
Iterative Oversubscription Planning with Goal-Conflict
Explanations: Scaling Up Through Policy-Guidance

Approximation
Rebecca Eiflera,*, Daniel Fišerb, Aleena Sijib and Jörg Hoffmannb,c

aLAAS-CNRS, Université de Toulouse, France
bSaarland University, Saarland Informatics Campus, Germany

cGerman Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

Abstract. In oversubscription planning (OSP), not all goals can be
achieved. If a global optimization objective is difficult to fix, then an
iterative planning process in which users refine their objective based
on sample plans is suitable. Recent work has shown that, in such
a process, explanations of plan trade-offs based on goal conflicts –
minimal unsolvable goal subsets (MUGS) – are useful. A fundamen-
tal limitation of this approach is scalability. Computing MUGS is
feasible only in relatively small planning instances; sometimes plan
generation in iterative planning also is a limiting factor as users tend
to be impatient. Here we address both these limitations by restrict-
ing the space of plans considered. We assume that an action policy
π for the OSP task has been learned. We restrict both plan genera-
tion and MUGS analysis to the action sequences within a given ra-
dius r around π, so that r controls the tradeoff between scalability
and the degree of approximation. We instantiate this idea with two
different kinds of radii around a policy. We experimentally analyze
performance as a function of r, for Action Schema Network policies.
The results confirm that our approach can scale up further than prior
work, and results on instances small enough to compute MUGS ex-
actly indicate that we obtain informative MUGS even with limited
runtime and memory.

1 Introduction

Oversubscription planning (OSP) models problems where due to
budget constraints not all goals can be achieved, and the task is in-
stead to achieve a maximum-utility subset of goals [e.g., 21, 3, 17].
As pointed out by Smith [20] the goal utilities in this setting may
be difficult to elicitate, calling for an iterative planning process that
suggests plan candidates for human inspection. Eifler et al. [4, 5, 6]
show that contrastive explanations of plan trade-offs are useful in this
context, answering user questions like “Why does the plan p you sug-
gest not satisfy goal gi?” with goal conflicts like “Because achieving
gi would necessitate to forego goal gj”. To provide these answers,
Eifler et al. compute minimal unsolvable goal subsets (MUGS).

A fundamental limitation of this approach is scalability. Comput-
ing MUGS is feasible only in relatively small planning instances
(about the scale of optimal OSP planning [5]). Sometimes plan gen-
eration in iterative planning also is a limiting factor, as users tend to

∗ Corresponding Author. Email: rebecca.eifler@laas.fr

be impatient and ideally the next sample plan should become avail-
able instantaneously.

Given the underlying problem complexities, there is no way
around these limitations in general other than by approximation.
Here we explore a particular form of approximation leveraging
learned domain knowledge. We assume that an action policy π for
the OSP task has been learned (either a deterministic policy mapping
states to actions, or a probabilistic policy mapping states to proba-
bility distributions over applicable actions). We use π to restrict the
space of plans considered in plan generation and MUGS analysis.
We consider only those action sequences Pr within a given “radius”
r around π (concrete instances of this will be discussed below).

As Pr is a subset of action sequences, our approximation is pes-
simistic. Any plan in Pr is a plan in the task, and any goal subset un-
solvable in the task is unsolvable in Pr . Due to the latter, any MUGS
in Pr is a subset of a MUGS in the task, so that our approximate
explanations err in one direction only.

The radius r is an algorithm parameter that controls the trade-
off between scalability and the degree of approximation. It permits
to leverage progress on action-policy learning, in particular through
neural networks [e.g., 15, 12, 10, 24, 22]. At the same time, with
r > 0 we are not limited to the policy itself but have a stronger abil-
ity to find plans, and therewith a more informative view of which
goal subsets can (or cannot) be achieved.

The user questions and answers in our setup remain the same as
before, the only difference being that the answers are now subject to
the restriction to Pr: “Why does the plan p you suggest not satisfy
goal gi?” “Because achieving gi would necessitate to forego goal gj ,
or to diverge from π by more than r”. A new option for the user here,
based on the second part of the answer, is to increase the radius r to
see whether that fixes the goal conflict (at the price of longer waiting
times for plans and answers).

We instantiate our approach with two different kinds of radii
around a policy. The first type of radius, diverging actions distance,
restricts the number of times in which we diverge from the determin-
istic policy decision, to at most r steps. The second type of radius,
action-probability distance, takes a more local view. Assuming we
have a probabilistic policy π assigning some probability to applicable
actions in each state, we consider within each step the subset of appli-
cable actions whose probability differs at most r from the maximum
probability assigned by π. To compute MUGS in Pr , we augment

the most competitive algorithm by Eifler et al. [5] (an explicit-state
search) with additional state-pruning functions.

As the empirical basis for our experiments, since there has been no
dedicated work on policy learning for OSP as yet, we use classical-
planning policies trained on domains without cost bounds. We specif-
ically experiment with ASNets [23, 24], a competitive method for
learning action policies that generalize across instances within a
PDDL domain. We run experiments on OSP benchmarks from 11 do-
mains used in prior works evaluating ASNets policies [8, 9] and one
new domain. We experiment with a) plan generation and b) MUGS
computation as a function of the radius r. The results show that our
approach can improve a), and scales up b) far beyond the range of ex-
act MUGS computation. Results on instances small enough to com-
pute MUGS exactly indicate that our approximation yields informa-
tive MUGS even for relatively small radii and hence with limited
runtime.

