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Abstract
In classical planning as search, duplicate state pruning is a
standard method to avoid unnecessarily handling the same
state multiple times. In decoupled search, similar to symbolic
search approaches, search nodes, called decoupled states,
do not correspond to individual states, but to sets of states.
Therefore, duplicate state pruning is less effective in decou-
pled search, and dominance pruning is employed, taking into
account the state sets. We observe that the time required for
dominance checking dominates the overall runtime, and pro-
pose two ways to tackle this issue. Our main contribution is
a stronger variant of dominance checking for optimal plan-
ning, where efficiency and pruning power are most crucial.
The new variant greatly improves the latter, without incur-
ring a computational overhead. Moreover, we develop three
methods that make the dominance check more efficient: exact
duplicate checking, which, albeit resulting in weaker pruning,
can pay off due to the use of hashing; avoiding the dominance
check in non-optimal planning if leaf state spaces are invert-
ible; and exploiting the transitivity of the dominance relation
to only check against the relevant subset of visited decoupled
states. We show empirically that all our improvements are in-
deed beneficial in many standard benchmarks.

Introduction
In classical planning, the most popular approach to solve
planning tasks is heuristic search in the explicit state
space (Bonet and Geffner 1999). Heuristic search, however,
suffers from the state explosion problem that arises from
the fact that the size of the state space of a task is expo-
nential in the size of its description. Many methods have
been introduced to tackle this explosion, such as partial-
order reduction (Valmari 1989; Godefroid and Wolper 1991;
Edelkamp, Leue, and Lluch-Lafuente 2004; Alkhazraji et al.
2012; Wehrle et al. 2013; Wehrle and Helmert 2014), sym-
metry breaking (Starke 1991; Pochter, Zohar, and Rosen-
schein 2011; Domshlak, Katz, and Shleyfman 2012), dom-
inance pruning (Hall et al. 2013; Torralba and Hoffmann
2015; Torralba 2017), or symbolic representations (Bryant
1986; Edelkamp and Helmert 1999; Torralba et al. 2017). In
this work, we look into a recent addition to this set of tech-
niques, namely star-topology decoupled state space search,
or decoupled search for short (Gnad and Hoffmann 2018).
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Decoupled search is a form of factored planning (Amir
and Engelhardt 2003; Brafman and Domshlak 2006, 2008;
Fabre et al. 2010) that partitions the variables of a planning
task into components such that the causal dependencies be-
tween the components form a star topology. The center C of
this topology can interact arbitrarily with the other compo-
nents, the leaves L = {L1, . . . , Ln}, while any interaction
between leaves has to involve the center, too. A decoupled
state sF corresponds to a single center state, an assignment
to C, and a non-empty set of leaf states (assignments to an
Li) for each Li. The member states of sF , i. e., the set of
explicit states it represents, result from all combinations of
leaf states across leaf factors, sharing the same center state.
Thereby, a decoupled state represents exponentially many
explicit states, leading to a reduction in search effort. Prior
work has shown that the reduction achieved by decoupled
search can be exponentially larger than it is for other state-
space-reduction methods like partial-order reduction (Gnad,
Hoffmann, and Wehrle 2019), symmetry breaking (Gnad
et al. 2017), symbolic representations (Gnad and Hoffmann
2018), and Petri-net unfolding (Gnad and Hoffmann 2019).

Since a decoupled state corresponds to a set of states,
namely its member states, the standard concept of duplicate
elimination, ignoring a state that has already been visited
(on a cheaper path) to avoid repeated work, cannot be ap-
plied so easily. More importantly, it is not as effective as
in explicit state search, because two decoupled states are
only equal if the entire sets of member states they repre-
sent are equal. Therefore, prior work only considered dom-
inance pruning (Torralba et al. 2016; Gnad and Hoffmann
2018), where a decoupled state sF1 with member states S1 is
dominated by a decoupled state sF2 that represents the set of
states S2 if S1 ⊆ S2. In optimal planning the pricing func-
tion has to be checked, too. Only if each member state of sF2
is reached in sF1 with at most the price it has in sF2 , we can
safely prune sF1 , like duplicate states in explicit state search.

