
Making Hill-Climbing Great Again
through Online Relaxation Refinement and Novelty Pruning

Maximilian Fickert
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

fickert@cs.uni-saarland.de

Abstract

Delete relaxation is one of the most successful approaches to
classical planning as heuristic search. The precision of these
heuristics can be improved by taking some delete information
into account, in particular through atomic conjunctions in the
hCFF heuristic. It has recently been shown that this heuris-
tic is especially effective when these conjunctions are learned
online in a hill-climbing search algorithm. In this work, we
devise a natural extension to this approach using novelty pru-
ning, a recently-developed technique that prunes states based
on whether they contain facts not seen before in the search.
We evaluate our extension on the IPC benchmarks, where it
beats LAMA, Mercury, and Dual-BFWS on many domains.

Introduction
In classical planning, a task forms a deterministic transition
system where states are represented by a set of propositio-
nal facts. Transitions are described by actions that have sets
of facts as preconditions, and applying an action deletes and
adds facts. The goal is to find a sequence of actions leading
from a given initial state to a goal state. A prominent appro-
ach to solve classical planning tasks is heuristic search (e.g.
(Hoffmann and Nebel 2001; Richter and Westphal 2010;
Domshlak, Hoffmann, and Katz 2015)).

In satisficing planning, heuristics based on the delete re-
laxation were part of most state-of-the-art planners for al-
most two decades. However, the delete relaxation often ig-
nores critical features of the planning task, e.g. fuel con-
sumption. These pitfalls can be diminished by “un-relaxing”
part of the problem. One such method is to respect certain
combinations of facts in the relaxed plans, e.g. being in a
specific location while still having a certain amount of fuel.
The hCFF heuristic implements this by treating a set of con-
junctions C as atomic (Fickert, Hoffmann, and Steinmetz
2016). Choosing C correctly is critical for the performance
of the heuristic, since, while the accuracy increases with lar-
ger C, so does the computational complexity.

Fickert and Hoffmann (2017a) have recently shown that
the hCFF heuristic is particularly effective when the con-
junctions are generated online. They employ a variant of
enforced hill-climbing (Hoffmann and Nebel 2001), called

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Refinement-HC, to detect when the search is stuck in a local
minimum. When this happens, the heuristic is refined until
the local minimum is removed from the search space sur-
face. In standard enforced hill-climbing, the search progres-
ses through iterations of breadth-first search until a new best
state is found, then continuing from there. In Refinement-
HC, the depth of the breadth-first search explorations is
bounded. Whenever the search fails to find a state with lo-
wer h-value within that bound, conjunctions are added to
C. Thereby, local minima are escaped not by search, but by
heuristic refinement.

In this work, we extend the Refinement-HC approach
with novelty pruning (Lipovetzky and Geffner 2012). This
pruning technique ignores states that do not contain at le-
ast one novel fact (not contained in any of the states gene-
rated so far). Despite its simplicity, novelty pruning per-
forms very well on many standard planning benchmarks
(e.g. (Lipovetzky and Geffner 2017a; Katz et al. 2017;
Lipovetzky and Geffner 2017b)).

In order to adapt EHC for online-refinement, the main
modification is defining a criterion when to refine the heuris-
tic. In Refinement-HC, this is done by bounding the depth
of the breadth-first search iterations. Here, we bound the
breadth-first search explorations using incomplete novelty
pruning instead. This makes the local explorations more
flexible, as it allows promising regions (with novel facts) to
be explored in more depth. We evaluate our algorithm on the
IPC benchmarks, where it consistently improves the perfor-
mance of Refinement-HC and outperforms state-of-the-art
planners on many domains.

Background
We start by introducing the basic planning definitions, be-
fore briefly summarizing novelty pruning, as well as hCFF

and how it is used in Refinement-HC.

Planning Framework
We use the STRIPS formulation of planning tasks (Fikes and
Nilsson 1971), where each state is a set of boolean facts. A
STRIPS task is defined as a 4-tuple Π = 〈F ,A, I,G〉, where
F is a set of facts,A are the actions, I is the initial state, and
G a set of goal facts. Each action a = 〈prea, adda, dela〉 is
a tuple of its preconditions, add effects, and delete effects,



each being a subset of F , with prea ∩ dela = ∅. We assume
unit action costs.

