
Action Policy Testing with Heuristic-Based Bias Functions

Xandra Schuler1, Jan Eisenhut1, Daniel Höller1, Daniel Fišer1, Jörg Hoffmann1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

s8xaschu@stud.uni-saarland.de, {eisenhut,hoeller,danfis,hoffmann}@cs.uni-saarland.de

Abstract

When using action policies for sequential decision making,
testing is a valuable tool to gain trust in their decisions. In
particular, the action policies obtained via training deep neu-
ral networks are notoriously hard to verify and therefore need
to be tested as black-box policies. Early approaches to policy
testing aimed at finding environment conditions with prob-
lematic policy decisions. However, in these states, such deci-
sions might be unavoidable, even for an optimal policy. Re-
cently, a novel approach was introduced that instead looks
for states where there provably exists a better decision. Such
states are called (policy) bugs. While proving that a state is
a bug is in general as hard as finding an optimal policy, sev-
eral approaches have been proposed to successfully solve it in
practice. They contain two sub-tasks that can be tackled sep-
arately: finding states prone to be bugs and proving that they
actually are bugs. Here we deal with the former task and intro-
duce two novel approaches for generating test states, which
we call loopiness bias and surface bias. Both use techniques
from heuristic search in classical planning to find states likely
to cause the policy to behave suboptimally.

Introduction
Action policies based on neural networks have been highly
successful. First in game playing (Mnih et al. 2013; Silver
et al. 2016, 2018), but more recently also in AI planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020; Karia
and Srivastava 2021).

One strength of systems using such policies is that they
can determine the next action to execute using a single eval-
uation of their policy on the current state of the environment
leading to real-time decisions. However, such an approach
raises concerns about (potentially fatal) undesirable behav-
ior of the policy. Action policy testing is a natural way to
gain trust in a policy. Early approaches on testing in se-
quential decision making control the behavior of the envi-
ronment, steering the system into problematic areas (e.g.,
Dreossi et al. 2015; Akazaki et al. 2018; Koren et al. 2018;
Ernst et al. 2019; Lee et al. 2020). However, when there is
no way to avoid fatal decisions of the policy (even for an
optimal policy), the policy is not to blame.

Recently, a novel framework for policy testing has been
introduced (Steinmetz et al. 2022). The basic idea is to find
environment states where the policy behaves suboptimally

(with regard to some testing objective), i.e., where there ex-
ists a better decision to make. Such states are called bugs
of the policy. While solving the problem of “bug detection”
exactly obviously implies solving the problem of finding an
optimal policy, several methods have been introduced that
can identify policy bugs quite well in practice (Steinmetz
et al. 2022; Eisenhut et al. 2023). The basic approach can
be divided into two parts. In the first step, called fuzzing, a
pool of states prone for being bugs is generated. In the sec-
ond step, called bug confirmation, it needs to be proven that
the tested policy behaves suboptimally on these states—the
methods used for deciding whether the policy’s decision on
the given state is suboptimal are called oracles.

Both Steinmetz et al. (2022) and Eisenhut et al. (2023)
focus on deterministic neural network policies built with the
Action Schema Networks (ASNets) technique (Toyer et al.
2018, 2020) and use a very basic fuzzer for generating test
states. For bug confirmation, Steinmetz et al. (2022) evalu-
ated various oracles including a plan-improvement tool Aras
(Nakhost and Müller 2010), a depth-first lookahead search
repeatedly executing the input policy on different states in
order to prove that better solution exists, and a couple of
oracles specialized to invertible planning tasks. Eisenhut
et al. (2023) follow on the work in the area of discrete-time
Markov decision processes of Enişer et al. (2022) introduc-
ing metamorphic oracles. These oracles compare the policy
behavior on pairs of states of which one is known to be eas-
ier to solve. So, when the policy performs worse on an easier
state than on a harder state, a policy bug has been found.
Eisenhut et al. (2023) uses an analogous idea in the area
of classical (deterministic) planning leveraging the previous
work on quantitative dominance functions (Torralba 2017).
They show that such functions allow us to compare states in
a domain-independent manner leading to metamorphic test
oracles that can be successfully combined with the (search-
based) oracles used by Steinmetz et al. (2022).

