
Safe Reinforcement Learning
Through Regret and State Restorations in Evaluation Stages

Timo P. Gros1, 2, 3, Nicola J. Müller1, 3, Daniel Höller1, Verena Wolf1, 2

1Saarland University, Saarland Informatics Campus
2German Research Center for Artificial Intelligence (DFKI)

3Center for European Research in Trusted Artificial Intelligence (CERTAIN)
{timopgros, nmueller, hoeller, wolf}@cs.uni-saarland.de, {timo philipp.gros, verena.wolf}@dfki.de

Abstract

Deep reinforcement learning (DRL) has succeeded tremen-
dously in many complex decision-making tasks. However,
for many real-world applications standard DRL training re-
sults in agents with brittle performance because, in particular
for safety-critical problems, the discovery of both, safe and
successful strategies is very challenging. Various exploration
strategies have been proposed to address this problem. How-
ever, they do not take information about the current safety
performance into account; thus, they fail to systematically fo-
cus on the parts of the state space most relevant for training.
Here, we propose regret and state restoration in evaluation-
based deep reinforcement learning (RARE), a framework that
introduces two innovations: (i) it combines safety evaluation
stages with state restorations, i.e., restarting episodes in for-
merly visited states, and (ii) it exploits estimations of the
regret, i.e., the gap between the policies’ current and opti-
mal performance. We show that both innovations are benefi-
cial and that RARE outperforms baselines such as deep Q-
learning and Go-Explore in an empirical evaluation.

1 Introduction
Over the past decade, deep reinforcement learning (DRL)
has made remarkable advancements in various complex
decision-making tasks. Notably, it has demonstrated excep-
tional success in domains such as board games, including
chess and go (Silver et al. 2016, 2018, 2017). Addition-
ally, its practical applications have extended to domains such
as vehicle routing (Nazari et al. 2018), robotics (Gu et al.
2017), and autonomous driving (Sallab et al. 2017).

Despite these successes, DRL still suffers from significant
weaknesses, especially in safety-critical applications. Safety
objectives typically yield reward structures giving a positive
signal for goal states and (highly) negative signal for unsafe
states. However, DRL is known to perform poorly with such
sparse reward structures since goal states are typically hard
to reach (Amit, Meir, and Ciosek 2020; Hare 2019; Knox
and Stone 2012; Riedmiller et al. 2018; Schwartz 1993).

There are sophisticated exploration strategies to handle
sparse reward problems (Andrychowicz et al. 2017; Burda
et al. 2019; Ecoffet et al. 2021; Flet-Berliac et al. 2021).
While these strategies effectively explore the state space,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their training process is executed without consideration of
safety properties. The integration of safety considerations
into the algorithmic framework is referred to as safe rein-
forcement learning (Garcı́a and Fernández 2015).

In this work we introduce a safe deep reinforcement learn-
ing framework capable of both considering safety-properties
and handling sparse rewards. We intertwine two ideas: (i) we
systematically restore the agent’s starting state to promising
states and (ii) we regularly evaluate the performance of the
agent during training to inform the state restorations. Our
state restoration procedure (innovation (i)) draws inspiration
from Go-Explore (Ecoffet et al. 2021) and ensures a system-
atic exploration of the state space. During training, we store
states deemed relevant for learning in an archive and sam-
ple initial states for subsequent training episodes from this
state archive. In regular intervals during training, we evalu-
ate their performance using deep statistical model-checking
(DSMC) (Gros et al. 2020a), which is a scalable verification
technique (Gros et al. 2023b) for the underlying Markov de-
cision process and its current policy. This allows us to ac-
curately estimate the corresponding regret (innovation (ii)).
We propose two different techniques to focus the training on
archived states where the regret is high, i.e., where the pol-
icy is far from optimal: starting more training episodes in
such states or giving them a higher priority within the replay
buffer that we use for batch updates of the agent’s neural
network.

We consider an illustrative example in Figure 1. The left-
most illustration depicts a map of the Racetrack, one of our
benchmarks. The agent starts in one of the two purple cells
in the lower right corner and must navigate through the grid
up to the goal cells (marked in green).

The heatmaps show how often states from each grid cell
have been used to update the policy. The second illustration
from the left shows that standard DRL algorithms such as
Deep Q-learning (Mnih et al. 2015) (DQN), only start train-
ing from the initial states and fail to explore the state space
sufficiently. Hence, the trained agent reaches the goal line
only with a probability of 0.5. Algorithms with sophisticated
exploration strategies, such as Go-Explore (Ecoffet et al.
2021) (third from left), reach the goal because they use state
restorations, resulting in an increased goal-reaching proba-
bility of 0.65. However, they reconsider states for updates
in a less systematic way compared to RARE (right). RARE

Figure 1: Heatmaps visualizing how often states from each grid cell have been used to update the policy during training: map
with start and goal (left), state counts for DQN (second from left), Go-Explore (third from left), and RARE (right).

monitors the evaluated performance for a selected subset
of states and computes the corresponding regrets. It is thus
able to focus the learning on the most relevant parts. This
safety-focused exploration allows RARE to achieve a goal-
reaching probability of 0.74, which is significantly higher
than those of DQN and Go-Explore.