Initiating this work was the observation that in optimal
planning on average around 60% of the overall runtime of
decoupled search is spent on dominance checking (on in-
stances from our evaluation solved in≥ 0.1s). Thus, we take
a closer look at (1) algorithmic improvements that lead to an
increased pruning power for optimal planning, and (2) ways
to make the dominance check more efficient in general. Re-
garding (1), we introduce two new extensions to the domi-



nance check. First, we take into account not only the pric-
ing function, but incorporate the g-value of A∗ in the check.
Second, we propose a decoupled-state transformation that
moves cost from the pricing function into the g-value. Both
make the dominance check more informed without introduc-
ing a computational overhead. For (2), we experiment with
an implementation of exact duplicate checking, which, albeit
resulting in weaker pruning, can be beneficial runtime-wise
due to the use of hashing; we identify cases for non-optimal
planning where leaves can be skipped in the check, namely
if their leaf state space is invertible; and, exploiting the tran-
sitivity of the dominance relation, we only check against the
non-dominated subset of visited decoupled states.

In our experimental evaluation, we see that the improve-
ments as of (2) indeed have a positive impact on the runtime.
The stronger pruning variants from (1) lead to a substantial
reduction in search effort and runtime.

Background
We consider a classical planning framework with finite-
domain state variables (Bäckström and Nebel 1995; Helmert
2006). In this framework a planning task is a tuple Π =
〈V,A, I, G〉, where V is a finite set of variables, each
variable v ∈ V is associated with a finite domain D(v).
A is a finite set of actions, each a ∈ A being a triple
〈pre(a), eff(a), cost(a)〉 of precondition, effect, and cost.
The preconditions pre(a) and effects eff(a) are partial as-
signments to V , and the cost is a non-negative real number
cost(a) ∈ R0+. A state is a complete assignment to V , I
is the initial state, and the goal G is a partial assignment to
V . For a partial assignment p, we denote by vars(p) ⊆ V
the subset of variables on which p is defined. For V ′ ⊆ V ,
by p[V ′] we denote the restriction of p onto V ′ ∩ vars(p),
i. e., the assignment to V ′ made by p. We identify (partial)
variable assignments with sets of variable/value pairs.

An action a is applicable in state s if pre(a) ⊆ s. Ap-
plying a in a (partial) state s changes the value of all v ∈
vars(eff(a))∩ vars(s) to eff(a)[v], and leaves s unchanged
elsewhere. The outcome state is denoted sJaK. A plan for Π
is an action sequence π applicable in I that results in a state
sG ⊇ G. A plan π is optimal if the sum of the cost of its
actions, denoted cost(π), is minimal among all plans for Π.

During an A∗ search, we denote by g(s) the minimum
cost of a path on which a state s was reached from I . Note
that the g-value of a state can get reduced during the search,
in case a cheaper path from I to s is generated.

Decoupled Search
Decoupled search is a technique developed to avoid the com-
binatorial explosion of having to enumerate all possible vari-
able assignments of causally independent parts of a plan-
ning task. It does so by partitioning the state variables into a
factoring F , whose elements are called factors. By impos-
ing a structural requirement on the interaction between these
factors, namely a star topology, decoupled search can effi-
ciently handle cross-factor dependencies. A star factoring is
one that has a center C ∈ F that interacts arbitrarily with
the other factors L ∈ L := F\{C}, called leaves, but where
the only interaction between leaves is via the center.

Actions affectingC, i. e., with an effect on a variable inC,
are called center actions, denoted AC , and those affecting a
leaf are called leaf actions, denotedAL. The actions that af-
fect a particular leaf L ∈ L are denoted AL.1 A sequence of
center actions applicable in I in the projection onto C is a
center path, a sequence of leaf actions affecting L, applica-
ble in I in the projection onto L, is a leaf path. A complete
assignment to C, respectively an L ∈ L, is called a cen-
ter state, respectively leaf state. The set of all leaf states is
denoted SL, and that of a particular leaf L is denoted SL.

A decoupled state sF is a pair 〈center(sF ), prices(sF )〉,
where center(sF ) is a center state, and prices(sF ) : SL 7→
R0+ ∪ {∞} is the pricing function, that assigns every leaf
state a non-negative price. The pricing function is main-
tained during decoupled search in a way so that the price
of a leaf state sL is the cost of a cheapest leaf path that
ends in sL and that is compliant, i. e., that can be sched-
uled alongside the center path executed up to sF . By SF we
denote the set of all decoupled states. We say that a decou-
pled state sF satisfies a condition p, denoted sF |= p, iff
(i) p[C] ⊆ center(sF ) and (ii) for every L ∈ L there exists
an sL ∈ SL s.t. p[L] ⊆ sL and prices(sF )[sL] < ∞. We
define the set of leaf actions enabled by a center state sC as
AL|sC := {aL | aL ∈ AL ∧ pre(aL)[C] ⊆ sC}.