In this paper, we focus exclusively on the fuzzing step,
i.e., we look for methods to find a pool of states likely to
exhibit bugs. We build on the fuzzing technique introduced
by Steinmetz et al.: a random walk starting at the initial state
that can be steered towards more promising test states by
so-called bias functions. A bias function takes a state and re-
turns a number where higher numbers indicate more promis-
ing test states. We propose several new bias functions ex-



ploiting well-known heuristic functions from classical plan-
ning. We start with very simple bias functions based on the
idea that the further away from the goal the given state is,
the more likely it is the policy will fail. We end with more
involved bias functions that compare the quality of a path in-
duced by the policy with heuristic estimates to predict where
the policy is behaving suboptimally. Our preliminary exper-
imental evaluation shows encouraging results.

Background
An FDR planning task is a tuple Π = ⟨V,A, I, G⟩. V is
a finite set of variables, each variable V ∈ V has a finite
domain dom(V ). A fact ⟨V, v⟩ is a pair of a variable V ∈ V
and one of its values v ∈ dom(V ). A partial state p is a
variable assignment over some variables vars(p) ⊆ V . We
write p[V ] for the value assigned to the variable V ∈ vars(p)
in the partial state p. Given a set of variables U ⊆ V , p[U ]
denotes a partial state p restricted to U . We also identify p
with the set of facts contained in p, i.e., p = {⟨V, p[V ]⟩ |
V ∈ vars(p)}. A partial state s is a state if vars(s) = V .
The set of all states is denoted by S and the set of all partial
states is denoted by P . I is an initial state. G is a partial state
called goal, and a state s is called a goal state if G ⊆ s.

A is a finite set of actions, each action a ∈ A is a triple
⟨pre(a), eff(a), cost(a)⟩ of a precondition, effect, and cost
respectively. Preconditions and effects are partial states and
costs are non-negative real numbers. An action a is applica-
ble in a state s if pre(a) ⊆ s. Given a state s, A[s] denotes
the set of all actions applicable in s. The resulting state of
applying an applicable action a in a state s is the state aJsK
where aJsK[V ] = eff(a)[V ] for every V ∈ vars(eff(a)), and
aJsK[V ] = s[V ] for every V ∈ V \ vars(eff(a)).

A sequence of actions ϕ = ⟨a1, . . . , an⟩ is applicable in
a state s0 if there are states s1, . . . , sn such that ai is ap-
plicable in si−1 and si = aiJsi−1K for 1 ≤ i ≤ n. The
resulting state of this application is ϕJs0K = sn. Given an
action sequence ϕ = ⟨a1, . . . , an⟩ applicable in a state s,
the sequence ⟨s0, s1, . . . , sn⟩ of the aforementioned states
is called intermediate state sequence of ϕ. The cost of the
action sequence ϕ = ⟨a1, . . . , an⟩ is defined as cost(ϕ) =∑n

i=1 cost(ai).
Given states s and t, a sequence of operators ϕ is called

an s-t-path if ϕ is applicable in s and ϕJsK = t. An s-t-path
ϕ is called s-plan if t is a goal state. An I-plan is simply
called a plan. An s-t-path (s-plan, plan) is called optimal if
its cost is minimal among all s-t-paths (s-plans, plans).

We will need estimators for costs of optimal s-t-paths and
s-plans. So, we define a heuristic function h as a function
mapping a pair of a state and a partial state to a number or
infinity (indicating unreachability of any goal state from the
given state), i.e., h : S × P 7→ R+

0 ∪ {∞}. Given two states
s and t, the heuristic h estimates the cost of the optimal s-t-
path. Given a state s, h(s) denotes a shorthand for h(s,G),
i.e., h(s) denotes a heuristic estimate for the cost of the opti-
mal s-plan. h⋆(s, t) denotes the cost of the optimal s-t-path,
and h⋆(s) denotes the cost of the optimal s-plan. All heuris-
tics we consider here are safe, i.e., they return ∞ only if
there is no s-t-path (or s-plan).