To summarize, we propose the RARE framework, which
is based on two innovations: (i) we combine deep statisti-
cal model-checking (DSMC) evaluation stages (Gros et al.
2021, 2023a) with state restorations, where we start new
training episodes in carefully selected states based on the
previously evaluated performance, and (ii) we exploit esti-
mations of the regret (Jiang et al. 2021), i.e., the gap between
the current and optimal performance, to focus the training
on high-regret states. We present our framework in Section 3
and provide an empirical evaluation comparing RARE to the
baselines deep Q-learning, deep Q-learning with prioritized
replay, and Go-Explore on two benchmarks in Section 4.

2 Background
Prior to presenting our contributions, this section covers the
necessary background.

2.1 Markov Decision Processes and Deep
Q-Learning

We consider discrete Markov decision processes (MDPs)
with finite sets of states S, actions A, and an initial dis-
tribution µ over the set of initial states I ⊆ S . For states
st, st+1 ∈ S, a transition from state st to st+1 when
choosing action at ∈ A corresponds to an experience
(st, at, rt+1, st+1), where rt+1 ∈ R is the obtained reward.
Our goal is to compute a deterministic policy π : S → A
that maximizes the sum of the discounted accumulated re-
wards, also called the return, Gt =

∑T
k=t+1 γ

k−t−1Rk,
where Rk is the random variable of the k-th reward, T is
the final time step, and γ ∈ (0, 1] denotes the discount fac-
tor, which balances the importance of immediate and future
rewards. For a fixed policy π and a given state st, we define
the Q-value of state st and action at
qπ(st, at) = Eπ [Gt|St = st, At = at]

= Eπ

[∑∞

k=0
γkRt+k+1

∣∣∣St = st, At = at

]
as the expected return Gt when taking action at in state st
and following the policy π afterward.

Value-based algorithms, such as DQN, approximate an
optimal policy π∗ by learning the Q-values. Deep Q-learning
uses a neural network (NN) to learn q∗(st, at) of the opti-
mal policy π∗. Let θi denote the NN’s parameters in the i-th
training iteration and letQθi(st, at) be the corresponding es-
timated Q-values. The network is updated according to the
loss function

L(θi) = E
[(
rt+1 + γ ·max

a′
Qθ′(st+1, a

′)−Qθi(st, at)
)2]

where the expectations are taken over experiences
(st, at, rt+1, st+1) uniformly sampled from an experi-
ence replay buffer B (Mnih et al. 2015). To prevent unstable
performance, it is common to optimize this network by
using a network from a former iteration, the so-called target
network with parameters θ′ (Mnih et al. 2015). The soft
update rule is θ = (1− τ) · θi + τ · θ′ with τ ∈ (0, 1) (Fujita
et al. 2021; Stooke and Abbeel 2019).

The experiences are generated from an ϵ-greedy policy
that chooses a random action with probability ϵ and an action
yielding the highest Q-value with probability 1− ϵ. Starting
from a high initial value, ϵ is exponentially reduced during
training until it meets a specified threshold.

A popular extension of the DQN algorithm, called
deep Q-learning with prioritized experience replay
(DQNPR) (Schaul et al. 2016), is based on the assumption
that experiences with low individual losses do not contribute
as much to the learning process as experiences with high
losses since they carry less relevant information. Hence, for
each experience (st, at, st+1, rt+1), DQNPR computes a
sampling priority δ proportional to its loss. During network
updates, each experience gets sampled with a probability
proportional to δ, such that experiences with high losses are
used more frequently to update the policy than experiences
with small losses.

2.2 DSMC Evaluation Stages
DSMC evaluation stages (Gros et al. 2021, 2023a) leverage
deep statistical model checking (Gros et al. 2023b, 2020a) to
analyze the performance of DRL agents. In deep statistical
model checking, a policy πθ represented by a neural network
with weights θ resolves the nondeterminism in the underly-
ing MDP and, thus, Monte-Carlo simulations of the result-
ing Markov chain can be used to obtain an estimation of the
expected value of any property of interest. Given ϵerr > 0

and some κ ∈ (0, 1), DSMC achieves an error bound of
P (error > ϵerr) < κ, where error is the difference be-
tween the true and the estimated value.

The evaluation stages (ES) are conducted at regular inter-
vals during training to evaluate any evaluation function E
using DSMC. Such an evaluation function can be any func-
tion of interest, making the incorporation of safety-critical
approaches into the learning progress possible. The corre-
sponding value for a state s is called the evaluation value
Eπθ

(s).

Gros et al. (2021; 2023a) proposed two different methods
for exploiting the information gained by DSMC evaluation
during training:

(1) Evaluation-based initial distribution (EID) evaluates the
MDP’s initial states I and shifts the initial distribution
µ to start with a higher probability in areas with a lower
evaluation value and vice versa.

(2) In many DRL algorithms, a replay buffer is used. Fol-
lowing the idea of DQNPR, this replay buffer can be
prioritized. However, instead of using the TD-error as
the sampling priority, evaluation-based prioritized re-
play (EPR) bases a sample’s priority δ on the evaluation
value of the initial state of the episode in which the sam-
ple was gathered.

Note that these approaches assume a large set of initial
states I, which sufficiently covers the state space.