The initial decoupled state sF0 is defined as sF0 :=
〈center(sF0 ), prices(sF0 )〉, where center(sF0 ) = I[C].
Its pricing function is given, for each L ∈ L, as
prices(sF0 )[sL0 ] = 0, where sL0 = I[L]; and elsewhere as
prices(sF0 )[sL] = csF0 (sL0 , s

L), where csF0 (sL0 , s
L) is the

cost of a cheapest path of AL|center(sF0 ) \ AC actions from
sL0 to sL. If no such path exists csF0 (sL0 , s

L) = ∞. The set
of decoupled goal states is SFG := {sFG | sFG |= G}.

Decoupled-state transitions are induced only by cen-
ter actions, where a center action aC is applicable in
a decoupled state sF if sF |= pre(aC). By SL

aC (sF )

we define the set of leaf states of L in sF that com-
ply with the leaf precondition of aC , i. e., SL

aC (sF ) :=

{sL | pre(aC)[L] ⊆ sL ∧ prices(sF )[sL] < ∞}. Ap-
plying aC to sF results in the decoupled state tF =
sFJaCK as follows: center(tF ) = center(sF )JaCK,
and prices(tF )[tL] = minsL∈SL

aC (sF )(prices(sF )[sL] +

ctF (uL, tL)), where sLJaCK = uL.
By πC(sF ) we denote the center path that starts in sF0

and ends in sF . Accordingly, we define the g-value of sF as
g(sF ) = cost(πC(sF )), the cost of its center path.

A decoupled state sF represents a set of explicit states,
which takes the form of a hypercube whose dimensions are
the leaf factors L. Hypercubes are defined as follows:

Definition 1 (Hypercube) Let Π be a planning task and F
a star factoring. Then a state s of Π is a member state of
a decoupled state sF , if s[C] = center(sF ) and, for all
leaves L ∈ L, prices(sF )[s[L]] <∞. The price of s in sF is
price(sF , s) :=

∑
L∈L prices(sF )[s[L]]. The hypercube of

sF , denoted [sF ], is the set of all member states of sF .

1An action can be center and leaf action, then AL ∩ AC 6= ∅.



The hypercube of sF captures both the reachability and
the prices of all member states of sF . For every member
state s of a decoupled state sF , we can construct the global
plan, i. e., the sequence of actions that starts in I and ends
in s by augmenting πC(sF ) with cheapest-compliant leaf
paths, i. e., leaf action sequences that lead to the pricing
function of sF . The cost of member states in a hypercube
only takes into account the cost of the leaf actions, since cen-
ter action costs are not included in the pricing function. The
cost of a plan reaching a member state s of sF from I can be
computed as follows: cost(sF , s) = g(sF ) + price(sF , s).

Dominance Pruning for Decoupled Search
Prior work on decoupled search has only considered dom-
inance pruning instead of exact duplicate checking (Tor-
ralba et al. 2016; Gnad and Hoffmann 2018). With domi-
nance pruning, instead of duplicate states, the search prunes
decoupled states that are dominated by an already visited
decoupled state (with lower g-value). We formally define
the dominance relation �B⊆ SF × SF over decoupled
states as (tF , sF ) ∈�B iff (1) [tF ] ⊆ [sF ] and (2) for all
sL ∈ SL : prices(sF )[sL] ≤ prices(tF )[sL]. Instead of
(tF , sF ) ∈�B , we often write tF �B sF to denote that
sF dominates tF . Note that (2) is only required for optimal
planning. In satisficing planning we can simply set the price
of all reached leaf states to 0, ignoring the leaf action costs
completely. In practice these checks are performed by first
comparing the center states center(sF ) = center(tF ) via
hashing, followed by a component-wise comparison of the
prices of reached leaf states.

Exact Duplicate Checking
In explicit state search, duplicate checking is performed to
avoid unnecessary repeated handling of the same state. This
can be implemented efficiently by means of hashing func-
tions: if a state is re-visited during search – and, in case of
optimal planning using A∗, the path on which it is reached
is not cheaper than its current g-value – the new state can
be pruned safely. In this section, we will look into exact du-
plicate checking for decoupled search, showing how an effi-
cient hashing can be implemented.

Formally, we define the duplicate state relation over de-
coupled states�D⊆ SF ×SF as the identity relation where
(tF , sF ) ∈�D iff sF = tF . Like in explicit state search, a
decoupled state tF can safely be pruned if there exists an al-
ready visited state sF where g(sF ) ≤ g(tF ) and tF �D sF .