2 Background

We consider a STRIPS variant of the oversubscription planning
(OSP) [21, 3]. An OSP task is a tuple τ = ⟨F ,A, c, I,Ghard, Gsoft,
b⟩ where F is a set of facts, A is a set of actions, and c : A → R+

0

is an action cost function. A state s ⊆ F is a set of facts, and S
denotes the set of all states. I ⊆ F is the initial state, Ghard ⊆ F
and Gsoft ⊆ F denote hard and soft goal, respectively, and it holds
that Ghard ∩Gsoft = ∅. b ∈ R+

0 is the cost bound.
Each action a ∈ A has a precondition prea ⊆ F , an add list

adda ⊆ F and a delete list dela ⊆ F such that adda∩dela = ∅ and
prea ∩ adda = ∅. An action a is applicable in a state s if prea ⊆ s.
The set of all applicable actions in s is denoted by A(s). Applying
applicable action a to state s, denoted as sJaK, results in the state
sJaK = (s ∪ adda) \ dela. A sequence of actions p = ⟨a1, . . . , an⟩
is applicable in a state s0 if there are states s1, . . . , sn such that ai

is applicable in si−1 and si = si−1JaiK for i ∈ {1, . . . , n}. The
resulting state of this application is s0JpK = sn, and the cost of
p is defined as c(p) =

∑n
i=1 c(ai). The sequence ⟨s0, s1, . . . , sn⟩

of the aforementioned states is called intermediate state sequence
of p. Given a sequence of actions p = ⟨a1, . . . , an⟩, a sub-sequence
⟨a1, . . . , ai⟩ for any i ≤ n is called a prefix of p.

A sequence of actions p = ⟨a1, . . . , an⟩ is called plan if p is
applicable in the initial state, c(p) ≤ b and Ghard ⊆ IJpK, i.e., the
costs of plans in OSP tasks are upper-bounded by b and they must
reach all hard goals. Given a plan p, Gtrue(p) = Gsoft ∩ IJpK denotes
the soft goals satisfied by p, and Gfalse(p) = Gsoft \Gtrue(p) denotes
the soft goals not satisfied by p. Q denotes the set of all sequences
of actions, and P ⊆ Q denotes the set of all plans. We also call a
set of facts X ⊆ F reachable if there exists a sequence of actions
p ∈ Q applicable in I such that X ⊆ IJpK. And we call a subset of
soft goals G ⊆ Gsoft solvable if there exists a plan p ∈ P such that
G ⊆ IJpK.

We consider probabilistic state-dependent policies. A policy π :
S × A 7→ [0, 1] maps each state and action to a value between zero
and one, and for every state s ∈ S it holds that

∑
a∈A π(s, a) =∑

a∈A(s) π(s, a) = 1, i.e., it returns zero for every inapplicable
action and the sum over applicable actions is always one in any
given state. We also consider deterministic policies induced by π
that always select the action with the highest probability: Given a
policy π, π̂ : S 7→ A denotes the deterministic policy defined as
π̂(s) = argmaxa∈A(s) π(s, a) for every state s ∈ S (where we as-
sume argmax breaks ties deterministically in each state). We also
call π̂ a determinization of π. In this work, we focus on policies

that are learned once for a whole (PDDL) domain, and then re-used
for every task instance from the domain, i.e., the learning effort is
amortized over all instances that can be addressed.

Following Eifler et al. [4], we do not define a plan utility over
Gsoft, but we focus on the analysis of the conflicts between differ-
ent goals from Gsoft using so-called minimal unsolvable goal subsets
(MUGS). Eifler et al. defined a MUGS as a set of soft goals that can-
not be achieved by any plan, but all of its subsets can. Here, we intend
to restrict the state space by considering a vicinity of the given pol-
icy only. Therefore, in contrast to their work, we consider minimal
unsolvable goal subsets with respect to a subset of possible plans:

Given a task τ and a subset of plans P ′ ⊆ P , a set of soft goals
C ⊆ Gsoft is called a minimal unsolvable goal set (MUGS) for P ′ if
C ̸⊆ IJpK for every plan p ∈ P ′, but for every C′ ⊊ C there exists
a plan p ∈ P ′ such that C′ ⊆ IJpK. The set of all MUGS for the
set of plans P ′ ⊆ P is denoted by GMUGS(P ′). We also call MUGS
GMUGS(P) over all plans exact MUGS, and GMUGS(P ′) for P ′ ⊆ P
approximate MUGS.

We build on the framework implementing an iterative explanation
process for OSP tasks proposed by Eifler et al. [4] that uses MUGS
to represent conflicts between soft goals. Given an OSP task τ with
hard goals Ghard and soft goals Gsoft, each iteration is conducted as
follows.

(1) The user selects a subset Genf ⊆ Gsoft of soft goals that they want
to enforce.

(2) The system tries to find a plan p ∈ P for τ such that (at least) Genf

is satisfied, i.e., Genf ⊆ Gtrue(p). If no plan is found, the system
reports it to the user and the process moves back to (1) allowing
the user to select a different Genf or abort the process.

(3) The user can ask questions of the form “Why is Q not satisfied
in p?”, where Q ⊆ Gfalse(p) can be any subset of soft goals not
satisfied by p.

(4) The answer provided by the system is then of the form “Because
then you have to forgo A(Q)”, where A(Q) is the set of all pos-
sible minimal subsets of soft goals satisfied by p that cannot be
satisfied any more by plans satisfying Q.

Formally the answer A(Q) is defined as follows.

Definition 1 (Explanation). Let τ denote an OSP task with plans
P . Given a plan p ∈ P and question Q ⊆ Gfalse(p), the answer
is defined as A(Q) = min⊆{C \ Q | C ∈ GMUGS(P), C ⊆ Q ∪
Gtrue(p)} where min⊆ X denotes the inclusion-wise minimal set of
elements from X such that for every s ∈ X there exists s′ ∈ min⊆ X
such that s′ ⊆ s.