2.3 Benchmarks

Racetrack is a commonly used reinforcement learning
benchmark (Baier et al. 2020; Gros et al. 2022, 2020b; Sut-
ton and Barto 1998). The task is to steer a car on a two-
dimensional map from the starting line to reach a goal line
without crashing into a wall or leaving the map. The agent
can change the velocity of the car by (limited) accelerating
and decelerating, making foresighted decisions necessary. In
addition, with some non-zero probability the selected accel-
eration will fail and, as a result, the velocity will remain un-
changed. The goal is to maximize the probability of reaching
a goal state, which is one of the states at the goal line. A re-
ward structure that assigns a reward of 1 to the goal states
and 0 for all other states requires discounting to avoid solu-
tions where the agent delays or even avoids goal-reaching.
Moreover, for large maps such sparse reward structures are
difficult to solve using standard DRL algorithms. Therefore,
it is common to use a reward that is positive when reaching
the goal, negative when crashing into a wall, and a zero else-
where. Here, we use a reward of 100 for goal states and −20
for walls. Figure 2 shows three different maps.

Figure 2: Racetrack maps used in this paper: River (left),
Maze (middle), and Hansen-bigger (right). The starting line
is purple, the goal line is green, and the walls are gray.

MiniGrid is a benchmark widely used in the DRL com-
munity (Campero et al. 2021; Chevalier-Boisvert et al. 2019;
Flet-Berliac et al. 2021; Jiang et al. 2021; Raileanu and
Rocktäschel 2020). A MiniGrid environment corresponds
to a discrete grid world where the agent needs to navigate
through the grid and possibly interact with objects to solve
the task. Figure 3 shows our custom DynObsDoor environ-
ment, where, starting at the top left corner, the agent needs to
walk past walls and avoid collisions with randomly moving
obstacles to reach the green goal cell. Furthermore, it must
open the yellow door in the middle of the grid. Here, the goal
is to maximize the probability of solving the task. To ensure
early reward signals during training, we use a discounted re-
ward of 1 when winning, −1 when losing, and zero else.

Figure 3: The DynObsDoor environment. The starting cells
are yellow, the goal cell is green, and the walls are gray. The
blue dots are randomly moving obstacles.

3 Regret and State Restoration
This sections presents our framework regret and state
restoration in evaluation-based deep reinforcement learn-
ing (RARE). We distinguish two variants: (i) regret and
state restoration in evaluation-based initial distribution
(RAREID), and (ii) regret and state restoration in
evaluation-based prioritized replay (RAREPR). As illus-
trated in Figure 4, both share the idea of conducting eval-
uation stages and exploiting this information for effective
training in two different ways.

3.1 Overview
Throughout DRL training, we alternate between learning
and evaluation stages at C-step intervals. During an eval-

(L1)

(L2)

(L3)

(L4)

(L5)

Probabilistically Select State from Archive:

s ∼ D(Aj ∪ I)
s ∼ U(Aj)

or
s ∼ µ(I)

Restore State:

Restore environment to s
Run goal-conditioned
policy

Generate Experiences:

Determine Relevant States and Expand Archive:

Value heuristic Novelty heuristic

Add s to Aj+1

Learn from Experiences:

(s, a, s′, r) ∼ U(B) (s, a, s′, r) ∼ δ(B)

(E1)

(E2)

(E3)

(E4)

Reduce Archive:

Reduce archive Aj+1 to fixed size

Conduct Evaluation:

Compute evaluation values Eπ(s)
∀s ∈ Aj+1 ∪ I

Approximate Regret:

R̂(s) = Ebest(s)− Eπθ
(s)

Update Priorities:

D(Aj+1) δ(B)
RAREID RAREPR

A
j+1

A j+
1
,D
/δ

tr
ai

ni
ng

lo
op

RAREID RAREPR

RAREID RAREPR

Figure 4: Graphical overview of RARE: the left part (L1-L5) shows the learning stage, the right (E1-E4) the evaluation stage.

uation stage, we evaluate all initial states I and archived
states Aj , where the latter were collected during the pre-
vious learning stage. In the subsequent learning stage, we
sample the episodes’ starting states from the previously eval-
uated set of states, i.e., to all states s ∈ I ∪ Aj . The key
difference between RAREID and RAREPR lies in the uti-
lization of the evaluation stages’ results during the learning
stages: RAREID biases the sampling of episodes’ starting
states D(Aj ∪ I) towards states with low evaluation values
while RAREPR biases the policy updates by increasing the
sampling priorities δ of the replay buffer B for episodes with
low evaluation values.

Initially, the archive is empty, i.e., A0 = {}, D(A0 ∪ I)
equals the MDP’s initial distribution µ(I) (RAREID), and
the buffer’s sampling priorities δ are constant. In the follow-
ing iterations, D is determined in the last step of the previous
evaluation stage, as explained below.

3.2 Learning Stage
During training we carry out the following steps:

(L1) Probabilistically Select State from Archive: In the
case of RAREID, we sample a state s according to D(Aj ∪
I), as defined in step (E4). It assigns probabilities to states
s ∈ Aj∪I according to the outcome of the evaluation stage.
For RAREPR we also restart episodes at archived states, but
we simply start episodes by first choosing between the orig-
inal initial states (I) and archived states (Aj) with equal
probability of 0.5 and subsequently select an initial state ac-
cording to µ in case of I and uniformly in case of Aj .

(L2) Restore State: We restore the just sampled state s
by either using the environment’s restore option or running

a goal-conditioned policy from an initial state until s is
reached (Ecoffet et al. 2021).

(L3) Generate Experiences: We generate new experi-
ences by applying the respective DRL algorithm starting
from s.