We remind that a search node, i. e., a decoupled state sF ,
does not represent a single state, but a set of states, namely
its hypercube [sF ]. Consequently, duplicate checking is less
effective, because the chances of finding a decoupled state
with the exact same hypercube (including leaf state prices)
are smaller than finding a duplicate in explicit state search.
Importantly, care must be taken when hashing decoupled
states, to properly take into account both reachability and
prices of leaf states. To do so we need a canonical form that
provides a unique representation of a decoupled state. We
achieve this by, prior to the search, constructing all reachable
leaf states sL for each leaf L, over-approximating reachabil-

tF : g(tF ) = 10

sL1 → 1

sL2 → 1
sL

′

1 → x

sL
′

2 → x

6�B

�G

sF : g(sF ) = 5

sL1 → 6

sL2 → 6
sL

′

1 → x

sL
′

2 → x

Figure 1: Two decoupled states tF , sF , their g-values, and
pricing functions; sF can only be pruned with �G.

ity by projecting the task onto L. This ignores all interac-
tion between the center and the leaf, assuming that all action
preconditions on V \ L are reached. The resulting transition
systems are called the leaf state spaces for every leaf L ∈ L.
Given these, we assign a unique ID in {0, . . . , |SL

R| − 1} to
every leaf state, where SL

R is the set of leaf states of L that
can be reached from I[L] in the leaf state space of L.

With the leaf state IDs, we can efficiently store the pricing
function of a decoupled state sF for each leaf as an array A
of numbers. Then A[i] is the price of the leaf state with ID
i. To get a canonical representation of sF , and to keep the
memory footprint of its pricing function small, we decide to
limit the size of the array to just fit the highest ID of a leaf
state with finite price. Implicitly, all leaf states with a higher
ID are not reached in sF and have cost∞. This does incur
a memory overhead, in the extreme case wasting |SL

R| − 1
entries in the array, if only the leaf state with ID |SL

R| −
1 is reached, so the entries for all other leaf states are ∞.
However, leaf state spaces are mostly “well-behaved” in the
sense that such pathologic behaviour does not usually occur.

In non-optimal planning, where, as previously noted, we
do not require the actual leaf state prices, but only reachabil-
ity information, we keep a bitvector A for each leaf. Here,
A[i] = > indicates that the leaf state with ID i is reached.

Storing the pricing function as standard arrays allows the
use of hash functions, where two decoupled states can only
be equal if the hashes of their center state, and for each leaf
factor, the hashes of the representation of the pricing func-
tions match. In this case, since our hashing is non-perfect,
we still need to ensure that the states are indeed equal.

Improved Dominance for Optimal Planning
In this section, we introduce two improvements over the ba-
sic dominance relation �B for optimal planning. The first
one incorporates the g-value of decoupled states into the
dominance check and compares the prices across leaves.
This increases the potential for pruning, e. g. allowing to
prune states that have a lower g-value. The second technique
is a decoupled-state transformation that moves part of the
leaf-state prices into the g-value of a decoupled state, en-
hancing search guidance by fully accounting for costs that
have to be spent to reach the cheapest member state.

Incorporating All Costs in Dominance Checking
In optimal planning, a decoupled state tF can only be pruned
with�B if there exists an already visited state sF with lower
g-value that dominates it. The dominance check considers
g-values and pricing function separately. We next show that
these can actually be combined, i. e., the g-value difference



tF : g(tF ) = 10

sL1 → 1

sL2 → 1
sL

′

1 → 3

sL
′

2 → 3

6�B

�G

sF : g(sF ) = 5

sL1 → 6

sL2 → 6
sL

′

1 → 1

sL
′

2 → 1

Figure 2: Example where tF has lower prices in leaf L,
higher prices in L′, and �G detects that sF dominates tF .

of two decoupled states can be traded against differences in
the pricing function. To see this, recall the definition of the
cost of a member state s of a decoupled state sF :

cost(sF , s) = g(sF ) + price(sF , s)

= g(sF ) +
∑
L∈L

prices(sF )[s[L]]

For a new decoupled state tF , instead of only comparing
its pricing function to the ones of visited decoupled states
with lower g-value, we can directly compare the costs of its
member states to those of all visited decoupled states, inde-
pendent of their g-values. Then, tF can be pruned if there
exists a visited state sF s.t. all member states of tF have
lower cost in sF : ∀s ∈ [tF ] : cost(sF , s) ≤ cost(tF , s). In
this case, analogously to pruning duplicate states with higher
g-value in explicit state search, we can safely prune tF .

Consider the example in Figure 1. Each box represents a
decoupled state, and an arrow sL1 → 6 indicates e. g. that in
sF we have prices(sF )[sL1 ] = 6. Say sF is visited and tF
is a new state, where g(tF ) = 10 and g(sF ) = 5. Further,
the prices in leaf factor L′ of both states are identical. In leaf
L, we have prices(sF )[sL] = prices(tF )[sL] + 5, so all leaf
states of L in tF are cheaper by a cost of 5, but sF has a g-
value that is by 5 lower than that of tF . With the dominance
relation �B from prior work, tF cannot be pruned, because
its prices are lower than the ones of sF . However, the cost of
all its member states is equal to the cost of the states in sF ,
so it is actually safe to prune tF .

