence
Research 50 (2014) 487-533.

[27] C. Knoblock, Automatically generating abstractions for planning, Artificial
Intelligence 68 (1994) 243-302.

[28] R. Brafman, C. Domshlak, Structure and complexity in planning with unary
operators, Journal of Artificial Intelligence Research 18 (2003) 315-349.

[29] M. Helmert, The Fast Downward planning system, Journal of Artificial
Intelligence Research 26 (2006) 191-246.

[30] C. Domshlak, A. Nazarenko, The complexity of optimal monotonic plan-
ning: The bad, the good, and the causal graph, Journal of Artificial Intelli-
gence Research 48 (2013) 783-812.

[31] S. Kupferschmid, J. Hoffmann, H. Dierks, G. Behrmann, Adapting an Al
planning heuristic for directed model checking, in: A. Valmari (Ed.), Pro-
ceedings of the 13th International SPIN Workshop (SPIN 2006), volume
3925 of Lecture Notes in Computer Science, Springer-Verlag, 2006, pp. 35—
52.

[32] H. Chen, O. Giménez, Causal graphs and structurally restricted planning,
Journal of Computer and System Sciences 76 (2010) 579-592.

[33] J. Seipp, M. Helmert, Fluent merging for classical planning problems,
in: ICAPS 2011 Workshop on Knowledge Engineering for Planning and
Scheduling, 2011, pp. 47-53.

[34] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer-Verlag,
2006.

[35] J. Koehler, J. Hoffmann, On reasonable and forced goal orderings and their
use in an agenda-driven planning algorithm, Journal of Artificial Intelligence
Research 12 (2000) 338-386.

[36] J. Hoffmann, Analyzing search topology without running any search: On the
connection between causal graphs and ht, Journal of Artificial Intelligence
Research 41 (2011) 155-229.

79

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Gerevini, L. Schubert, Inferring state-constraints for domain indepen-
dent planning, in: J. Mostow, C. Rich (Eds.), Proceedings of the 15th
National Conference of the American Association for Artificial Intelligence
(AAAT’98), MIT Press, Madison, WI, USA, 1998, pp. 905-912.

M. Fox, D. Long, The automatic inference of state invariants in TIM, Journal
of Artificial Intelligence Research 9 (1998) 367-421.

J. Rintanen, An iterative algorithm for synthesizing invariants, in: H. A.
Kautz, B. Porter (Eds.), Proceedings of the 17th National Conference of the
American Association for Artificial Intelligence (AAAI-00), AAAI Press,
Austin, TX, USA, 2000, pp. 806-811.

M. Helmert, Concise finite-domain representations for PDDL planning
tasks, Artificial Intelligence 173 (2009) 503-535.

B. C. Williams, P. P. Nayak, A reactive planner for a model-based executive,
in: M. Pollack (Ed.), Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), Morgan Kaufmann, Nagoya, Japan,
1997, pp. 1178-1185.

C. Domshlak, Y. Dinitz, Multi-agent offline coordination: Structure and
complexity, in: A. Cesta, D. Borrajo (Eds.), Recent Advances in Al Plan-
ning. 6th European Conference on Planning (ECP-01), Lecture Notes in Ar-
tificial Intelligence, Springer-Verlag, Toledo, Spain, 2001, pp. 34-43.

J. Hoffmann, J. Porteous, L. Sebastia, Ordered landmarks in planning, Jour-
nal of Artificial Intelligence Research 22 (2004) 215-278.

E. Karpas, C. Domshlak, Cost-optimal planning with landmarks, in:
C. Boutilier (Ed.), Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), Morgan Kaufmann, Pasadena, Cali-
fornia, USA, 2009, pp. 1728-1733.

M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions:
What’s the difference anyway?, in: A. Gerevini, A. Howe, A. Cesta, 1. Re-
fanidis (Eds.), Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS’09), AAAI Press, 2009, pp. 162—
169.

80

[46]

[47]

[48]

[49]

[50]

[51]

S. Richter, M. Helmert, Preferred operators and deferred evaluation in sat-
isficing planning, in: A. Gerevini, A. Howe, A. Cesta, I. Refanidis (Eds.),
Proceedings of the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), AAAI Press, 2009, pp. 273-280.

J. Rintanen, Planning as satisfiability: Heuristics, Artificial Intelligence 193
(2012) 45-86.

I. Cenamor, T. de la Rosa, F. Ferndndez, IBACOP and IBACOP?2 planner,
in: IPC 2014 planner abstracts, 2014, pp. 35-38.

J. S. Penberthy, D. S. Weld, UCPOP: A sound, complete, partial order
planner for ADL, in: B. Nebel, W. Swartout, C. Rich (Eds.), Principles
of Knowledge Representation and Reasoning: Proceedings of the 3rd Inter-
national Conference (KR-92), Morgan Kaufmann, Cambridge, MA, 1992,
pp- 103-114.

X. Nguyen, S. Kambhampati, Reviving partial order planning, in: B. Nebel
(Ed.), Proceedings of the 17th International Joint Conference on Artifi-
cial Intelligence (IJCAI-01), Morgan Kaufmann, Seattle, Washington, USA,
2001, pp. 459-464.

H. Nakhost, M. Miiller, Action elimination and plan neighborhood graph
search: Two algorithms for plan improvement, in: R. I. Brafman, H. Geffner,
J. Hoffmann, H. A. Kautz (Eds.), Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling (ICAPS’10), AAAI Press,
2010, pp. 121-128.

81