A state s ⊆ F is a set of facts. An action a ∈ A is
applicable in s if prea ⊆ s, and applying a in s results in
the state appl(s, a) = (s \ dela) ∪ adda. A plan for s is an
applicable action sequence leading from s to a goal state. A
plan for a task Π is a plan for its initial state I. A plan is
called optimal if it has minimal length among all plans.

We will need the concept of regression, which yields the
set of facts required to achieve a subgoal through a given
action. A set of facts g is regressable over an action a if
adda∩g 6= ∅ and dela∩g = ∅. In this case, the regression of
g over a is defined as R(g, a) = (g\adda)∪prea, otherwise
we write R(g, a) = ⊥.

The set of all states is denoted by S. A heuristic function
(short heuristic) h : S 7→ N0∪{∞} is a function that assigns
an estimated goal distance to each state, or∞ to indicate that
no plan exists for a state (such a state is called dead end). For
simplicity, we assume that h(s) = 0 iff s ⊇ G. The perfect
heuristic h∗ assigns each state s the length of an optimal
plan for s, or∞ no plan exists for s.

Given a solvable task Π, a search algorithm is complete if
it always finds a solution for Π in finite time.

Novelty Pruning
A set of facts is called novel if it was not contained in any
previously generated state. The novelty of a state s is the
size of the smallest novel tuple of facts in s. The concept of
novelty has been exploited in different forms, in particular as
a pruning function in Iterated Width Search (IW) (Lipovet-
zky and Geffner 2012). A single iteration IW(k) is a plain
breadth-first search in which all states with novelty greater
than k are pruned. IW(k) expands at most |F|k states, ma-
king it incomplete (unless k = |F|, when only duplicate sta-
tes are pruned). IW performs successive iterations of IW(k)
with increasing k. Lipovetzky and Geffner have shown that
many domains (independent of the selected instances) are
solvable with low and bounded k when restricting the goal
to a single fact.

Intuitively, the success of these width-based methods can
be explained by the observation that actions in (optimal)
plans often achieve at least one fact (or small tuple of facts)
that was not true in any preceding state on the solution path.

Delete Relaxation and hCFF

The delete relaxation is a simplified task where the delete
effects of all actions are assumed to be empty. The per-
fect delete relaxation heuristic h+ estimates the remaining
goal distance of a state s by the distance of an optimal de-
lete relaxed plan for s (or∞ if no delete relaxed plan for s
exists). Computing h+ is not possible in polynomial time,
which makes it unsuitable to use as a heuristic in search.
In practice, hFF is used instead, which does not require the
delete relaxed plans to be optimal.

Example 1 Consider the task illustrated below. The car has
to move from A to C. The car can only hold one unit of fuel,
which each drive action consumes, but can be refueled at
any location. Formally, there are facts at(x) for the position

of the car and fuel to indicate if the car has fuel. Initially the
car is at location A and holds fuel.

A B C

An optimal plan is 〈drive(A, B), refuel, drive(B, C)〉. A
fully delete relaxed plan can ignore the fuel consumption:
〈drive(A, B), drive(B, C)〉.

Delete relaxation heuristics can be made more accurate
by taking some delete information into account. The hCFF

heuristic accomplishes this by treating a set of conjunctions
C of facts as atomic. Achieving a conjunction c ∈ C means
achieving the individual facts represented by c simultane-
ously. Whenever a conjunction is a subset of the precon-
ditions of an action, the conjunction of these facts must be
achieved instead of the facts individually. Throughout this
paper we implicitly assume C to contain at least all single-
ton conjunctions c = {f} for all facts f ∈ F .

The partially relaxed plans for hCFF (C-relaxed plans)
consist of pairs of actions and sets of supported conjuncti-
ons (a,C ′) called action occurrences. The set of supported
conjunctions C ′ indicates which conjunctions the action is
achieving. An action a can only achieve a conjunction c if
R(c, a) 6= ⊥. The action occurrence has additional precon-
ditions for the parts of the supported conjunctions that are
not achieved by the action itself, so the overall preconditions
of an action occurrence are pre(a,C′) = (

⋃
c∈C′ R(c, a))C ,

where “XC” is a shorthand for {c ∈ C | c ⊆ X}.