(L4) Determine Relevant States and Expand Archive:
For all states visited during the last episode, we check
whether they are relevant, i.e., whether they contain infor-
mation valuable for learning, and add those states to the
new archive Aj+1.1 We apply two domain independent
heuristics to determine the relevance of a state:

(i) Value Heuristic: We check for all states visited during
the episode the smoothness of the corresponding state
values, i.e., when transitioning from a state st to its
successor st+1, we expect

|Vπθ
(st)− (Vπθ

(st+1) + rt)| (1)

to be small, where πθ is the current policy and the state
values are estimated by the NN. A significant differ-
ence indicates a high relevance because the network
needs further updates related to the value of this state
as the network has a poor estimation of the current
state’s value.

(ii) Novelty Heuristic: We leverage recent work of random
network distillation (RND) (Burda et al. 2019). At the

1Note that the learning stage uses the states from the current
archive Aj for restarting episodes. However, archive Aj+1 con-
tains the states currently stored for the next evaluation stage.

beginning of training, we randomly initialize a neural
network that returns a real-valued output for each state
input. We use our agent’s training observations to fit
a second neural network to predict the output of the
first one. As a result, for sufficiently explored states,
the disparity between these networks is minimal. How-
ever, the difference is significant for infrequently or
never encountered states. Consequently, this provides
a reliable estimate of the relevance of a given state.

(L5) Learn from Experiences: We update the agent’s net-
work using observations in the replay buffer B. In the case of
RAREID, we sample uniformly from B, and for RAREPR,
we sample based on the priorities δ determined by the most
recent evaluation stage and defined in step (E4).

3.3 Evaluation Stage
After the learning stage, we add all states from the old
archive Aj to the new one Aj+1, which is thus consisting
of all relevant states. For further processing, this resulting
expanded archive Aj+1 is then provided to the evaluation
stage, which consists of four steps:

(E1) Reduce Archive: The number of interesting states
may vary throughout the learning stages. Thus, we reduce
the archive to a fixed size before performing the evaluation.
We employ two different strategies to reduce the archive
size, but keeping the states most relevant for learning.

(i) Cluster Strategy: This strategy uses the numerical state
representation of the states to separate them into differ-
ent clusters. As we want the archive to contain as much
different states as possible, we only keep the most rel-
evant state from each cluster w.r.t. to its heuristic value
(see L4).

(ii) Maximal Distance Strategy: This strategy aims at re-
ducing the archive to the states that cover the largest
part of the state space possible. First, this strategy se-
lects the most interesting state s∗ ∈ Aj+1 to be kept,
meaning we initialize the reduced archive as A ′

j+1 =
{s∗}. Next, the strategy enforces that every further
state s that is added to the reduced archive must ful-
fill

s = argmax
s∈Aj+1

min
s′∈A ′

j+1

∥s, s′∥2 , (2)

i.e., s has the largest minimum Euclidean distance on
the numerical state representation to all of the already
selected states s′ ∈ A ′

j+1. At the end of the strategy,
we set Aj+1 = A ′

j+1.

(E2) Conduct Evaluation: We evaluate each state con-
tained in the archive or the set of initial states, i.e., s ∈
Aj+1 ∪ I, w.r.t. the evaluation function using DSMC.

(E3) Approximate Regret: For each state s ∈ S, the re-
gret is defined as the difference between the state values
of the optimal and the current policy (Azar, Osband, and
Munos 2017; Parker-Holder et al. 2022), i.e.,

Regret(s) = v∗(s)− vπθ
(s), (3)

where vπθ
is the current policy with network weights θ.

As we are able to evaluate an arbitrary evaluation func-
tion and not just the value function, we here introduce the
evaluation regret

R(s) = E∗(s)− Eπθ
(s), (4)

where E∗(s) is the evaluation value of the optimal policy
given that we start in state s. Similarly, Eπθ

(s) is the eval-
uation value of the current policy πθ with s as the initial
state. Naturally, the true value of E∗ is unknown. Thus, we
follow the idea of Jiang et al. (2021)’s MaxMC method and
approximate the evaluation regret of states s ∈ Aj+1 ∪ I as

R̂(s) = Ebest(s)− Eπθ
(s), (5)

where Ebest denotes the best evaluation value encountered
for all states in close Euclidean proximity to the given states’
description in previous evaluation stages. If no such state
has formerly been evaluated, Ebest is set to 1, ensuring the
agent’s emphasis on this state during the next learning stage.
Note that we linearly interpolate the evaluation values to
[0, 1] (Gros et al. 2021). Further, we also linearly interpo-
late R̂ to the same interval.

(E4) Update Priorities: We calculate a distribution for
sampling episodes’ starting states D(Aj+1 ∪ I) (RAREID)
or the priorities to be used for the replay buffer δ (RAREPR)
based on the estimated evaluation regret, respectively. While
we want the agent to focus on states with a high regret, the
initial states I, as the task’s original objective, are of special
interest. We define

ψ = clip

(
1

|I|
∑
s∈I

Eπθ
(s), 1− ψmax , ψmin

)
(6)

as the clipped average evaluation value of the initial states
I, where ψmax and ψmin are hyperparameters.

Considering RAREID, we set the distribution D(Aj+1 ∪
I) such that the probability p(s) to start in a certain state
s ∈ Aj+1 ∪ I is given by

p(s) =

(1− ψ) · R̂(s)+ϵp∑

s′∈A∪I(1−R̂(s′)+ϵp)
s ∈ I

ψ · R̂(s)+ϵp∑
s′∈A∪I(1−R̂(s′)+ϵp)

else
, (7)

where ϵp is a hyperparameter to ensure all samples have
a non-zero probability. Moreover, p(s) increases for states
with a high evaluation regret and vice versa. The additional
weighting with ψ ensures that the initial states are consid-
ered often enough to prevent catastrophic forgetting (Kirk-
patrick et al. 2016), depending on their current evaluation.