3 Approximate MUGS
For iterative planning with conflict explanations it is necessary to
provide sample plans without long waiting times and to compute con-
flicts between soft goals. To compute the sample plans, Eifler et al.
[4] use a satisficing planner that tries to solve the task τ ′ = ⟨F ,A,
c, I,Ghard ∪ Genf, Gsoft \ Genf, b⟩. If τ ′ is solvable then the planner
provides a plan p where Ghard ∪ Genf ⊆ IJpK and otherwise no plan
is provided. To answer any potential user question they precompute
GMUGS(P) using an exhaustive state space search with branch-and-
bound style pruning. This computation strongly limits the size of the
feasible tasks.

Here, we propose to address larger tasks, where computing
GMUGS(P) exactly is infeasible, and where finding a plan can be
time-consuming. We leverage learned problem knowledge to provide

approximations by using a learned action policy π for the task. This
knowledge is then used to restrict the state space in which we search
for plans. We do so, by defining a policy distance function that maps
each sequence of actions to a numerical value expressing its distance
from the given policy, i.e., it quantifies how much the given plan di-
verges from the policy. With such a distance function δ at hand, we
only consider plans P δ

r whose distance from the policy π is within
a radius of at most r ∈ R+ according to the distance function δ. In
other words, we restrict the whole iterative process to consider only
plans P δ

r .
The radius allows going between a fast plan generation strictly fol-

lowing the policy π (in our case its determinization π̂), and obtaining
possibly cheaper plans by diverging from the policy (thus exploring
a larger portion of the state space). Moreover, increasing the radius
may also allow to remedy the situation where the policy does not find
any plan, but there might be a plan in the vicinity of the policy. In this
setting, MUGS for P δ

r are simply approximations of MUGS for all
plans P .

Formally, a policy distance function is any function mapping se-
quences of actions to non-negative numbers that is monotonically
non-decreasing along every sequence of actions. The policy distance
function then naturally induces a set of plans whose distance from
the policy is within the given threshold value which we call radius.

Definition 2 (Policy Distance Function). Let τ denote an OSP task
with action sequences Q, and let π denote a policy for τ .

A function δ : Q 7→ R+
0 mapping sequences of actions to non-

negative numbers is called a policy distance function for π if for
every action sequence p ∈ Q and every prefix p′ of p it holds that
δ(p′) ≤ δ(p).

Given a number r ∈ R+ ∪ {∞} and a policy distance function
δ for π, P δ

r denotes the plans within the radius r defined as P δ
r =

{p ∈ P | δ(p) ≤ r}.

We define distance functions to be monotonically non-decreasing
along every action sequence because we want to avoid situations
where a sequence of actions has a smaller distance from the policy
than its prefix. It is easy to see that P δ

∞ = P .
Although not necessary, it is reasonable to design the policy dis-

tance function so that it returns zero when strictly following the
policy. In the next section, we introduce two policy distance func-
tions that assign zero to action sequences strictly following the de-
terminization π̂ of the given policy π, i.e., they assign zero to action
sequences resulting from selecting the action with the highest prob-
ability in each state. In these cases, P δ

0 contains all plans achieved
by executing π̂, but P δ

0 can also contain other plans, because the
distance function δ is allowed to assign zero to plans that diverge
from π̂. When this is the case and why this behavior is intended is
discussed in the next section.

The radius r can be used to phase between computational effort
and accuracy, because P δ

r ⊆ P δ
r′ whenever r ≤ r′. In other words,

expressiveness of MUGS monotonically increases with increasing
radius r, because the larger the radius becomes, the more alternative
plans are considered and thus more soft goal subsets become solv-
able, and therefore MUGS cover more facts.

Proposition 1 (Monotonicity). Let τ = (F ,A, c, I,Ghard, Gsoft, b)
denote an OSP task such that Ghard ∪ Gsoft is not reachable, let π
denote a policy for τ , let δ denote a policy distance function for π,
and let r, r′ ∈ R+ be two radii such that r ≤ r′. Then for every
C ∈ GMUGS(P δ

r) there exists C′ ∈ GMUGS(P δ
r′) such that C ⊆ C′.

Proof. Since Ghard ∪Gsoft is unreachable, GMUGS(P δ
r′) is non-empty.

Let C ∈ GMUGS(P δ
r). So we have that for every G ⊊ C there is

p ∈ P δ
r such that G ⊆ IJpK. Since r ≤ r′ it follows that P δ

r ⊆ P δ
r′

and therefore either C ∈ GMUGS(P δ
r′) or C is reachable by some

plan from P δ
r′ and therefore there must be C′ ∈ GMUGS(P δ

r′) such
that C ⊆ C′ because GMUGS(P δ

r′) is non-empty.

Note that, with P δ
∞ = P in particular, this shows that the MUGS

for any radius are subsets of the task’s MUGS.
Now, we can define approximate explanations restricted to the part

of the state space within a given radius of a chosen policy distance
function.

Definition 3 (Approximate Explanation). Let τ denote an OSP task,
let π denote a policy for τ , and let δ denote a policy distance function
for π. Given a radius r ∈ R+ and a plan p ∈ P δ

r and a question
Q ⊆ Gfalse(p), the answer is defined as A(Q, r) = min⊆{C \ Q |
C ∈ GMUGS(P δ

r), C ⊆ Q ∪Gtrue(p)}.

Restricting the reachable part of the state space to the policy radius
may result in MUGS indicating conflicts that actually do not exist
when considering the whole, unrestricted, state space. How accurate
the MUGS approximation is depends on the quality of the policy and
on the concrete distance function used. Two possible implementa-
tions of policy distance functions are discussed next.