Example 2 Assume C consists of the conjunction c =
{at(B), fuel} (and all singletons). Since c ⊆ predrive(B, C),
partially relaxed plans must achieve c instead of at(B) and
fuel individually before drive(B, C) can be applied.

The only actions that could potentially make c true are
the actions achieving part of it (i.e. driving to B and the
refuel action). However, the drive actions delete the fuel
part of c, so c can only be achieved using refuel. With
the refuel action, at(B) must already be true to achieve
c. The action occurrence (refuel, {c}) has preconditions
R(c, refuel) = {at(B)}C = {{at(B)}}. Thus, a C-relaxed
plan is 〈(drive(A, B), {{at(B)}}), (refuel, {{at(B), fuel}}),
(drive(B, C), {{at(C)}})〉, which is also a real plan.

The set of conjunctions C is typically generated by an ite-
rative refinement procedure based on counter-example gui-
ded abstraction refinement. The algorithm identifies con-
flicts in the current relaxed plan, and adds conjunctions that
prevent these conflicts from occurring in the next computed
plan (Haslum 2012; Keyder, Hoffmann, and Haslum 2012;
2014; Fickert and Hoffmann 2017b). This procedure can be
repeated until some condition is met, e.g. a time or memory
bound. The hCFF heuristic converges in the sense that with
sufficiently large C, all C-relaxed plans are real plans.

Refinement-HC
The hCFF heuristic works best when the conjunctions are
generated online, in particular in an adaptation of enforced



hill-climbing (Fickert and Hoffmann 2017a).
Standard enforced hill-climbing (EHC) performs iterati-

ons of breadth-first search (BrFS) until a state with lower
heuristic value is found, then starting the next BrFS phase
from that state until a goal is reached (Algorithm 1).

Algorithm 1: Enforced Hill Climbing
sbest := I
while h(sbest) 6= 0 do

Run BrFS from sbest until a state s with
h(s) < h(sbest) is found.

if no such state exists then
return FAIL

sbest := s

return SOLVED

Refinement-HC extends EHC in two ways. First, it in-
troduces a criterion upon which the heuristic is refined
(the “refinement trigger”). This is achieved by placing a
depth bound d on the BrFS exploration, which we write as
BrFS[d]. Whenever the BrFS phase fails to find a state with
better heuristic value than sbest, refinement is triggered (this
essentially replaces the FAIL case). Second, Refinement-HC
restarts from the initial state (without resetting the heuris-
tic), when it detects that sbest is a dead end. Together with
the converging heuristic function refinement, this makes the
search algorithm complete.

In principle, BrFS[d] could be exchanged by any other
local exploration strategy. In this work, we show that simply
replacing the depth bound by novelty pruning improves the
overall performance of the search algorithm significantly, as
it explores the local search space in a more targeted manner.

Refinement-HC with Novelty Pruning
In Refinement-HC, the local exploration is the most critical
part of the overall search algorithm. The performance highly
depends on the depth bound d for BrFS[d], as it controls
how much refinement is done. Selecting a smaller value for
d makes the local explorations more restricted and triggers
the refinement earlier, while larger values for d can allow
the search to escape the local minimum through brute-force
search instead of refining the heuristic. However, a simple
BrFS is not always a good choice, as it ignores the structure
of the local search space.

We can make the local exploration more directed by limi-
ting BrFS through novelty pruning instead of using a depth
bound. The refinement is triggered when the local explora-
tion runs out of states passing the novelty test. This accom-
plishes the same goal of restricting the BrFS exploration, but
it allows certain branches (those with states that pass the no-
velty test) to be explored in more depth, beyond the bound
of BrFS[d]. Furthermore, it avoids states that do not con-
tain any new facts (and thus are less likely to have shorter
C-relaxed plans to the goal), which can reduce the search
effort of the local exploration.

In our adapted Refinement-HC, we replace BrFS[d] by
IW(k), i.e. BrFS with novelty pruning (Algorithm 2). The

novelty is only tracked within a single BrFS exploration star-
ting from sbest, not across the overall search. This is because
(a), we want to use novelty pruning to bound the BrFS ex-
ploration, not as a pruning method in the overall search, and
(b), to retain the completeness property of Refinement-HC.
Regarding (b), if the novelty takes into account all states ex-
plored in the overall search, sbest could wrongly become a
dead end because all successors are pruned, thereby losing
completeness. Using IW(k) in the described way instead of
BrFS[d] as the local exploration strategy only changes the
way the local search space around sbest is explored, and re-
tains the completeness of Refinement-HC which is ensured
by the convergence of hCFF.