Action Policy
We consider deterministic state-dependent policies. A pol-
icy π : S 7→ A ∪ {∅} is a function mapping states to appli-
cable actions or null (∅) if there is no applicable action, i.e.,
for every state s ∈ S and policy π it holds that π(s) = ∅ if
A[s] = ∅ and π(s) ∈ A[s] otherwise. Given a policy π and
a state s, the run of π on s, denoted by σπ(s), is a sequence
of actions σπ(s) = ⟨a1, . . . , an⟩ applicable in s (with its
intermediate state sequence ⟨s0, . . . , sn⟩) such that

(i) for every i ∈ {1, . . . , n} it holds that ai = π(si−1),
(ii) for every i ∈ {0, . . . , n− 1} it holds that si is not a goal

state, and
(iii) for every i, j ∈ {0, . . . , n − 1} with i ̸= j it holds that

si ̸= sj .

In other words, the run of π in s is the action sequence result-
ing from iteratively applying the policy π starting in the state
s in such a way that the run terminates either when there is
no applicable action, or the first goal state is reached, or the
policy loops, i.e., it reaches some state for the second time.
Clearly, σπ(s) is finite and unique.

The cost of the run σπ(s), denoted by costπ(s), is defined
as costπ(s) = cost(σπ(s)) if σπ(s)JsK is a goal state, and
costπ(s) = ∞ otherwise.

Given a policy π, state s0, the run σπ(s0) = ⟨a1, . . . , an⟩,
its intermediate state sequence ⟨s0, . . . , sn⟩, and two num-
bers i, j such that 0 ≤ i < j ≤ n, costπs0(si, sj) denotes
the cost of the subsequence of σπ(s0) between si and sj ,
i.e., costπs0(si, sj) =

∑j
k=i+1 cost(ak). Note that comput-

ing costπs0(si, sj) does not require knowing the whole policy
run unless sj = sn. This allows to put a limit on the number
of steps used to compute a policy run.

Action Policy Testing
The goal of action policy testing is to identify states where
the given policy behaves suboptimally. Here, we adopt the
testing framework introduced by Steinmetz et al. (2022).
Given an FDR task Π and a policy π, a state t ∈ S is called
a bug in π if costπ(t) > h⋆(s). Note that this definition
covers both the case (called “quantitative bug” by Steinmetz
et al.) where π finds a suboptimal plan, i.e., both costπ(t)
and h⋆(s) are finite, and the case (called “qualitative bug” by
Steinmetz et al.) where π does not find a plan even though
there exists one, i.e., costπ(t) = ∞ but h⋆(s) is finite.

Policy testing requires (a) generating a pool P ⊆ S of test
states, and (b) running test oracles on the pool states t ∈ P
to find bugs. Here, we are concerned with (a) only. For (b),
we evaluate the best-performing oracle from the recent work
of Eisenhut et al. (2023) denoted in their work as “BMO-100
+ Aras/EHC”.

This so-called bound maintenance oracle (BMO) main-
tains upper bounds u(t) on h⋆(t) across the states t it
encounters during testing and attempts to propagate these
bounds through state comparisons based on quantitative
dominance functions (Torralba 2017). The underlying idea
of how these bounds can be propagated is simple. Assume
that we know that a previously encountered state s is solv-
able with a cost of at most 5 (i.e., h⋆(s) ≤ u(s) = 5) and



that t dominates s by cost 2 (i.e., h⋆(t) ≤ h⋆(s) − 2). We
can then easily conclude that 3 must be an upper bound
on h⋆(t), update u(t) accordingly, and flag t as a bug if
h⋆(t) ≤ u(t) < costπ(t). While the most basic BMO uses
the cost of policy runs as the single initial source of upper
bounds (as h⋆(s) ≤ costπ(t)), any other sources such as
search methods or external tools can be readily integrated.
For that purpose, the “BMO-100 + Aras/EHC” oracle con-
ducts a limited lookahead search (up to 100 steps) and runs
enforced hill-climbing (EHC) or the plan-improvement tool
Aras (Nakhost and Müller 2010) whenever a state cannot be
confirmed to be a bug otherwise.

For generating pools of test states (test pools), we follow
the approach used in previous works by using fuzzers. A
fuzzer in general is a function that takes a state s and returns
another state t such that t is a modification of s hopefully
exhibiting a bug. In other words, fuzzers try to modify the
input state so that it has features causing the given policy to
fail or behave suboptimally.