4 Policy Distance Functions
A policy distance function δ for a policy π, quantifies how far an
action sequence p diverges from the policy. A distinction can be made
between focusing on local policy behavior and global behavior. In the
following, we define one distance function for each.

4.1 Action-Probability Distance Function

We start with the action-probability distance function that we define
as the maximum difference between the highest probability assigned
by π to any action and the probability of the action actually used in
the given sequence of actions.

Definition 4 (Action-Probability Distance Function). Given an OSP
task τ and a policy π for τ , the action-probability distance function
δP : Q 7→ R+ for π is defined as

δP (p) = max
i∈{1,...,n}

(max
a∈A(si−1)

(π(si−1, a))− π(si−1, ai))

for every sequence of actions p = ⟨a1, . . . , an⟩ with its interme-
diate state sequence ⟨s0, s1, . . . , sn⟩.

Clearly, the action-probability distance function for π is a policy
distance function for π because its value for any action sequence p
cannot be smaller than its value for any prefix of p. Meaningful radii
for the action-probability distance function lie between zero and one.
Whether a sequence of actions is within a probability radius is a local
decision. It depends individually on each state s and π(s, a) over
a ∈ A(s).

It is also easy to see that δP assigns zero to action sequences re-
sulting from strictly following the determinization π̂ of π, i.e., P δP

0

contains plans resulting from selecting the action with the highest
probability in every state. However, if there are states assigning the
same highest probability to multiple actions, then P δP

0 contains also
sequences of actions that diverge from π̂. We will look more closely
on the ramifications of this property when we experimentally evalu-
ate this policy distance function.

I

0.1

0.1 0.5

0.3

0.7

0.2
0.1

0.9
0.1

0.6

0.4

0.9
0.1

0.8
0.2

0.7

0.3

0.1

0.5
0.4

0.8
0.2

0.8
0.2

0.4 0.5

0.1
0.2

0.5
0.3

0.7

0.3

{g1, g2} {g1, g3} {g2, g3} {g3, g4}

0I

1 1 0 1

2 1

0

1

2

1

0

2

2 1 0 1

0.1

0.1 0.5

0.3

0.7

0.2
0.1

0.9
0.1

0.6

0.4

0.9
0.1

0.8
0.2

0.7

0.3

0.1

0.5
0.4

0.8
0.2

0.8
0.2

0.4 0.5

0.1
0.2

0.5
0.3

0.7

0.3

{g1, g2} {g1, g3} {g2, g3} {g3, g4}

Figure 1. Example for action-probability (left) and diverging action (right)
radius function; Gsoft = {g1, g2, g3, g4}, top: initial state, bottom: goal
states, edges correspond to actions and labels are π(s, a); GMUGS(P) =
{{g1, g2, g3}, {g1, g4}, {g2, g4}}; red: action with maximal probability

assigned by π, blue: states reachable within P
δP
0.1 (left) and P

δ#
1 (right).

Figure 1 shows on the left an example state space and policy π.
It depicts which portion of the state space would be considered
when using an action-probability distance function δP with the ra-
dius r = 0.1. The example policy results in GMUGS(P δP

0) =
{{g1}, {g4}} for radius r = 0. Increasing the radius to r =
0.1 includes one additional plan, resulting in GMUGS(P δP

0.1) =
{{g1, g3}, {g4}}. Note that MUGS for the unrestricted task is
GMUGS(P) = {{g1, g2, g3}, {g1, g4}, {g2, g4}}.

Diverging based on the probability distribution over actions makes
most sense if the policy itself is not sure which action to select in
which state, i.e., if the policy assigns a similar (high) probabilities to
multiple applicable actions. This behaviour may be caused not only
by the policy being uninformative (e.g., insufficiently trained), but it
also may be that it does not matter which of the actions with high
probability is selected as all of them lead to a goal state. Next, we
consider a global distance measure that counts the absolute number
of used actions not following π̂.

4.2 Diverging Actions Distance Function

For measuring the overall distance between a plan and the policy
from the global perspective, we propose to simply count the number
of actions that differ from strictly following π̂.

Definition 5 (Diverging Actions Distance Function). Given an OSP
task τ and a policy π for τ , the diverging actions distance function
δ# : Q 7→ R+ for π is defined as

δ#(p) =
∑

i∈{1,...,n}

[π̂(si−1) ̸= ai]

for every sequence of actions p = ⟨a1, . . . , an⟩ with its intermediate
state sequence ⟨s0, s1, . . . , sn⟩, where [a′ ̸= a] denotes the charac-
teristic function of inequality predicate, i.e., [a′ ̸= a] is 1 if a′ ̸= a
and it is 0 otherwise.

Reasonable values of radii r for the diverging actions distance
function are natural numbers. Setting r to zero only considers plans
induced by π̂. Any r higher than zero expresses that the system is
allowed to consider plans that differ in at most r actions from π̂.

Figure 1 depicts on the right the same example state space
and policy as on the left, but this time we show the part of

the state space within radius 1 with δ#. By following the de-
terministic policy π̂ (i.e., with radius r = 0), we would get
GMUGS(P

δ#
0) = {{g1}, {g4}}, and diverging at most once would

lead to GMUGS(P
δ#
1) = {{g1, g2}, {g1, g4}, {g2, g4}}. In this exam-

ple, a diverging action distance of 1 includes more plans and is there-
fore a more accurate approximation than using action-probability
distance with radius 0.1. However, this comes at the cost of exploring
a larger part of the state space. A large branching factor of the task
may be detrimental for diverging actions distance function even with
a small radius.