An important question is how to compute this check effi-
ciently, i. e., without explicitly enumerating the costs of all
member states. We next show that, similar to �B , domi-
nance can be checked component-wise by only considering
the leaf state with the highest price difference per leaf.

Formally, we define the all-costs dominance relation
�G⊆ SF × SF as follows:

(tF , sF ) ∈ �G⇔ g(tF )− g(sF ) ≥∑
L∈L

maxsL∈SL
R

(prices(sF )[sL]− prices(tF )[sL]),

where SL
R = {sL ∈ SL | prices(tF )[sL] <∞}

If tF has a higher g-value than sF , but has leaf states with
lower prices, then the disadvantage in g-value can be traded
against the advantage in leaf state prices. More concretely,
it suffices to sum-up only the maximal price-difference of
any leaf state over the leaves. Thereby, we essentially com-
pare only the member state s ∈ [tF ] for which the price-
advantage is maximal. This can be done component-wise,
so is efficient to compute. Indeed, �G detects that tF in the
above example is dominated and can be pruned.

sF : g(sF ) = 5

sL1 → 3

sL2 → 1
sL

′

1 → 2

sL
′

2 → 3

→
tF : g(tF ) = 8

sL1 → 2

sL2 → 0
sL

′

1 → 0

sL
′

2 → 1

Figure 3: A decoupled state sF and its g-adapted variant tF .

Theorem 1 Let sF and tF be two decoupled states. Then
tF �G sF iff for all s ∈ [tF ] : cost(tF , s) ≥ cost(sF , s).

Proof Sketch: Let s be the member state of tF where
prices(sF )[s[L]]−prices(tF )[s[L]] is maximal for allL ∈ L.
If prices(sF , s) − prices(tF , s) ≤ g(tF ) − g(sF ), then this
also holds for all other s′ ∈ [tF ]. With cost(tF , s′) =
g(tF ) + prices(tF , s′) the claim follows. �

The new relation �G also tackles more subtle cases,
where prices differ in several leaf factors. We can then dis-
tribute the difference in g-values across the leaf factors,
i. e., we cannot use the full difference for each factor. How-
ever, we can even trade lower prices in one leaf by higher
prices in another, setting these different prices off against
the g-difference. Consider the example in Figure 2, which
extends the previous example by a leaf factor L′ where
prices(tF )[sL

′
] = prices(sF )[sL

′
] + 2 for all sL

′ ∈ SL′
. We

can combine the price advantage of +2 in L′ for sF with its
g-advantage +5 to make up for a total price disadvantage of
7 in other leaves, where tF might have lower prices:

g(tF )− g(sF ) = 5

≥
∑
L∈L

maxsL∈SL
R

(prices(sF )[sL]− prices(tF )[sL])

=(6− 1) + (1− 3) = 3 =⇒ tF �G sF

In this case, assuming that sF is visited before tF , tF can
be pruned although the prices of its leaf states are neither
lower-equal, nor higher-equal than the prices of sF . There
is even a difference of cost 2 left that could be used to trade
higher prices of sF in another leaf factor.

g-Value Adaptation
We next introduce a canonical form which moves as much
of the leaf-state prices into the g-value of a decoupled state
as possible. Assume that in a decoupled state sF there exists
a leaf L such that all leaf states sL have a minimum non-
zero price p, so ∀sL ∈ SL : prices(sF )[sL] ≥ p. Then
we can reduce the prices of all these leaf states by p and
increase g(sF ) by p without affecting the cost cost(sF , s)
of the member states s of sF . Intuitively, the transformation
moves the price that has to be spent to reach the cheapest
member state of sF into its g-value, reducing the price of all
leaf states accordingly, so that in every leaf L there exists at
least one leaf state with price 0. See Figure 3 for an example
of a decoupled state sF and its canonical representative tF .

The main advantage of adapting the g-value of a decou-
pled state occurs when executing decoupled search using the
A∗ algorithm. Here, on a cost layer f the search usually pri-
oritizes states with lower heuristic value. By moving cost



into the g-value we achieve that the heuristic of a decoupled
state (which takes into account the pricing function, cf. Gnad
and Hoffmann 2018) can only get lower, aiding A∗ to focus
on more promising states. A second important effect is that
the part of the prices moved into the g-value will always be
considered entirely by the search, whereas heuristics (in the
extreme case blind search) might not be able to capture all
the cost represented in the pricing function.