Here, we use the fuzzer based on random walks with dif-
ferent bias functions proposed by Steinmetz et al. (2022, Al-
gorithm 1). A bias function B : S 7→ R+

0 ∪{∞} is a function
that tries to assign higher values to states it deems closer to
a bug state. The random-walk-based fuzzer with the given
bias function B then works as follows: It starts in the initial
state and performs a random walk of the maximal length L.

In each step of the random walk, the bias function B is
evaluated on every successor state s and then the next state
is selected randomly with probability proportional to B(s).
If a safe heuristic h is a component of B, we use h as a dead
end detector, i.e., we ignore s if h(s) = ∞ as dead ends
cannot be bugs. Conversely, if B requires running π and we
determine that π fails on s, we assign a bias value of ∞.

Since running ASNet policies is very expensive, we need
to make sure that the number of policy evaluations in each
step of the random walk (that is, each state expansion) is
bounded. To realize this, we limit both the number of steps
we execute π in the computation of B(s) for each successor
state s as well as for the entire state expansion, i.e., we main-
tain a budget for the number of policy evaluations across bias
computations B(s). This simple mechanism for keeping the
runtime at bay is a slight addition to the fuzzer proposed by
Steinmetz et al. (2022). Also note that the original fuzzer
additionally allows to filter out states based on the novelty
measure (Lipovetzky and Geffner 2012), which we do not
use here to make the experimental results easier to interpret.

The previous works (Steinmetz et al. 2022; Eisenhut et al.
2023) used two bias functions. The first one was the “blind”
bias function B0 returning zero for every state resulting in
successor states being selected uniformly at random.

The second bias function Bπ returns the cost of the policy
run costπ(s) for each state s, i.e., the further the state is from
a goal state according to the policy π, the more likely it is
selected during the random walk. As we limit the number of
steps we run π in each bias computation, we slightly deviate
from the original definition in that Bπ returns the cost of the
respective partial policy run on s. Put differently, we added
the option to abort running π, in which case Bπ simply re-
turns the accumulated cost of the partial run so far.

Here, we focus on different bias functions utilizing evalu-
ation of heuristic functions.

Bias Functions Using Heuristics
The bias functions for generating test pools considered so
far were only (a) the constant bias B0 resulting a standard
random-walk selecting successor states uniformly at ran-
dom, and (b) the policy bias Bπ that favors states that the
policy considers to be far from a goal state. The reasoning
behind Bπ is that further the policy thinks the state is from
a goal state, the more likely it is the policy finds a subopti-
mal plan (or fails to find a plan altogether). The next obvious
option following a similar reasoning is to use heuristic func-
tions instead of π. That is, given a state s and a heuristic
function h, h(s) is an estimate of how far the state s is from
a goal state. Therefore, we can use the given heuristic func-
tion directly as a bias function Bh = h and prefer states that
are estimated to be further from a goal state.

The main advantage of using Bh is that evaluating heuris-
tic functions typically requires far less time than (partially)
running π (especially if π is based on ASNets). The clear
disadvantage of Bh is that it does not take the actual behav-
ior of π into account. On one hand, Bπ prefers states that are
further from the goal even if the policy π is actually right be-
cause the policy happens to behave optimally on those states.
On the other hand, Bh prefers states that are actually further
from the goal (assuming we trust the heuristic estimates), but
disregards how the policy behaves on such states. What we
would like is the combination of both, i.e., we want a bias
function preferring states that the policy considers to be far
from a goal state but that are actually not.

The main contribution of this paper is the introduction of
two bias functions called loopiness bias and surface bias.
Both utilize heuristics to steer the pool generation towards
states where the policy behaves suboptimally by compar-
ing the distance between two states according to the path
taken by the policy with heuristic estimates of the distance
between these states.

For the rest of this section, let π denote a policy, let h de-
note a safe heuristic, let s denote a state, let ⟨a1, . . . , an⟩ de-
note a partial run of π on s, i.e., the first n steps on the policy
run σπ(s), and let ⟨s0, . . . , sn⟩ denote the respective inter-
mediate state sequence. We assume h(s) < ∞ and n ≥ 1 as
otherwise the fuzzer would not invoke the bias computation
for s altogether.