Considering RAREPR, the replay priority of each state is

δ(st) =

{
(1− ψ) · (R̂(s0) + ϵp)

α if s0 ∈ I
ψ · (R̂(s0) + ϵp)

α else
, (8)

where ϵp is the minimal priority, and s0 is the ini-
tial state of the corresponding episode of experience
(st, at, rt+1, st+1). The priority is higher if the evaluation
regret is higher and vice versa. Again, the weighting with ψ
considers the initial states particularly.

Figure 5: Average return (left) and goal-reaching probability (right) achieved by DQN, DQNPR, Go-Explore, RAREID, and
RAREPR on Racetrack. ’Training failed’ refers to the case that the agent was not able to find the goal during training.

3.4 Regret and State Restoration in
Evaluation-based Deep Q-learning

We use Mnih et al. (2015)’s deep Q-learning as a base al-
gorithm to implement RARE.Note that RARE can easily be
adapted to any kind of (deep) reinforcement learning; partic-
ularly RAREID to any such algorithm and RAREPR to any
algorithm using a replay buffer.

4 Empirical Evaluation
Next we provide a empirical evaluation of RARE, compar-
ing it with three baselines: DQN and DQNPR, since our ap-
proach is based on them, and Go-Explore, which also uses
the idea of state restoration.

We conduct experiments on Racetrack and MiniGrid as
introduced in Section 2.3, using two different evaluation
functions: (i) the average cumulative reward, and (ii) the
goal-reaching probability as a typical safety objective.

The following results were all obtained by using DSMC
with κ = 0.05 and ϵerr = 0.01 (goal-reaching probabili-
ties), ϵ = 1 (return for Racetrack), and ϵerr = 0.01 (return
for MiniGrid). We perform multiple trainings and report the
average result over all agents that were able to solve the task,
i.e., to reach the goal at all2. All agents were trained by using
an Intel Xeon E5-2698 v4 processor with 100 GB RAM.

4.1 Racetrack
Figure 5 provides results for three different maps of the
Racetrack. We report the performance from the initial states,
i.e., the benchmark’s original task.

In Figure 5 (left) the return was used as evaluation func-
tion and we provide the average obtained return. While on
the River-deadend map, RARE performs roughly equal to
the baselines (with an outlier by Go-Explore), both RAREID
and RAREPR outperform the baselines on the more sophis-
ticated maps Maze and Hansen-bigger. In Figure 5 (right) we
give the goal-reaching probability, which was also used as
the evaluation function. Again RAREID and RAREPR out-
perform the baselines on the maps Maze and Hansen-bigger.

2Otherwise we report the training as failed.

4.2 MiniGrid
Figure 6 shows the agents’ performance for the MiniGrid
benchmark. We compare the returns (Figure 6 (left)) and
goal-reaching probabilities (Figure 6 (right)). Accordingly,
these were also the evaluation functions used for RARE.

In contrast to Racetrack, here, the primary advantage of
RARE over DQN and DQNPR is that RARE is capable of
solving the benchmark, while both DQN and DQNPR fail to
find the goal. Go-Explore is able to find the goal, but still,
both RARE algorithms clearly show superior performance.

4.3 Ablation Study
This section is dedicated to examining the impact of the
two parts of the RARE algorithm, namely (i) using state
restorations, and (ii) using the regret estimation. To do so,
we specifically designed the Maze-extended map, shown in
Figure 7 (left), where, due to the environment’s uncertainty,
the narrow connections between the bottom cells and the
rest of the map lead to a reduced maximum achievable goal-
reaching probability from these bottom cells. Note that this
map is intended to show the influence of the two novelties
included, while the maps used in the paper are more general
and have been used previously in the literature.

We remove the regret estimation from RARE by replac-
ing R̂(s) with (1 − E(s)) in Equations (7) and (8), i.e.,
we compute the priorities and distribution only based on
the evaluation values instead of computing them based on
the regret. For the sake of clarity, we write REID (state
restoration in evaluation-based initial distribution) or REPR
(state restoration in evaluation-based experience replay), re-
spectively, when we refer to the algorithms without the re-
gret estimation.

We compare Go-Explore, REID, REPR, RAREID, and,
RAREPR agents that were trained on the Maze-extended
map and evaluated using DSMC with κ = 0.05 and ϵ = 0.01
for the goal-reaching probability, or ϵ = 1 for the return, re-
spectively. For each evaluation-based algorithm, we trained
agents using the return and the goal-reaching probability
as the evaluation function. We trained for multiple random
seeds and report the averaged results.

Figure 6: Average return (left) and goal-reaching probability (right) achieved by DQN, DQNPR, Go-Explore, RAREID, and
RAREPR on MiniGrid. Training failed means that the agent was not able to find the goal during training.

State Restorations with Evaluation Stages Consider
Figure 7, which depicts how often each grid cell was consid-
ered during training. In the first heatmap (from left), we see
that Go-Explore explores the map almost uniformly, with the
exception of the tight alley at the bottom of the map, where
it does not find a solution at all.

In contrast, the next heatmap shows that REPR focuses
more on important regions of the state space. Further, it re-
peatedly considers the alley at the bottom, which is the re-
gion of the state space that is most difficult to solve.