We remark that our concept of policy distance function is related
to other distance measures. Plan distance functions are used in the
context of diverse planning [e.g., 2, 11, 16] to measure plan diver-
sity, which is maximized within a set of output plans. Our objective
here is very different. We measure not the distance between pairs
of plans but between plans and a fixed policy. For goal recognition,
Amado et al. [1] introduce different distance measures between an
observation (i.e., a plan prefix) and a policy. These are then used to
identify the intended goal based on the policy that minimizes the dis-
tance. Ideas from both approaches may be applicable in our context,
and exploring this remains a topic for future work.

5 Experiments
The experiments were conducted on a cluster with Intel E5-
2695v4@2.1GHz processors and 4 GB memory limit per process.
We conduct our experiments for a range of radii values. For the
action-probability distance function δP , we scale from 0 to 1 in steps
of 0.1. Clearly, the largest radius r = 1 is equivalent to the full ex-
ploration. For the diverging actions distance function δ#, we scale
from 0 to 10 in steps of 1.

Policy We use our own implementation of ASNets policies [23, 24]
using the DyNet library [18], which was trained with two proposi-
tional layers, 16 output channels, batch size of 64, 700 training steps
within an epoch, at most 300 training epochs and time limit of 8 hours
per domain. We used Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ =
10-8) with learning rate 10-3, dropout rate 0.1 and l2 regularizer of
2 ·10-4. Our variant of ASNets does not use landmarks or action his-
tory, i.e., we use the simplest variant of ASNets described by Toyer
et al. [24]. Note that each policy is trained only once per domain and
then used for all tasks from the domain.

Policy Radius Search The implementation of the search algo-
rithms is based on Fast Downward [13]. To compute approximate
MUGS GMUGS(P δ

r) we adapt the algorithm introduced by Eifler et al.
[5] to compute exact MUGS GMUGS(P). It performs an exhaustive
state space exploration while keeping track of the maximal solvable
goal subsets (MSGS) that are reachable. Those are then used to com-
pute the MUGS. The exploration of the state space restricted to the
policy radius is implemented as a simple pruning function. Given a
policy π, a policy distance function δ for π, and a radius r, we prune
state s reached by a sequence of actions p whenever δ(p) > r.

Moreover, since we run experiments with time (and state) limits
and we know that the state space restricted to a radius r only grows
with increasing r, we use an iterative method where we increase the
radius step by step until the time (or state) limit is reached. That is,
given sequence of increasing radii r1 < r2 < · · · , state s reached
by a sequence of actions p is considered in iteration i only if δ(p) ≤
ri, and if δ(p) > ri, then ⟨p, s⟩ is stored for subsequent iterations.
When we explore the whole state space within the radius ri and there
is some time (or state) budget left, we set the radius to ri+1 and

101 102

0

0.5

1

fr
ac
ti
on

of
so
lv
ed

in
st
ac
es

Beluga

101 102

0

0.5

1

Blocksworld

101 102

0

0.5

1

Elevators

101 102

0

0.5

1

Floortile

101 102

0

0.5

1

Gripper

101 102

0

0.5

1

Satellite

101 102

0

0.5

1

time

fr
ac
ti
on

of
so
lv
ed

in
st
ac
es

Scanalyzer

101 102

0

0.5

1

time

Spanner

101 102

0

0.5

1

time

Storage

101 102

0

0.5

1

time

Transport

101 102

0

0.5

1

time

Visitall

101 102

0

0.5

1

time

Woodworking

Lama-first π δP δ#

Figure 2. Fraction of solved instances over time. blue: LAMA-first without pruning, black: execution of π̂, green: Lama-first with pruning with
action-probability distance function, red: Lama-first with pruning with diverging action distance function.

continue the search from the stored pairs ⟨p, s⟩ s.t. δ(p) ≤ ri+1. Note
that this approach can be applied to any forward search algorithm.

To decrease the search space size, Eifler et al. [5] used underap-
proximation of the reachable soft goals to prune states from which
no superset of any set of the current MSGS is reachable. This ap-
proach was also applied here as it can be used alongside the pruning
function based on policy distance functions.

Benchmarks We use 11 domains from the standard benchmark set
(see the list in Figure 2) that were already used in prior works evalu-
ating ASNets policies [8, 9]. We also used a new “Beluga” domain.
It models a part of the logistics problem involved in aircraft manu-
facturing at Airbus for which a user survey showed that goal-conflict
explanations are useful. The objective is to unload a Beluga trans-
portation aircraft, and transport the unloaded parts via a system of
storage racks to the factory in a required order. The largest instances
in our benchmark set have a realistic problem size for which an exact
MUGS computation is not feasible.

Since ASNets do not support action costs, we treat all domains as
unit cost. To increase the number of tasks we can evaluate, we did
not remove the tasks used for training ASNets. This means that the
fraction of evaluated tasks that were used also for training is 0% in
Beluga, Blocksworld and Spanner, 25% in Elevators, 7% in Floortile,
13% in Gripper, 31% in Satellite, 20% in Scanalyzer, 30% in Storage,
7% in Transport, 84% in Visitall, and 38% in Woodworking.

To obtain OSP variants of the tasks, we use the same approach as
Katz et al. [17]: We generate OSP tasks from the non-OSP ones by
adding cost bounds of 25%, 50% and 75% of the cost of the best
known plans (either from http://planning.domains or using the best
plan found by the LAMA planner [19] within 60 minutes), and we
consider all goals as soft goals. In most domains, the cost bound of
25% resulted in tasks that are too easy to provide a valuable com-
parison between exact and approximate computation. So, we include
here only 50% and 75% cost-bounds. Only tasks with 32 or fewer
goals are included, as our implementation does not support more.
The dataset is available in the repository https://github.com/r-eifler/
MUGS-approximation-dataset.