Loopiness Bias
The loopiness bias is defined as follows:

Bloop
h (s) = max(0, max

0≤i<j≤n
(costπs (si, sj)− h(si, sj)))

For every pair of states si and sj such that i < j, we compute
the difference between the cost of reaching sj from si using
π (i.e., the distance between si and sj according to π) and
the distance between the two states according to the given
heuristic function. Bloop

h (s) is then the maximum of these
differences if this is positive or 0 otherwise.

Provided that π is executed completely, it is easy to
see that for an optimal π and h⋆, Bloop

h⋆ (s) is 0 for every



state s. However, assuming we trust our heuristic function
h, costπs (si, sj) being larger than h(si, sj) is indicative of
π behaving suboptimally as h is indicating there exists a
cheaper si-sj-path than the one taken by π. In extreme cases
where costπs (si, sj) is large and h(si, sj) is very small, the
behavior of the policy could be interpreted as almost going
in loops as it takes a long detour from si to sj even though
these states are close to each other.

Surface Bias
The surface bias is defined similarly to the loopiness bias:

Bsurf
h (s) = max(0, max

0≤i<j≤n
(costπs (si, sj)−(h(si)−h(sj))))

The main difference is the way the heuristic function is used
in order to measure the distance between states. While the
loopiness bias uses the direct measure h(si, sj), the surface
bias measures the distance indirectly by h(si)− h(sj). That
is, rather than focusing on the cost of the si-sj-path, the sur-
face bias compares the (estimated) costs of the si-plan and
sj-plan. Moreover, in contrast to h(si, sj), h(si)−h(sj) can
also be negative, in which case the heuristic is signaling that
the policy is not even progressing towards the goal.

This approach is somewhat reminiscent of the state space
surface analysis (e.g., Hoffmann 2003, 2011). Assuming h
is a good estimator, we expect h(s) to decrease by relatively
the same amount as the cost of the path π takes while pro-
gressing through the state space, unless, of course, π is be-
having suboptimally. Or put differently, if the policy makes
a lot of steps (costπs (si, sj) is large), but does not get much
closer to a goal state (h(si) − h(sj) is small or even nega-
tive), then we interpret such behavior as likely suboptimal.

Note that these interpretations are obviously subject to in-
accuracies in the heuristic function h itself. In the ideal set-
ting, h⋆ should be used in both the loopiness and the surface
bias, to exclude this source of inaccuracy. Yet, that will typ-
ically not be possible in practice so that we need to use a
practical proxy for h⋆ via standard heuristic functions h. To
the extent possible, we evaluate in our experiments to which
degree the replacement of h⋆ with h affects the quality of
our fuzzing biases.

Preliminary Experimental Evaluation
All proposed methods were implemented in C++ and eval-
uated on a cluster with Intel E5-2660 processors. We test
the ASNets policies (Toyer et al. 2018, 2020) on the same
dataset as Eisenhut et al. (2023).

The experiments were conducted in two phases. In the
first phase, the pool P containing up to 100 states was gener-
ated using different bias functions with one hour time limit
and 16 GB memory limit. We ran π only for at most 50 steps
in each invocation of a bias function and limited the overall
number of steps to 200 per state expansion in the fuzzer.

In the second phase, the “BMO-100 + Aras/EHC” oracle
(Eisenhut et al. 2023) was run on the pool states. The domi-
nance functions of the oracle were precomputed with a time
limit of four hours. The oracle itself was run with limits of
two hours and 16 GB. Compared to the experimental setting
used by Eisenhut et al., we used smaller time limits.

Domain Σ Pool size: Number of pool states (avg over domain)

B0 Bπ Bhff

Bsurf
hff Bloop

hff Bh⋆

Bsurf
h⋆ Bloop

h⋆

Blocks 24 100.0 42.0 100.0 40.4 50.1 1.0 1.0 7.7
Gripper 35 95.0 94.8 94.8 92.8 95.0 29.3 28.4 30.0
MBlocks 6 100.0 65.8 100.0 42.0 69.0 34.7 33.7 27.7
Satellite 16 100.0 44.7 100.0 36.8 40.6 30.1 19.4 23.4
Storage 7 92.4 73.1 90.4 73.4 74.9 78.6 53.3 74.6
Transport 24 100.0 96.4 100.0 73.4 95.2 66.7 63.7 66.2
VisitAll 19 95.7 29.2 95.5 30.4 29.1 1.7 1.9 4.3

Table 1: Number of generated pool states (average over do-
main, 100 is maximum). Σ denotes the number of tasks.