Note that the g-value adaptation is independent of the new
dominance relation �G. It can have a positive impact on
the number of state expansions of �G, the base dominance
check �B , and exact duplicate checking �D.

Efficient Implementation
In this section, we propose two optimizations that make the
dominance check more efficient. First, we show that with in-
vertible leaf state spaces the comparison of leaf reachability
can be entirely avoided in non-optimal planning. Second, we
show how to exploit the transitivity of dominance relations
to focus the check on the relevant subset of decoupled states.
Both optimizations do not affect the pruning behavior.

Invertible Leaf State Spaces
Given the precomputed leaf state spaces described before,
it is straightforward to compute the connectivity of these
graphs. In particular, we can efficiently check if a leaf state
space is strongly connected when only considering transi-
tions of leaf actions that do not affect, nor are precondi-
tioned by, the center factor. Formally, we define the set of
no-center actions of a leaf L as AL

¬C := {aL ∈ AL |
vars(pre(a)) ∩ C = ∅ ∧ vars(eff(a)) ∩ C = ∅}.

Let SL
R be the set of L-states that is reachable from

I[L] in the projection onto L using all actions A. Let fur-
ther SL

R|AL
¬C

be the corresponding set using only the no-
center actions AL

¬C of L. We say that L is leaf-invertible, if
SL
R = SL

R|AL
¬C

, i. e., any L-state reachable from I[L] can be
reached using no-center actions, and the part of the leaf state
space induced by SL

R and AL
¬C is strongly connected.

Proposition 1 Let L be leaf-invertible and SL
R the set of L-

states reachable from I[L], then in every decoupled state sF
reachable from sF0 , the set of reached L-states in sF is SL

R.

Proof: In sF0 , the claim trivially holds. Let sF be a (not nec-
essarily direct) successor of sF0 . The center action that gen-
erates sF can possibly restrict the set of compliant leaf states
SL
a , and affect the remaining ones, resulting in a set of leaf

states that is a subset of SL
R. Since SL

R is strongly connected
by AL

¬C , all L-states of SL
R have a finite price in sF . �

All decoupled states reached during search can only differ
in the leaf-state prices for leaf-invertible factors, but will al-
ways have the same set of leaf states reached. Thus, at least
for satisficing planning, these leaves do not need to be com-
pared in the dominance check at all. For optimal planning,
we still need to compare the prices, since these might differ.

Another minor optimization that can be performed with
the leaf-invertibility information is successor generation
during search. When computing the center actions that are

applicable in a decoupled state, we usually need to check
leaf preconditions by looking for a reached leaf state that
enables an action. For leaf-invertible leaf factors, however,
this check is no longer needed (even for optimal planning),
because the set of reached leaf states remains constant. We
precompute the set of applicable center actions, and skip the
check for leaf preconditions on leaf-invertible factors.

Transitivity of the Dominance Relation
In explicit state search, a state can be pruned if it has already
been visited (with a lower g-value). This can be efficiently
implemented using a hash table. In decoupled search with
dominance pruning, the corresponding check needs to iterate
over all previously visited states (with a lower g-value) that
have the same center state, and compare the pricing function.

Instead of iterating over all visited decoupled states,
though, we can exploit the transitivity of our dominance re-
lations to focus on the relevant visited states, namely those
that are not themselves dominated by another visited state.

Proposition 2 Let V be the set of decoupled states already
visited during search and let tF be a newly generated de-
coupled state. If there exist sF1 , s

F
2 ∈ V such that sF1 � sF2 ,

where � is a transitive relation over decoupled states, then
tF 6� sF2 implies tF 6� sF1 .

Clearly, we do not need to check dominance of tF against
sF1 , but only need to compare sF2 and tF to see if tF can
be pruned. During search, we incrementally compute the set
of “dominated visited states” as a side product of the dom-
inance check. If a new state tF dominates an existing state
sF1 , then either there exists another visited state sF3 that dom-
inates tF , so it will be pruned, or there is no state yet that
dominates tF . In both cases, sF1 can be skipped in every
future dominance check because there exists another state,
either sF3 or tF , that is visited and that dominates it.