5.1 Evaluation of Plan Computation

First, we evaluate the performance of policy guidance in the com-
putation of plans, i.e., we would like to see whether restricting the

state space using policy distance functions can speed up the pro-
cess of finding a plan, or whether it can help us to scale up to larger
tasks where state-space planners fail. In the iterative planning pro-
cess, sample plans are required to satisfy the soft goals enforced by
the user within the cost bound. The interaction with the user should
be responsive, so a plan generation should be relatively fast. Here
we use a time limit of 2 minutes per task. We use the LAMA-first
planner [19] as a baseline, because it works well with short time lim-
its. For the policy-guided configurations, we iteratively increase the
radius until we are able to solve the task or reach the time limit.

Figure 2 shows how the fraction of solved tasks (relative coverage)
increases over time. Searching within the radius solves at least as
many tasks as the baseline in most domains (the most notable excep-
tion being Elevators). The results vary across domains. Our methods
can solve significantly more tasks and faster than the baseline in do-
mains Floortile, Scanalyzer and Storage, and the same can observed
to a lesser degree in Beluga, Satellite and Visitall. On average, the
search with δP and δ# solve 8% and 15% more tasks, respectively,
than the baseline. Searching within a radius outperforms strictly fol-
lowing the policy as was expected (except for Gripper where the pol-
icy seems to be optimal). δ# seems to perform slightly better than δP
overall, and δ# significantly outperforms δP in Floortile and Storage.

Given these encouraging results, we also ran a preliminary experi-
ment with policy-guided search in the classical planning setting. We
used the same domains, but without cost bounds, all goals as hard
goals, and the timeout of 30 minutes. We used GBFS with hFF [14]
as a canonical planning baseline here. Using δP and δ# significantly
increases coverage in 5 and 4 domains, respectively; overall, out of
917 tasks, δP (δ#) solves 36 (65) more tasks than the baseline. These
results indicate that policy-guided search has potential beyond our
OSP setting here. Future work should conduct a more thorough ex-
perimental evaluation, to get a better understanding when restrict-
ing a state space by a radius around a learned policy is beneficial,
how and when to decide to increase the radius during the search, or
whether there are distance functions better suited for this setting.

5.2 Evaluation of MUGS Approximation

In the iterative planning process, the computation of MUGS takes
place before the user interaction and therefore allows for a larger time
limit, here we use 30 minutes. We also evaluated an anytime version

Beluga

Blocks

Elevators

Floortile

Gripper

Satellite

Scanalyzer

Spanner

Storage

Transport

Visitall

Woodworking
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

radius

fr
ac
ti
on

of
in
st
ac
es

w
it
h
fu
lly

ex
p
lo
re
d
ra
d
iu
s

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

radius

fr
ac
ti
on

of
in
st
ac
es

w
it
h
fu
lly

ex
p
lo
re
d
ra
d
iu
s

Figure 3. Fraction of instances where the whole radius could be explored
scaled over radius size. Top: probability distance function δP and bottom
diverging actions distance function δ#. mark the coverage of the exact

MUGS computation. They are placed at the radius where the coverage of the
approximation drops below the exact computation.

of the exhaustive state space exploration: We run the exploration with
an imposed time limit or state limit, collect all MSGS, and when the
limit is reached we compute approximate MUGS from them. The
goal here is to see in comparison whether policy-guided methods
indeed carry useful information about the state space, or if the scaling
they provide is merely because they explore fewer states (regardless
of where these states are in the state space).

To measure the accuracy of approximate MUGS GMUGS(P δ
r), we

use the fraction of solvable soft goal subsets (fsgs). That is, we com-
pute how many subsets of soft goals are solvable and divide this num-
ber by the overall number of possible subsets of soft goals, i.e., given
a set of MUGS M we define:

fsgs(M) =
|
⋃

M∈M{G ⊊ M}|
2|Gsoft|

.

Recall that we showed in Proposition 1 that the size of MUGS
increases with increasing radius (i.e., with the larger portion of
state space explored). Therefore, we achieve the largest possi-
ble value of fsgs for the exact MUGS, and the accuracy of ap-
proximate MUGS GMUGS(P δ

r) can be measured by looking at
the difference between fsgs(GMUGS(P δ

r)) and fsgs(GMUGS(P)) (i.e.,
the maximum achievable value is fsgs(GMUGS(P)), not 1). Also
note that fsgs(GMUGS(P δ

r)) increases monotonically and approaches
fsgs(GMUGS(P)) from below with increasing radius r.

5.2.1 Coverage of Approximate MUGS Computation

Figure 3 shows, for varying radius, in how many instances the policy-
guided methods explored the whole (restricted) state space, i.e., in
how many cases we were able to obtain P δ

r in order to compute ap-
proximate MUGS. With the action-probability distance function δP ,
the smoothness of the scaling of radii highly depends on the domain.
For example in Blocksworld, the action with the highest probability
is almost always above 0.9, therefore alternative plans are considered
only with the radius 1. Conversely, the Gripper domain has a lot of
states where multiple actions are assigned similarly high probabili-
ties, therefore the whole state space is explored even for small radii.

The action-probability distance function works best for domains lay-
ing in between these extremes. For example, Transport and Floortile
have many states where one action is clearly preferred while there
are also enough states that act as choice points with multiple sim-
ilarly ranked actions. So, the radius in these domains scales more
smoothly. In most domains, we can scale the radius from 0 up to 0.4
and still compute approximate MUGS in at least as many tasks as the
exact computation. The most notable exceptions being Gripper and
Scanalyzer, where δP does not work very well.