We compare the constant bias B0 and the policy bias Bπ

with our heuristic-based biases. We use the FF heuristic hff

(Hoffmann and Nebel 2001) and h⋆ implemented as A∗

search with the LM-Cut heuristic hlmc (Helmert and Domsh-
lak 2009). Namely, we evaluate the bias functions Bhff

and
Bh⋆

that simply return the heuristic value for the given state,
and the more elaborate surface and loopiness biases Bsurf

hff ,
Bsurf
h⋆ , Bloop

hff , and Bloop
h⋆ . For each heuristic h, especially for

h⋆, we expected Bloop
h to be slower than Bsurf

h because Bloop
h

requires evaluating h between all pairs of states whereas
Bsurf
h only needs to compute h for each state once. For this

reason, we restricted the loopiness bias to only k randomly
sampled intermediate states of the (partial) policy run, and
we set k to the square root of the length of the (partial) policy
run. For hff , this restriction is probably not strictly necessary
(as long as policy evaluations are much more expensive). An
advantage of applying it here regardless is that it allows for
a cleaner comparison between Bloop

hff and Bloop
h⋆ .

We tried using hlmc as an alternative to hff . However,
these experiments indicated that there is not much difference
between using hff and hlmc, which is not surprising as both
methods are based on extracting relaxed plans. We therefore
decided to consider only hff , focusing on different kinds of
biases rather than on applying different heuristic functions.

Pool Sizes
Table 1 shows the average number of test states over all tasks
within each domain. B0 and Bhff

generate the highest num-
ber of states within the time limit because they are by far the
fastest of the tested bias functions. We would expect that any
bias including h⋆ generates considerably less test states than
any bias not including h⋆, as computing h⋆ involves running
an optimal planner. This is indeed mostly the case. For in-
stance, for all biases including a heuristic, the variant using
hff generates more states than the variant using h⋆. The only
exception is the Storage domain where Bπ generates slightly
less test states on average then Bh⋆

indicating that evaluat-
ing ASNets policies is sometimes slower than solving the
task optimally.

Bπ , Bsurf
hff , and Bloop

hff generate roughly similar numbers
of test states in most domains. However, there are signifi-
cant differences in some domains, e.g., in Transport Bsurf

hff

generates more than 20 states less on average than Bπ and



Domain T Oracle coverage

B0 Bπ Bhff

Bsurf
hff Bloop

hff

Blocks 402 19.7 19.4 19.4 21.6 31.6
Gripper 2442 95.2 95.1 94.9 95.3 95.5
MBlocks 252 8.3 2.0 4.4 0.8 1.6
Satellite 535 75.0 92.3 61.9 94.2 93.8
Storage 491 35.6 64.2 41.1 67.4 56.0
Transport 1432 70.4 82.3 71.9 87.4 92.2
VisitAll 449 84.0 90.4 83.7 93.1 93.3

Table 2: Oracle coverage for biases not using h⋆. T is
the overall number states considered when computing ora-
cle coverage (sum over domain, same for all biases). Oracle
coverage is the percentage of states in the respective pool set
(of size T ) identified as bugs.

Bloop
hff . While running the policy typically accounts for most

of the runtime when computing either of these three biases,
the runtime of a bias computation obviously also depends
on the state for which we compute the bias. As we use bi-
ases to steer the fuzzer into certain regions of the state space,
the runtime of invocations of a bias function might thus very
well depend on the result of previous bias invocations.

Oracle Coverage
In order to assess the quality of our biases, we run the ora-
cle on the respectively generated pool states and count the
number of pool states the oracle classifies as bugs. We re-
fer to the percentage of tested pool states (across the entire
domain) classified as bugs as oracle coverage.

When comparing a set of biases with respect to oracle
coverage, an inherent problem is that this measure can be
distorted if different biases generate different numbers of
pool states for different instances. For example, it might hap-
pen that a bias B1 generally generates much better test states
than B2 but generates more test states in instances where the
policy performs better (i.e., in instances where there are sim-
ply less bugs to be found). As a result, the worse bias B2 that
simply generates less states in these instances could still end
up with a higher oracle coverage.