Algorithm 2: Refinement-HC with Novelty Pruning
(simplified)
sbest := I
while h(sbest) 6= 0 do

Run IW(k) from sbest until a state s with
h(s) < h(sbest) is found.

if no such state exists then
Refine h in sbest.
continue

sbest := s

return SOLVED

Novelty Pruning with Conjunctions
In IW(k), novelty pruning is used to prune states with no-
velty greater than k, i.e. states not containing a novel k-tuple
of facts. We can generalize this from k-tuples to an arbitrary
set of conjunctions:

Definition 1 (IW(C)) For a set of conjunctions C, we de-
fine IW(C) as a breadth-first search that prunes all states s
that do not contain a novel conjunction c ∈ C, c ⊆ s.

This is not an entirely new idea (it is mentioned e.g. in the
conclusion of Katz et. al’s (2017) work). However, it has
not been implemented in practice yet. The main reason is
that it is not clear how a suitable set of conjunctions can be
generated for novelty pruning. Since in our setting there is a
set of conjunctions readily available, i.e. the set of conjuncti-
ons used by the hCFF heuristic, we implemented a variant of
our algorithm where these conjunctions are used for novelty
pruning as well. Whenever a conjunction is added to hCFF,
it is also added for the novelty pruning in IW(C).

Sharing the set of conjunctions with hCFF also has a sy-
nergistic side-effect in Refinement-HC. The hCFF heuristic
becomes more expensive to evaluate with each added con-
junction, so refinement should be used carefully. On the
other hand, IW(C) is less restrictive with each added con-
junction. Thus, as Refinement-HC progresses, refinement
will be triggered less frequently with larger C (since the no-
velty pruning is less aggressive), which reduces further over-
head for hCFF.



Experiments
We implemented our techniques in Fast Downward (Helmert
2006). The experiments were run on a cluster of Intel Xenon
E5-2650 v3 processors with a clock rate of 2.3 GHz. The
time and memory limits were set to 30 minutes and 4 GB
respectively. We ran our experiments on all domains from
the satisficing tracks of past IPCs.

All our Refinement-HC configurations use the best per-
forming parameter settings from Fickert and Hoffmann’s
(2017a) work, in particular d = 3 for BrFS[d]. Since
the algorithm uses random tie breaking for both the heu-
ristic and the successor generation, we averaged the results
over 10 different random seeds. We compare our approach
to Refinement-HC and the state of the art, represented by
LAMA (Richter and Westphal 2010), Mercury (Domshlak,
Hoffmann, and Katz 2015), and the novelty-based Dual-
BFWS planner (Lipovetzky and Geffner 2017a).

Coverage Results
Table 1 shows the coverage results on the IPC bench-
marks. Both the IW(1) and IW(C) configurations gre-
atly improve over the Refinement-HC configuration using
BrFS[3] (+37.8 respectively +47.7 total coverage). The in-
crease in coverage can be observed across almost all dom-
ains, most significantly in Parking (+12.1 with IW(C)),
Sokoban (+9.5), and Barman (+4.6). The only domains
with losses in coverage are Transport (−3.6) and Nomys-
tery (−1.5). The Refinement-HC configuration using IW(2)
does not perform well, because the refinement is triggered
too late as discussed in the next subsection.

Using IW(C) as the local exploration works best overall,
and is consistently the best option across almost all domains.
It beats both LAMA and Mercury overall (+41.8 respecti-
vely +11.8), and only loses very slightly to Dual-BFWS
(−2.2). In 12 domains, it is strictly better than both LAMA
and Mercury, and worse than either in 9 domains. Compa-
ring directly to Dual-BFWS, Refinement-HC with IW(C) is
better in 16 domains and worse in 13. The domains with
the biggest advantage are those where BrFS with bounded
depth already works very well, e.g. Floortile (+32/32/30
compared to LAMA/Mercury/Dual-BFWS) or Maintenance
(+17/10/9). Conversely, in domains where the other plan-
ners are much stronger, Refinement-HC does not perform
well irrespective of the applied local exploration strategy.
Examples are Sokoban (−32/26/27), where local search al-
gorithms perform poorly due to many dead ends, or VisitAll
(−20.3), where delete relaxation heuristics get lost in large
plateaus which cannot be efficiently resolved through con-
junctions in hCFF.