Regret Approximation From Figure 7 now additionally
take into account the right heatmap, depicting RAREPR’s
consideration of grid cells. While REPR, in contrast to Go-
Explore, was able to solve the more difficult bottom part,
these grid cells were considered too often during training, as
there the maximal goal-reaching probability and, thus, also
the evaluation value, is lower than it is for the rest of the map.
By additionally using the regret approximation, RAREPR
considers these states often enough, but does not overtrain
where performance cannot be improved further.

To strengthen that finding, we additionally compare the
performance with and without using the regret approxima-
tion. Figure 8 shows that RAREID achieves a significantly
increased performance for both average return and goal-
reaching probability compared to REID.

5 Related Work
DSMC evaluation stages have already been proposed
by Gros et al. (2021). However, that work was based on
the assumption of having a broad set of initial states which
sufficiently cover the state space. In contrast, RARE oper-
ates independently of the number or the distribution of ini-
tial states by evaluating promising visited states (including
states s /∈ I) and restoring subsequent training episodes’
starting states to them. Moreover, instead of only consider-
ing their performance, we here propose to consider the esti-

mated regret as an indicator for relevance.
Our work directly relates to Go-Explore, as our approach

of state restorations combined with evaluation stages was
inspired by the work of Ecoffet et al. (2021). Similarly to
RARE, Go-Explore stores all visited states in its archive, yet
instead of subsequently drawing states where safety perfor-
mance is poor, as RARE does, Go-Explore draws the least
frequently seen states. Thus, Go-Explore seeks to explore
as much of the state space as possible, whereas our RARE
method focuses the training on parts of the state space most
relevant to safety objectives. Also, Go-Explore does not take
the regret into account.

The RARE approach constitutes a framework within
safe reinforcement learning. According to Garcı́a and
Fernández’s taxonomy of safe reinforcement learn-
ing (2015), it falls into the category risk-directed ex-
ploration. In contrast to other safe RL approaches that
influence the exploration, RARE operates without any
external knowledge and is further able to influence the
exploration process according to any safety property. More
on, former risk-directed exploration algorithms ensured
safety by already avoiding unsafe parts of the state space
during the training, i.e., they use risk-averted exploration.
However, this is contingent upon the presence of an entity
capable of identifying unsafe states. If this entity is derived
from a learning process (Bharadhwaj et al. 2021; Anderson,
Chaudhuri, and Dillig 2022), it could potentially lead to
the erroneous avoidance of certain parts of the state space
that are incorrectly classified as unsafe. In contrast, our
algorithm especially trains where the safety properties are
(currently) harmed without any prior knowledge needed.
Thus, the framework learns how to behave in these parts of
the state space by explicitly confronting the unsafe states,
which can best be described as risk-confronting exploration.
To the best of our knowledge, we are the first ones to pursue
this approach of risk-directed exploration.

Recent work of Hasanbeig, Abate, and Kroening (2018)

Figure 7: Left to right: Racetrack’s Maze-extended map, followed by heatmaps visualizing how often states from each grid cell
have been used for policy updates during training using Go-Explore (second), REPR (third), and RAREPR (fourth).

Figure 8: Average return (left) and goal-reaching probabil-
ity (right) achieved by REID, and RAREID on the Maze-
extended map.

on safe reinforcement learning introduces a technique to in-
clude a property expressed as an LTL formula and synthe-
sizes policies to optimize the probability of fulfilling that
LTL property. However, this method, while allowing for the
specification of complex tasks, does not address the prob-
lems tied to safety-critical reward structures, such as very
sparse rewards not suited for learning without additional ex-
ploration.

Similarly, Hasanbeig, Kroening, and Abate (2020) use
LTL properties to derive meaningful reward functions for
unknown environments. Applying their method to the prop-
erty used in this paper (optimizing goal-reaching probability
without getting stuck in an unsafe state) yields the exact re-
ward function we employ: positive when reaching the goal,
negative when harming safety, and zero otherwise. Conse-
quently, this otherwise effective approach proves unhelpful
in our case.

Further, state restorations are related to the well-
established idea of importance splitting, where a restart is
conducted from rare but relevant paths (Morio, Pastel, and
Le Gland 2010; Jégourel, Legay, and Sedwards 2013). A
comparison of both methods cannot be made straightfor-
wardly, as importance splitting is based on the assumption
of knowing the state space, while RARE is not.

6 Conclusion and Future Work
In this paper we introduced the RARE framework and pro-
posed two variants of it, namely RAREID and RAREPR.

RARE uses a combination of two ideas intended to im-
prove policy quality when using deep reinforcement learn-
ing in safety-critical applications. First, state restorations
combined with DSMC evaluation stages, and second, uti-
lizing the regret estimation. Our empirical evaluation shows
that RARE outperforms the standard baseline of deep Q-
learning and the related approach of Go-Explore.

In the future, we plan to incorporate a latent space rep-
resentation into our framework. This will enable automatic
clustering of the observed states. We think this is promising
because it might help with (i) getting a better selection of
interesting states in the archives, and (ii) enabling an even
better estimation of the maximal evaluation value and, thus,
also improving our regret approximation.