Experimental Evaluation
We implemented all proposed methods in the decoupled
search planner by Gnad & Hoffmann (2018), which itself
builds on the Fast Downward planning system (Helmert
2006). We conducted our experiments using the Lab Python
package (Seipp et al. 2017) on all benchmark domains of
the International Planning Competition (IPC) from 1998-
2018 in both the optimal and satisficing tracks. We also
run decoupled search to prove planning tasks unsolvable,
using the benchmarks of UIPC’16 and Hoffmann, Kiss-
mann, and Torralba (2014). In all benchmark sets, we elimi-
nated duplicate instances that appeared in several iterations.
For optimal planning, we run blind search and A∗ with
hLM-cut (Helmert and Domshlak 2009); in satisficing plan-
ning, we use greedy best-first search (GBFS) with the hFF

heuristic without preferred operator pruning (Hoffmann and
Nebel 2001); to prove unsolvability, we run A∗ with the hmax

heuristic (Bonet and Geffner 2001). The experiments were
performed on a cluster of Intel E5-2660 machines running
at 2.20 GHz with the common runtime/memory limits of
30min/4GiB. The code and experimental data of our eval-
uation are publicly available (Gnad 2021).



Blind Search A∗ with hLM-cut

Dominance Pruning Dupl. Ch. Dominance Pruning Dupl. Ch.
Domain # �B �IT

B �gIT
B �IT

G �g
G �gIT

G �D �gI
D �B �IT

B �gIT
B �IT

G �g
G �gIT

G �D �gI
D

DataNetwork 20 9 9 5 9 9 9 5 5 14 14 12 14 14 14 12 12
Depots 22 3 3 4 4 4 4 2 4 7 7 7 7 7 7 5 7
Driverlog 20 11 11 11 11 11 11 10 11 13 13 13 13 13 13 13 13
Elevators 30 6 7 9 12 16 16 0 10 11 11 22 13 23 23 3 22
Floortile 40 2 2 2 2 2 2 0 0 9 9 9 9 10 9 6 6
Freecell 42 0 0 0 0 0 0 0 2 1 1 2 2 2 2 1 2
GED 20 13 13 15 15 15 15 7 15 15 15 15 15 15 15 13 15
Grid 5 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2
Logistics 63 24 25 25 26 25 26 23 24 34 34 35 34 36 36 32 35
Miconic 145 46 47 47 47 46 47 62 62 135 135 135 135 135 135 136 136
NoMystery 20 20 20 20 20 19 20 17 17 20 20 20 20 20 20 19 19
Openstacks 50 21 21 21 21 21 20 22 22 21 21 20 21 21 21 22 22
PSR 48 48 48 46 48 48 48 43 47 48 48 47 48 48 48 46 47
Rovers 40 7 7 7 7 7 7 6 7 8 8 8 8 8 8 8 8
Satellite 36 5 5 5 5 5 5 5 5 7 7 9 7 9 9 7 8
Tetris 13 5 5 5 5 5 5 4 4 5 5 5 5 5 5 5 5
Transport 30 10 11 13 14 15 15 0 13 12 12 14 13 14 14 6 14
Trucks 27 4 4 4 4 4 4 6 6 10 10 10 10 10 10 10 10
Woodworking 26 7 7 7 7 7 7 7 7 16 16 16 17 17 17 16 17
Zenotravel 20 8 9 8 9 9 10 6 8 12 13 12 13 13 13 10 13
Others 179 42 42 42 42 42 42 42 42 59 59 59 59 59 59 59 59∑

896 292 297 297 309 311 314 268 312 459 460 472 465 481 480 430 472

Table 1: Coverage data for optimal planning with blind search and with A∗ using hLM-cut. All configurations use the incident
arcs factoring. Domains without difference in coverage are summarized in “Other”. Best coverage is highlighted in bold face.

Unsolvability Satisficing
Domain # �IT

B �I
D Domain # �IT

B �I
D

Cavediving 21 4 5
Diagnosis 20 14 13
DocTransfer 20 13 14
NoMystery 24 13 12 Floortile 40 5 3
OverTPP 55 16 21 Rovers 40 21 20
Other 137 74 74 Other 904 676 676∑

277 134 139
∑

984 702 699

Table 2: Coverage data, setup like in Table 1, for proving
unsolvability and satisficing planning.

Decoupled search needs a method that provides a factor-
ing, i. e., that detects a star topology in the causal structure of
the input planning task. We use two basic factoring methods,
mostly the incident arcs factoring method (IA), and inverted-
fork factorings (IF) – only for satisficing planning in Fig-
ure 7 (Gnad, Poser, and Hoffmann 2017). We expect IF fac-
torings to nicely show the advantage of the more efficient
handling of invertible leaf state spaces, since there are sev-
eral domains that have such state spaces in this case, but not
using IA. IA is the canonical choice since it is fast to com-
pute and finds good decompositions in many domains.