With the action divergence distance function δ#, the scaling of the
radius is more homogeneous across domains, because this distance
function does not depend on the internal “confidence” of the pol-
icy. The scaling depends merely on the structure of the state space.
In all domains, using radius up to 3 allows us to solve at least as
many tasks with approximate MUGS than we would be able with
exact MUGS. Overall, the results clearly show that, with few excep-
tions, computing approximate MUGS with policy distance functions
scales beyond the exact method. The next question is how close ap-
proximate MUGS are to the exact MUGS.

5.2.2 Comparison to Exact MUGS Computation

Figure 4 shows how the average fsgs over all considered tasks in-
creases with time and with the number of explored states for the ap-
proximation methods and for the anytime algorithm. Since we want
to see how close we get to the exact method, we only consider the
tasks where we could compute exact MUGS, and we only show a
subset of the most interesting domains.

The approximation methods converge to the exact MUGS as we
increase time or allow exploring more states across all domains. It
seems that we are able to achieve reasonably high fsgs values even
for small time and state (memory) limits. How quickly methods con-
verge depends on the domain (and the quality of the corresponding
policy). The anytime method converges faster than the policy-guided
methods in 9 out of 12 domains, but one has to keep in mind that
here we use only small tasks where we were able to compute exact
MUGS. When we look at the convergence rate vs. the number of ex-
plored states, we can observe that policies are often able to provide
useful information as they reach the same fsgs with significantly less
explored states than the anytime variant. This is the case for δ# in all
domains and for δP in 10 out of 12.

Overall δ# seems to provide better guidance than δP with respect
to both runtime and number of explored states. For finding a plan, it
is only necessary to explore one way of solving the task. However,
to compute accurate approximation of MUGS, a much larger portion
of the state space has to be explored (of course, preferably only the
parts that are actually relevant for computing MUGS). δ# seems to
be the better of the two policy distance functions in doing that.

Next we analyze whether computing approximate MUGS scales
beyond the feasibility of the exact computation.

5.2.3 Beyond Feasibility of Exact Computation

To see how well our methods scale to large tasks, we consider here
only the tasks where we could not compute exact MUGS, and we
focus on a comparison of fsgs values over increasing time as this is
presumably the critical factor in practice. Figure 5 shows results for 8
domains, the remaining 4 domains either have no commonly solved
instances, or fsgs values of all methods are too small for a reasonable
comparison. Figure 5 includes maximum fsgs values from Figure 4
as a reference, because we expect the fsgs values over exact MUGS

100 101 102 103

0

0.2

0.4

0.6

fs
gs

100 102 104 106

0

0.2

0.4

0.6

B
lo
ck
sw

or
ld

100 101 102 103

0

0.2

0.4

0.6

0.8

1

fs
gs

100 102 104 106

0

0.2

0.4

0.6

0.8

1

F
lo
or
ti
le

100 101 102 103

0

0.2

0.4

0.6

fs
gs

100 102 104 106

0

0.2

0.4

0.6
S
at
el
lit
e

100 101 102 103

0

0.2

0.4

0.6

time in sec

fs
gs

100 102 104 106

0

0.2

0.4

0.6

#states

T
ra
n
sp
or
t

exact anytime δP δ#

Figure 4. fsgs value over time (left) and explored states (right) over all
commonly solved instances where the exact fsgs value could be computed.

Dashed: tasks with cost bound of 50%; solid: cost bound of 75%.

to be about the same also in the large tasks. Nevertheless, the actual
maximum fsgs values may be different.

We can see analogous trends as in the previous section. The fsgs
values increase with increasing time limit, so that we obtain an in-
creasingly more accurate MUGS approximations. There does not
seem to be a significant difference for tasks with 50% cost bound.
For the 75% cost bound, the baseline is slightly better than our meth-
ods in Scanalyzer. In all other domains, either δ# or δP or both
outperform the baseline. The biggest advantage can be observed in
Floortile, Satellite, Storage, and Woodworking where the average
fsgs value of δ# is more than twice as large as the value of the base-
line at the 30 minutes mark.

6 Conclusion
Explainable AI is one of the big challenges today. In the particu-
lar setting of iterative OSP planning, MUGS-based explanations can
be helpful, but they are limited by the lack of scalability of exact
MUGS computation, as well as, sometimes, the need to generate
example plans online. Here we show that this can be alleviated by
leveraging learned information in the form of action policies. Using
distance functions to measure a radius around a policy execution and
searching only within this radius allows us to scale both generation
of example plans and the computation of MUGS to larger instances.

100 101 102 103

0

0.2

0.4

0.6

fs
gs

Blocksworld

100 101 102 103

0

0.2

0.15

0.1

0.05

Elevators

100 101 102 103

0

0.2

0.4

0.6

0.8

1

fs
gs

Floortile

100 101 102 103

0

0.2

0.4

0.6

Satellite

100 101 102 103

0

0.2

0.4

0.6

fs
gs

Scanalyzer

100 101 102 103

0

0.2

0.4

0.6

0.8

Storage

100 101 102 103

0

0.2

0.4

0.6

time in sec

fs
gs

Transport

100 101 102 103

0

0.1

0.2

0.3

0.4

0.5

time in sec

Woodworking

ref exact (Figure 4) anytime δP δ#

Figure 5. fsgs value over time over all commonly solved instances where
the exact fsgs value could not be computed. Dashed: tasks with cost bound
of 50%; solid: cost bound of 75%. Gray horizontal lines are maximum fsgs
values from Figure 4, the actual maximum fsgs values here might differ.

Future work involves experimentation with additional kinds of ac-
tion policies, evaluating their potential. Different types of policy dis-
tance functions are also thinkable.

An off-shoot of our work are policy-improvement methods. Our
radii define searches around a policy path, a natural method to en-
hance individual policy runs. This constitutes a somewhat novel form
of plan-generation method, which as our preliminary results in classi-
cal planning show does have potential. A further interesting direction
is to investigate how such policy-improvement methods can feed into
policy re-training.