In view of Anderson’s recent work (Anderson, Chaudhuri,
and Dillig 2022), we aim to investigate whether combining
RARE with model-based deep reinforcement learning might
allow learning a shield (Alshiekh et al. 2018; Avni et al.
2019; Jansen et al. 2020) to further improve the policies’
safety performance at test time. Concretely, RARE could
be used to gather experiences for learning an environment
model that accurately captures the state space regions most
relevant to safety. At test time, the model would then be used
to compute safe actions whenever the policy returns an ac-
tion likely leading to an unsafe state.

Also, even though this framework was specially designed
to operate on sparse reward tasks, a comparison on dense
reward benchmarks is of interest, as we expect our technique
also to be beneficial in such settings.

Acknowledgments

This work was partially funded by the European Union’s
Horizon Europe Research and Innovation program under the
grant agreement TUPLES No 101070149, by the German
Research Foundation (DFG) under grant No. 389792660, as
part of TRR 248, see https://perspicuous-computing.science,
by the German Research Foundation (DFG) - GRK 2853/1
“Neuroexplicit Models of Language, Vision, and Action” -
project number 471607914, and by the European Regional
Development Fund (ERDF) and the Saarland within the
scope of (To)CERTAIN.

References
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement Learn-
ing via Shielding. In Proc. of the 32nd AAAI Conf. on Arti-
ficial Intelligence (AAAI), 2669–2678. AAAI Press.
Amit, R.; Meir, R.; and Ciosek, K. 2020. Discount Fac-
tor as a Regularizer in Reinforcement Learning. In Proc. of
the 37th Int. Conf. on Machine Learning (ICML), 269–278.
PMLR.
Anderson, G.; Chaudhuri, S.; and Dillig, I. 2022. Guid-
ing Safe Exploration with Weakest Preconditions. CoRR,
abs/2209.14148.
Andrychowicz, M.; Crow, D.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; and
Zaremba, W. 2017. Hindsight Experience Replay. In Ad-
vances in Neural Information Processing Systems, 5048–
5058.
Avni, G.; Bloem, R.; Chatterjee, K.; Henzinger, T. A.;
Könighofer, B.; and Pranger, S. 2019. Run-Time Optimiza-
tion for Learned Controllers Through Quantitative Games.
In Proc. of the 31st Int. Conf. on Computer Aided Verifica-
tion (CAV), 630–649. Springer.
Azar, M. G.; Osband, I.; and Munos, R. 2017. Minimax
Regret Bounds for Reinforcement Learning. In Proc. of
the 34th Int. Conf. on Machine Learning (ICML), 263–272.
PMLR.
Baier, C.; Christakis, M.; Gros, T. P.; Groß, D.; Gumhold,
S.; Hermanns, H.; Hoffmann, J.; and Klauck, M. 2020. Lab
Conditions for Research on Explainable Automated Deci-
sions. In Proc. of the 1st International Workshop on Trust-
worthy AI – Integrating Learning, Optimization and Reason-
ing (TAILOR), 83–90. Springer.
Bharadhwaj, H.; Kumar, A.; Rhinehart, N.; Levine, S.;
Shkurti, F.; and Garg, A. 2021. Conservative Safety Critics
for Exploration. In Proc. of the 9th Int. Conf. on Learning
Representations (ICLR). OpenReview.
Burda, Y.; Edwards, H.; Storkey, A. J.; and Klimov, O. 2019.
Exploration by random network distillation. In Proc. of the
7th Int. Conf. on Learning Representations (ICLR). Open-
Review.
Campero, A.; Raileanu, R.; Küttler, H.; Tenenbaum, J. B.;
Rocktäschel, T.; and Grefenstette, E. 2021. Learning with
AMIGo: Adversarially Motivated Intrinsic Goals. In Proc.
of the 9th Int. Conf. on Learning Repr. (ICLR). OpenReview.
Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems,
L.; Saharia, C.; Nguyen, T. H.; and Bengio, Y. 2019.
BabyAI: A Platform to Study the Sample Efficiency of
Grounded Language Learning. In Proc. of the 7th Int. Conf.
on Learning Representations (ICLR). OpenReview.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2021. First return, then explore. Nature,
590(7847): 580–586.
Flet-Berliac, Y.; Ferret, J.; Pietquin, O.; Preux, P.; and Geist,
M. 2021. Adversarially Guided Actor-Critic. In Proc. of the
9th Int. Conf. on Learning Representations (ICLR). Open-
Review.