For this reason, we measure the oracle coverage with the
same number of pool states across all biases for each prob-
lem instance, e.g., if we have 100 pool states for bias B1 in
a problem instance X but only 50 for bias B2, we consider
only the first 50 pool states of B1 when computing the oracle
coverage for X .

Tables 2 and 3 both compare a subset of the biases based
on oracle coverage. The setup is the same, only the selected
biases are different. The T column shows the overall number
of considered states for computing the coverage. As we take
the minimal number of test states (for each instance sepa-
rately) over all biases participating in the respective com-
parison, the T values are not the same in both tables.

Table 2 shows oracle coverage for the biases intended
for practical use, i.e., the ones not requiring to evaluate h⋆.
The oracle coverage of Bhff

is not significantly better or
sometimes even worse than B0. So, it seems using heuris-

Domain T Oracle coverage

Bhff

Bsurf
hff Bloop

hff Bh⋆

Bsurf
h⋆ Bloop

h⋆

Gripper 910 90.2 90.4 91.5 88.8 94.7 91.9
MBlocks 118 4.2 1.7 1.7 29.7 78.8 1.7
Satellite 261 55.9 92.7 92.3 61.3 93.9 89.3
Storage 345 34.5 56.8 40.6 31.9 62.0 40.0
Transport 756 54.2 77.0 86.0 51.6 93.9 82.0

Table 3: Oracle coverage for biases using h⋆ or hff . Same
setup as in Table 2. The Blocks and VisitAll domains are
excluded as the biases based on h⋆ do not generate enough
states.

tic estimates alone does not lead to more bug states than
a simple random walk choosing successor states uniformly
at random. In contrast, either the surface bias Bsurf

hff or the
loopiness bias Bloop

hff reach the highest oracle coverage in all
domains except for MBlocks. More precisely, Bsurf

hff is the
best performing bias in Satellite and Storage, whereas Bloop

hff

is the best performing bias in Blocks, Gripper, Transport,
and VisitAll. However, while the difference between Bsurf

hff ,
Bloop
hff , and Bπ is significant in some domains (such as Trans-

port), there are also domains where the oracle coverage is
virtually the same (such as Gripper). Yet, it seems that the
surface and loopiness biases are an informative mixture of
information about how the policy behaves and information
about its traversed states from hff as another source. Also
note that in three of our domains the oracle coverage for Bπ

is already higher than 90% so that reaching a substantial im-
provement with a more informed bias is hardly possible.

We now come back to the question of to which degree the
replacement of h⋆ with hff affects the quality of our fuzzing
biases. Table 3 shows oracle coverage for Bh⋆

, Bsurf
h⋆ , and

Bloop
h⋆ as well as for their practical proxies Bhff

, Bsurf
hff , and

Bloop
hff . Bsurf

h⋆ reliably dominates Bsurf
hff in terms of oracle cov-

erage across all domains, but Bh⋆

and Bhff

as well as Bloop
h⋆

and Bloop
hff seem to be on-par with each other in most do-

mains. The most notable differences are in MBlocks where
Bh⋆

has much higher oracle coverage than Bhff

, and in
Transport where, unexpectedly, Bloop

hff beats Bloop
h⋆ by four

percentage points. Overall hff seems to be a better proxy for
h⋆ in the case of heuristic and loopiness biases, than in the
case surface bias.

Conclusion
With the proliferation of learned action policies in sequen-
tial decision making, the question how to meaningfully test
such policies is becoming very relevant. Our work makes a
technical contribution to this, in the specific context of ex-
ploring fuzzing biases for test-state generation within previ-
ously proposed methods in planning (Steinmetz et al. 2022;
Eisenhut et al. 2023). We introduce two new biases, the loop-
iness and the surface bias, which combine information about
the path taken by the policy with heuristic estimates. Judg-



ing by our current experiments, these biases are informative
in many domains, and can soundly beat previous fuzzing bi-
ases in some domains.

For future work, it remains to consider additional other
kinds of learned policies, beyond ASNets, to broaden the
empirical basis for our study which generalizes, after all,
across arbitrary policies. The approach by Stahlberg et al.
(2022; 2022) is a natural candidate for this step.

Acknowledgments
This work was funded by the European Union’s Hori-
zon Europe Research and Innovation program under the
grant agreement TUPLES No 101070149, as well as
by DFG Grant 389792660 as part of TRR 248 (CPEC,
https://perspicuous-computing.science).