Most interestingly for explainable planning, future work could ex-
plore the potential of policy-radius MUGS as a form of explanations
of the policy itself, i.e., of the trade-offs the policy makes and to what
extend they can be changed, similarly to the role of the classical plan-
ner in iterative OSP planning. The radius here could be viewed as a
form of constraint relaxation as in [7], with higher radii being more
relaxed. This makes sense if the user trusts the policy (e.g., through
previous policy testing), and would prefer the radius-constraint to be
tight. MUGS in this context could then explicate the trade-off be-
tween the desire to reach goals or to be close to the policy.

Acknowledgements
This work was funded by the European Union’s Horizon Europe Re-
search and Innovation program under the grant agreement TUPLES
No 101070149, as well as by DFG Grant 389792660 as part of TRR
248 (CPEC, https://perspicuous-computing.science). Rebecca Eifler
would like to acknowledge the support of the Artificial and Natu-
ral Intelligence Toulouse Institute (ANITI), funded by the French
Investing for the Future PIA3 program under the Grant agreement
ANR-19-PI3A-000.

References
[1] L. Amado, R. Mirsky, and F. Meneguzzi. Goal recognition as reinforce-

ment learning. In AAAI, pages 9644–9651, 2022.
[2] M. Boddy, J. Gohde, T. Haigh, and S. Harp. Course of action generation

for cyber security using classical planning. In ICAPS, pages 12–21,
2005.

[3] C. Domshlak and V. Mirkis. Deterministic oversubscription planning
as heuristic search: Abstractions and reformulations. JAIR, 52:97–169,
2015.

[4] R. Eifler, M. Cashmore, J. Hoffmann, D. Magazzeni, and M. Steinmetz.
A new approach to plan-space explanation: Analyzing plan-property de-
pendencies in oversubscription planning. In AAAI, pages 9818–9826,
2020.

[5] R. Eifler, M. Steinmetz, A. Torralba, and J. Hoffmann. Plan-space ex-
planation via plan-property dependencies: Faster algorithms & more
powerful properties. In IJCAI, pages 4091–4097, 2020.

[6] R. Eifler, M. Brandao, A. Coles, J. Frank, and J. Hoffmann. Evaluating
plan-property dependencies: A web-based platform and user study. In
ICAPS, pages 687–691, 2022.

[7] R. Eifler, J. Frank, and J. Hoffmann. Explaining soft-goal conflicts
through constraint relaxations. In IJCAI, pages 4621–4627, 2022.

[8] J. Eisenhut, Á. Torralba, M. Christakis, and J. Hoffmann. Automatic
metamorphic test oracles for action-policy testing. In ICAPS, pages
109–117, 2023.

[9] J. Eisenhut, X. Schuler, D. Fišer, D. Höller, M. Christakis, and J. Hoff-
mann. New fuzzing biases for action policy testing. pages 162–167,
2024.

[10] S. Garg, A. Bajpai, et al. Size independent neural transfer for RDDL
planning. In ICAPS, pages 631–636, 2019.

[11] R. P. Goldman and U. Kuter. Measuring plan diversity: Pathologies in
existing approaches and a new plan distance metric. In AAAI, pages
3275–3282, 2015.

[12] E. Groshev, M. Goldstein, A. Tamar, S. Srivastava, and P. Abbeel.
Learning generalized reactive policies using deep neural networks. In
ICAPS, pages 408–416, 2018.

[13] M. Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[14] J. Hoffmann and B. Nebel. The ff planning system: Fast plan generation
through heuristic search. JAIR, 14:253–302, 2001.

[15] M. Issakkimuthu, A. Fern, and P. Tadepalli. Training deep reactive poli-
cies for probabilistic planning problems. In ICAPS, pages 422–430,
2018.

[16] M. Katz and S. Sohrabi. Reshaping diverse planning. In AAAI, pages
9892–9899, 2020.

[17] M. Katz, E. Keyder, D. Winterer, and F. Pommerening. Oversubscrip-
tion planning as classical planning with multiple cost functions. In
ICAPS, pages 237–245, 2019.

[18] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anas-
tasopoulos, M. Ballesteros, D. Chiang, D. Clothiaux, T. Cohn, K. Duh,
M. Faruqui, C. Gan, D. Garrette, Y. Ji, L. Kong, A. Kuncoro, G. Ku-
mar, C. Malaviya, P. Michel, Y. Oda, M. Richardson, N. Saphra,
S. Swayamdipta, and P. Yin. Dynet: The dynamic neural network
toolkit. arXiv preprint arXiv:1701.03980, 2017.

[19] S. Richter, M. Westphal, and M. Helmert. Lama 2008 and 2011. In
International Planning Competition, pages 117–124. ICAPS Freiburg,
Germany, 2011.

[20] D. Smith. Planning as an iterative process. In AAAI, pages 2180–2185,
2012.

[21] D. E. Smith. Choosing objectives in over-subscription planning. In
ICAPS, pages 393–401, 2004.

[22] S. Ståhlberg, B. Bonet, and H. Geffner. Learning general optimal poli-
cies with graph neural networks: Expressive power, transparency, and
limits. In ICAPS, pages 629–637, 2022.

[23] S. Toyer, F. Trevizan, S. Thiebaux, and L. Xie. Action schema networks:
Generalised policies with deep learning. In AAAI, pages 6294–6301,
2018.

[24] S. Toyer, S. Thiébaux, F. W. Trevizan, and L. Xie. Asnets: Deep learning
for generalised planning. Journal of Artificial Intelligence Research, 68:
1–68, 2020.