Fujita, Y.; Nagarajan, P.; Kataoka, T.; and Ishikawa, T. 2021.
ChainerRL: A Deep Reinforcement Learning Library. Jour-
nal of Machine Learning Research, 22: 77:1–77:14.
Garcı́a, J.; and Fernández, F. 2015. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learn-
ing Research, 16: 1437–1480.
Gros, T. P.; Groß, J.; Höller, D.; Hoffmann, J.; Klauck, M.;
Meerkamp, H.; Müller, N. J.; Schaller, L.; and Wolf, V.
2023a. DSMC Evaluation Stages: Fostering Robust and Safe
Behavior in Deep Reinforcement Learning - Extended Ver-
sion. ACM Transactions on Modeling and Computer Simu-
lation, 33(4): 17:1–17:28.
Gros, T. P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; Köhl,
M. A.; and Wolf, V. 2022. MoGym: Using Formal Mod-
els for Training and Verifying Decision-making Agents. In
Proc. of the 34th Int. Conf. on Computer Aided Verification
(CAV), 430–443. Springer.
Gros, T. P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; and
Steinmetz, M. 2020a. Deep Statistical Model Checking.
In Proc. of the 40th Int. Conf. on Formal Techniques for
Distr. Objects, Components, and Systems (FORTE), 96–114.
Springer.
Gros, T. P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; and
Steinmetz, M. 2023b. Analyzing neural network behavior
through deep statistical model checking. International Jour-
nal on Software Tools for Technology Transfer, 25(3): 407–
426.
Gros, T. P.; Höller, D.; Hoffmann, J.; Klauck, M.;
Meerkamp, H.; and Wolf, V. 2021. DSMC Evaluation
Stages: Fostering Robust and Safe Behavior in Deep Rein-
forcement Learning. In Proc. of the 18th Int. Conf. on Quan-
titative Evaluation of Systems (QEST), 197–216. Springer.
Gros, T. P.; Höller, D.; Hoffmann, J.; and Wolf, V. 2020b.
Tracking the Race Between Deep Reinforcement Learn-
ing and Imitation Learning. In Proc. of the 17th Int.
Conf. on Quantitative Evaluation of Systems (QEST), 11–
17. Springer.
Gu, S.; Holly, E.; Lillicrap, T. P.; and Levine, S. 2017.
Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 3389–3396.
IEEE Press.
Hare, J. 2019. Dealing with Sparse Rewards in Reinforce-
ment Learning. CoRR, abs/1910.09281.
Hasanbeig, M.; Abate, A.; and Kroening, D. 2018.
Logically-constrained reinforcement learning. arXiv
preprint arXiv:1801.08099.
Hasanbeig, M.; Kroening, D.; and Abate, A. 2020. Deep
Reinforcement Learning with Temporal Logics. In Proc. of
the 18th Int. Conf. Formal Modeling and Analysis of Timed
Systems (FORMATS), 1–22. Springer.
Jansen, N.; Könighofer, B.; Junges, S.; Serban, A.; and
Bloem, R. 2020. Safe Reinforcement Learning Using Prob-
abilistic Shields. In Proc. of the 31st Int. Conf. on Con-
currency Theory (CONCUR), 3:1–3:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

Jégourel, C.; Legay, A.; and Sedwards, S. 2013. Importance
Splitting for Statistical Model Checking Rare Properties. In
Proc. of the 25th Int. Conf. Computer Aided Verification
(CAV), 576–591. Springer.
Jiang, M.; Dennis, M.; Parker-Holder, J.; Foerster, J. N.;
Grefenstette, E.; and Rocktäschel, T. 2021. Replay-Guided
Adversarial Environment Design. In Proc. of the Annual
Conf. on Neural Information Processing Systems (NeurIPS),
1884–1897.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N. C.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho,
T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Ku-
maran, D.; and Hadsell, R. 2016. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796.
Knox, W. B.; and Stone, P. 2012. Reinforcement learn-
ing from human reward: Discounting in episodic tasks. In
Proc. of the 21st IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), 878–
885. IEEE Press.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level Control through
Deep Reinforcement Learning. Nature, 518: 529–533.
Morio, J.; Pastel, R.; and Le Gland, F. 2010. An overview
of importance splitting for rare event simulation. European
Journal of Physics, 31(5): 1295.
Nazari, M.; Oroojlooy, A.; Snyder, L. V.; and Takác, M.
2018. Reinforcement Learning for Solving the Vehicle
Routing Problem. In Proc. of the Annual Conf. on Neural
Information Processing Systems (NeurIPS), 9861–9871.
Parker-Holder, J.; Jiang, M.; Dennis, M.; Samvelyan, M.;
Foerster, J. N.; Grefenstette, E.; and Rocktäschel, T. 2022.
Evolving Curricula with Regret-Based Environment Design.
In Proc. of the Int. Conf. on Machine Learning (ICML),
17473–17498. PMLR.
Raileanu, R.; and Rocktäschel, T. 2020. RIDE: Rewarding
Impact-Driven Exploration for Procedurally-Generated En-
vironments. In Proc. of the 8th Int. Conf. on Learning Rep-
resentations (ICLR). OpenReview.
Riedmiller, M. A.; Hafner, R.; Lampe, T.; Neunert, M.; De-
grave, J.; de Wiele, T. V.; Mnih, V.; Heess, N.; and Sprin-
genberg, J. T. 2018. Learning by Playing Solving Sparse
Reward Tasks from Scratch. In Proc. of the 35th Int. Conf.
on Machine Learning (ICML), 4341–4350. PMLR.
Sallab, A. E.; Abdou, M.; Perot, E.; and Yogamani, S. 2017.
Deep Reinforcement Learning Framework for Autonomous
Driving. Electronic Imaging, 2017(19): 70–76.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2016.
Prioritized Experience Replay. In Proc. of the 4th Int. Conf.
on Learning Representations (ICLR).
Schwartz, A. 1993. A Reinforcement Learning Method for
Maximizing Undiscounted Rewards. In Proc. of the 10th
Int. Conf. on Machine Learning (ICML), 298–305. Morgan
Kaufmann.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
Nature, 529(7587): 484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018.
A General Reinforcement Learning Algorithm That Mas-
ters Chess, Shogi, and Go Through Self-play. Science,
362(6419): 1140–1144.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the Game of Go Without Human
Knowledge. Nature, 550(7676): 354–359.
Stooke, A.; and Abbeel, P. 2019. rlpyt: A Research Code
Base for Deep Reinforcement Learning in PyTorch. CoRR,
abs/1909.01500.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press.