Below the coverage results, Table 1 shows the run times
of the planners on commonly solved instances. On average,
Refinement-HC with IW(C) is the fastest planner. It is
roughly 1.3x faster than LAMA, 1.4x faster than Mercury,
and more than 3x faster than Dual-BFWS. Due to the rand-
omized nature of Refinement-HC, the search time can vary
slightly between different random seeds (the relative stan-
dard deviation is 31%). The slow run times of Dual-BFWS
are because it runs incomplete searches first, and only if

Search Refinement-HC
LAMA Merc. Dual-

BFWSLocal Expl. IW(1) IW(2) IW(C) BrFS[3]
Airport 50 46.5 33.9 46.5 43.4 32 32 47
Barman 40 36.8 5.2 37.7 33.1 39 40 40
Cavediving 20 7.0 7.0 7.1 7.1 7 7 7
Childsnack 20 5.6 5.6 5.2 3.3 5 0 9
CityCar 20 10.7 4.4 10.5 9.6 3 5 20
Depot 22 22.0 22.0 22.0 22.0 20 21 21
DriverLog 20 19.7 17.8 20.0 19.7 20 20 20
Elevators 50 50.0 48.9 50.0 50.0 50 50 50
Floortile 40 40.0 38.7 40.0 40.0 8 8 10
Freecell 80 74.4 77.3 76.6 73.0 79 80 80
GED 20 20.0 13.0 20.0 20.0 20 20 15
Hiking 20 20.0 19.7 20.0 19.9 18 20 8
Logistics 63 63.0 57.5 63.0 59.5 63 63 62
Mainten. 20 17.0 10.9 17.0 16.9 0 7 8
Nomystery 20 9.5 11.4 9.7 11.2 10 14 16
Openst. 100 100.0 96.0 100.0 100.0 100 100 98
Parcpr. 50 50.0 50.0 50.0 50.0 49 50 43
Parking 40 39.9 25.8 40.0 27.9 40 40 40
Pathways 30 30.0 30.0 30.0 29.9 23 30 29
Pegsol 50 46.7 49.6 49.8 48.4 50 50 50
Pipes-NT 50 45.3 42.8 45.5 44.7 43 44 48
Pipes-T 50 43.4 42.9 44.1 42.7 42 42 34
Rovers 40 40.0 34.4 40.0 40.0 40 40 40
Satellite 36 36.0 34.7 36.0 35.8 36 36 30
Scanalyzer 50 50.0 48.8 50.0 50.0 50 50 48
Sokoban 50 14.8 15.4 16.0 6.5 48 42 43
Storage 30 29.1 22.4 28.2 27.3 19 19 28
Tetris 20 15.8 1.0 15.5 11.9 12 19 17
Thoughtful 20 19.9 19.3 20.0 19.7 16 13 16
Tidybot 20 16.0 17.9 17.7 15.1 17 14 18
TPP 30 30.0 28.0 30.0 30.0 30 30 30
Transport 70 53.2 32.7 53.3 56.9 61 70 70
Trucks 30 14.9 15.1 15.7 15.0 15 19 14
VisitAll 40 19.7 4.8 19.7 18.6 40 40 40
Others 414 414.0 414.0 414.0 414.0 414 414 414
Sum 1725 1550.9 1398.9 1560.8 1513.1 1519 1549 1563
Time (s) 0.27 1.19 0.25 0.33 0.33 0.36 0.78
Exp. until R. 14.0 30.8 15.8 17.7 – – –
Refinement 21.1 10.6 19.0 36.0 – – –

Table 1: Coverage. Comparison of different local search
strategies in Refinement-HC with LAMA, Mercury, and
Dual-BFWS. The columns on the left show Refinement-HC
with different local search configurations: three configura-
tions with novelty-based exploration, and the default confi-
guration with depth-bounded BrFS. Domains solved by all
configurations are grouped to “Others”. The row below the
overall coverage shows the geometric mean of the planner
run times on commonly solved instances in seconds. The
last two rows show refinement statistics.

those do not succeed a complete search algorithm is started.
While this strategy can sometimes find solutions very fast, it
also adds overhead on instances where the incomplete phase
fails to find a solution.