We use the following naming convention for search con-
figurations: we distinguish the three dominance relations
�B , �D, and �G. We indicate the g-value adaptation, and
the invertibility and transitivity optimizations by adding a
superscript g, respectively I and T to the relation symbol,
e. g. �IT

G for a configuration that uses �G and has the in-

vertibility and the transitivity optimization enabled. To save
space, we focus on configurations that are most interesting
in the comparison, omitting some that perform similarly.

Tables 1 and 2 show coverage data (number of instances
solved) for the benchmarks where the factoring methods are
able to detect a star factoring. For optimal planning, Table 1,
we see that all methods individually can lead to an increase
in coverage. There also seems to be a positive correlation be-
tween�G and the g-value adaptation, shown by the fact that
the combination outperforms both its components. We do
not separately evaluate the invertibility optimization, since
it only changes the successor generation, which does not in-
fluence coverage. The advantage of the �IT

x configurations
stems from the transitivity optimization.

Duplicate checking without g-adaptation shows a signif-
icant drop in coverage compared to �B , so although the
checking is computationally more efficient, this does not
even out the weaker pruning power. When enabling the g-
adaptation, total coverage is a lot higher than for �B , and
even beats �gIT

G in some domains (most remarkably in Mi-
conic with blind search). �gI

D also solves two Freecell in-
stances that no other configuration can solve with blind
search. This shows that duplicate checking can indeed pay
off if the pruning does not become a lot weaker.

Table 2 has coverage results for proving unsolvability
(number of instances proved unsolvable) and satisficing
planning. We focus on the difference between dominance
pruning and duplicate checking, as the invertibility and tran-
sitivity optimizations do not impact coverage. In satisficing
planning, coverage is never improves, but decreases by 3
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Figure 4: Scatter plots comparing runtime and number of
state expansions for optimal planning.
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Figure 5: Like Figure 4, comparing dominance pruning to
duplicate checking.

across two domains. For unsolvability, it looks like duplicate
checking can pay off. While results are mixed in some, and
not affected in most domains, it increases by 5 in OverTPP.

The scatter plots in Figure 4 and 5 shed further light
on the per-instance runtime and search space size compari-
son between some optimal planning configurations. Figure 4
shows the number of expanded states in the top row and the
runtime in the bottom row. All configurations use the IA fac-
toring and compare �B to �gIT

G , with blind search in the
left column and hLM-cut in the right column. The advantage
of the more clever dominance check, the g-adaptation, and
our runtime optimizations is obvious, saving up to several
orders of magnitude for state expansions and runtime. Some
domains with a particularly pronounced improvement across
both settings are Elevators, Logistics, and Transport.

Figure 5 illustrates the effect of exact duplicate checking.
The left plot shows the expected increase in search space
size, due to the reduced pruning power. The right plot indi-
cates that where the increase in search space size is small the
more efficient computation indeed pays off runtime-wise.
This is most visible in Miconic and Openstacks.

10−2 10−1 100 101 102 103

0.6

0.8

1

1.2

�g
G

�gT
G

Blind search – Runtime

10−2 10−1 100 101 102 103

0.4

0.6

0.8

1

1.2

�B

�T
B

Unsolvability – Runtime

Figure 6: Improvement factors of�xT
y over�x

y showing the
impact of the transitivity optimization in optimal planning
and proving unsolvability.
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Figure 7: Like Figure 6, showing the impact of the invert-
ibility optimization in satisficing planning with IA vs. IF.

Figures 6 and 7 show the impact of the transitivity and
invertibility optimizations. The plots show per-instance run-
time improvement factors of configuration Y on the y-axis
over configuration X on the x-axis, where a y-value of a in-
dicates that the runtime of Y is a times the runtime of X
(values below 1 are a speed-up). The transitivity optimiza-
tion clearly has a positive impact on runtime, reducing it up
to 40% in optimal planning and up to 60% for proving un-
solvability. The invertibility optimization (Figure 7) does not
show such a clear picture when using the IA factoring (left
plot). With IF, though, it indeed nicely accelerates the dom-
inance check, as the optimization is applicable more often.

Conclusion
We have taken a closer look at the behavior and implementa-
tion details of dominance pruning in decoupled search. We
introduced exact duplicate checking, which, in spite of its
weaker pruning, can improve search performance in practice
due to higher computational efficiency under certain con-
ditions. Furthermore, we developed two optimizations that
make the dominance check more efficient to compute.

Our main contribution are two extensions of dominance
pruning for optimal planning, that incorporate the g-value
of decoupled states. Both methods are highly beneficial and
their combination significantly improves the performance of
decoupled search in many benchmark domains.

For future work, we want to to further investigate domi-
nance pruning for decoupled search, e. g. by a combination
with the quantitative dominance pruning of Torralba (2017).
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