References
Akazaki, T.; Liu, S.; Yamagata, Y.; Duan, Y.; and Hao, J.
2018. Falsification of Cyber-Physical Systems Using Deep
Reinforcement Learning. In 22nd International Symposium
on Formal Methods (FM’18), 456–465.
Dreossi, T.; Dang, T.; Donzé, A.; Kapinski, J.; Jin, X.; and
Deshmukh, J. V. 2015. Efficient Guiding Strategies for Test-
ing of Temporal Properties of Hybrid Systems. In 7th In-
ternational Symposium NASA Formal Methods (NFM’15),
127–142.
Eisenhut, J.; Torralba, Á.; Christakis, M.; and Hoffmann,
J. 2023. Automatic Metamorphic Test Oracles for Action-
Policy Testing. In Proceedings of the 33rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’23), Accepted.
Enişer, H. F.; Gros, T.; Wüstholz, V.; Hoffmann, J.; and
Christakis, M. 2022. Metamorphic Relations via Relax-
ations: An Approach to Obtain Oracles for Action-Policy
Testing. In ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’22).
Ernst, G.; Sedwards, S.; Zhang, Z.; and Hasuo, I. 2019.
Fast Falsification of Hybrid Systems Using Probabilisti-
cally Adaptive Input. In Proceedings of the 16th Interna-
tional Conference on Quantitative Evaluation of Systems
(QEST’19), 165–181.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proceedings of the
29th International Conference on Automated Planning and
Scheduling (ICAPS’19), 631–636. AAAI Press.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Poli-
cies Using Deep Neural Networks. In Proceedings of the
28th International Conference on Automated Planning and
Scheduling (ICAPS’18), 408–416. AAAI Press.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS’09), 162–169.
Hoffmann, J. 2003. Utilizing Problem Structure in Plan-
ning: A Local Search Approach, volume 2854 of Lecture
Notes in Artificial Intelligence. Springer-Verlag.

Hoffmann, J. 2011. Analyzing Search Topology Without
Running Any Search: On the Connection Between Causal
Graphs and h+. Journal of Artificial Intelligence Research,
41: 155–229.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Train-
ing Deep Reactive Policies for Probabilistic Planning Prob-
lems. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling (ICAPS’18), 422–
430. AAAI Press.
Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI’21).
Koren, M.; Alsaif, S.; Lee, R.; and Kochenderfer, M. J. 2018.
Adaptive Stress Testing for Autonomous Vehicles. In IEEE
Intelligent Vehicles Symposium (IV’18), 1–7. IEEE.
Lee, R.; Mengshoel, O. J.; Saksena, A.; Gardner, R. W.;
Genin, D.; Silbermann, J.; Owen, M. P.; and Kochenderfer,
M. J. 2020. Adaptive Stress Testing: Finding Likely Failure
Events with Reinforcement Learning. Journal of Artificial
Intelligence Research, 69: 1165–1201.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serializa-
tion of Classical Planning Problems. In Raedt, L. D., ed.,
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI’12), 540–545. Montpellier, France: IOS
Press.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with Deep Reinforcement Learning. In Proceed-
ings of NIPS Deep Learning Workshop 2013.
Nakhost, H.; and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling (ICAPS’10),
121–128. AAAI press.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529: 484–503.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419): 1140–
1144.
Stahlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Proceedings of
the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, Singapore (virtual),
June 13-24 2022, 629–637.



Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
Generalized Policies without Supervision Using GNNs. In
Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’22).
Steinmetz, M.; Fišer, D.; Enişer, H. F.; Ferber, P.; Gros, T.;
Heim, P.; Höller, D.; Schuler, X.; Wüstholz, V.; Christakis,
M.; and Hoffmann, J. 2022. Debugging a Policy: Automatic
Action-Policy Testing in AI Planning. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS’22).
Torralba, Á. 2017. From Qualitative to Quantitative Dom-
inance Pruning for Optimal Planning. In Proc. IJCAI’17,
4426–4432.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1–68.
Toyer, S.; Trevizan, F.; Thiebaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies with Deep
Learning. In McIlraith, S.; and Weinberger, K., eds., Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelli-
gence (AAAI’18). AAAI Press.