Refinement Behavior
We now look at the refinement behavior of the different local
exploration strategies. The last two rows of Table 1 show the
number of expansions in a local exploration preceding a refi-
nement (“Exp. until R.”) and the number of times refinement
was triggered during search (“Refinement”), both as the ge-
ometric mean over all commonly solved instances where re-
finement was triggered at least once. Both IW(1) and IW(C)
expand a similar number of states as BrFS[3] in local explo-
ration phases where the heuristic is refined afterwards (c.f.
Exp. until R.). However, with IW(1) and IW(C), refinement
is triggered much less frequently overall: 21.1 respectively
19.0 times compared to 36.0 times for BrFS[3]. This shows
that a state with lower heuristic value can be found more
often in the local exploration phase with the novelty-based
exploration strategies.

With IW(2), refinement is triggered too late and the heu-
ristic does not become accurate enough. Additionally, with
IW(2), on average 33% of the search time is spent evaluating
the novelty compared to around 2% for IW(1) and IW(C).

Conclusion
We have introduced a natural extension for Refinement-HC
using a novelty-based local exploration. We have shown that
this can significantly increase the empirical performance, es-
pecially when using the conjunction set from hCFF in the
novelty pruning as well. While our hill-climbing-based ap-
proach beats the state of the art in many domains, it cannot
completely overcome the limitations of local search in dom-
ains with deep dead ends (Sokoban) or domains where the
local minima cannot be effectively removed through hCFF

refinement (VisitAll).
For future work, it may be interesting to explore whether

novelty pruning could help with online-refinement of hCFF

in GBFS as well, which has lagged behind Refinement-HC
in terms of performance so far.

Acknowledgments
This work was partially supported by the German Research
Foundation (DFG), under grant HO 2169/5-1, “Critically
Constrained Planning via Partial Delete Relaxation”. We
thank the anonymous reviewers, whose comments helped
significantly to improve this paper.

References
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds. 2012. Proceedings of the 22nd International Confe-
rence on Automated Planning and Scheduling (ICAPS’12).
AAAI Press.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Fickert, M., and Hoffmann, J. 2017a. Complete local search:
Boosting hill-climbing through online heuristic-function re-
finement. In Proceedings of the 27th International Confe-
rence on Automated Planning and Scheduling (ICAPS’17)
(2017).

Fickert, M., and Hoffmann, J. 2017b. Ranking conjunctions
for partial delete relaxation heuristics in planning. In Fuku-
naga, A., and Kishimoto, A., eds., Proceedings of the 10th
Annual Symposium on Combinatorial Search (SOCS’17).
AAAI Press.
Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Com-
bining the delete relaxation with critical-path heuristics: A
direct characterization. Journal of Artificial Intelligence Re-
search 56(1):269–327.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new appro-
ach to the application of theorem proving to problem sol-
ving. Artificial Intelligence 2:189–208.
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Bonet et al. (2012), 74–82.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
2017. Proceedings of the 27th International Conference
on Automated Planning and Scheduling (ICAPS’17), AAAI
Press.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2017. Adapting novelty to classical planning as heuristic
search. In Proceedings of the 27th International Conference
on Automated Planning and Scheduling (ICAPS’17) (2017),
172–180.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet et al. (2012), 128–136.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Impro-
ving delete relaxation heuristics through explicitly represen-
ted conjunctions. Journal of Artificial Intelligence Research
50:487–533.
Lipovetzky, N., and Geffner, H. 2012. Width and seriali-
zation of classical planning problems. In Raedt, L. D., ed.,
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI’12), 540–545. Montpellier, France: IOS
Press.
Lipovetzky, N., and Geffner, H. 2017a. Best-first width
search: Exploration and exploitation in classical planning.
In Singh, S., and Markovitch, S., eds., Proceedings of the
31st AAAI Conference on Artificial Intelligence (AAAI’17),
3590–3596. AAAI Press.
Lipovetzky, N., and Geffner, H. 2017b. A polynomial plan-
ning algorithm that beats LAMA and FF. In Proceedings of
the 27th International Conference on Automated Planning
and Scheduling (ICAPS’17) (2017), 195–199.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.


