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Abstract

Testing was recently proposed as a method to gain trust in
learned action policies in classical planning. Test cases in this
setting are states generated by a fuzzing process that performs
random walks from the initial state. A fuzzing bias attempts
to bias these random walks towards policy bugs, that is, states
where the policy performs sub-optimally. Prior work explored
a simple fuzzing bias based on policy-trace cost. Here, we
investigate this topic more deeply. We introduce three new
fuzzing biases based on analyses of policy-trace shape, es-
timating whether a trace is close to looping back on itself,
whether it contains detours, and whether its goal-distance sur-
face does not smoothly decline. Our experiments with two
kinds of neural action policies show that these new biases im-
prove bug-finding capabilities in many cases.

Introduction
Learned action policies, in particular ones represented by
neural networks, are gaining traction in AI (e.g., Mnih et al.
2013; Silver et al. 2016, 2018), and are being intensively
explored in AI planning (Issakkimuthu, Fern, and Tadepalli
2018; Groshev et al. 2018; Garg, Bajpai, and Mausam 2019;
Toyer et al. 2020; Karia and Srivastava 2021; Ståhlberg,
Bonet, and Geffner 2022a,b). But how to gain trust that such
a policy will yield desirable (or at least non-fatal) behavior?

Policy testing is one natural answer to this question. Most
work so far views the environment as an adversary, con-
trolled by the testing mechanism in a way that tries to make
the system fail (e.g., Dreossi et al. 2015; Akazaki et al. 2018;
Koren et al. 2018; Ernst et al. 2019; Lee et al. 2020). While
this can be quite useful, it does not distinguish whether or
not the failure is actually due to bad policy decisions, or is
unavoidable given the environment behavior.

Recent work (Steinmetz et al. 2022) addresses this in the
context of classical planning, defining test cases as states s,
and policy bugs as states on which the policy is sub-optimal
(a better policy exists for s, e.g., avoiding failure). Given a
test case s, test oracles are used to detect whether s is a bug,
by evaluating sufficient criteria that avoid the need for a full
optimal planning process (Eisenhut et al. 2023). To gener-
ate test cases in the first place, a fuzzing process iteratively
builds up a pool of test states by conducting random walks
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from the initial state. A fuzzing bias attempts to bias these
random walks towards policy bugs, thus making the overall
testing machinery more effective in finding bugs. Specifi-
cally, we consider bias functions mapping states to numbers,
with higher numbers indicating more promising states.

Prior work (Steinmetz et al. 2022) only explored a simple
bias function, mapping a state s to the summed-up action
cost of the policy trace in s. Here, we investigate this topic
more deeply. We introduce three new fuzzing biases that aim
at analyzing the policy-trace shape. In what we call the loop-
iness bias, we measure how close a trace is to looping back
on itself, a typical reason for failure to reach the goal (in
dead-end free domains, this is indeed the only reason). In
the detour bias, we measure the largest detour (the most
sub-optimal segment) along the trace. In the surface bias,
we consider goal-distance along the trace as its surface, and
measure the degree to which that surface does not smoothly
decline along the path. All three measures rely on estimates
of the distance between states (on the trace, respectively to
the goal). We include an analysis of the idealized setting us-
ing the exact distance h⋆; in practice, we use the delete re-
laxation heuristic hFF (Hoffmann and Nebel 2001).

Using hFF instead of h⋆ of course makes the measure-
ments inaccurate. In particular, “detours” and “goal distance
increases” will often simply be due to hFF estimation er-
rors, but biases may still contain information useful for bug-
finding. Indeed, this is what our experiments show. We con-
sider two kinds of neural action policies: ASNets (Toyer
et al. 2018, 2020), and Ståhlberg et al.’s (2022a; 2022b)
GNN policies. We test these policies across a set of domains
where they perform well. Our new fuzzing biases improve
bug-finding capabilities in many of these cases.

Background
A finite-domain representation planning task, short FDR
planning task, is a tuple Π = ⟨V ,A, I, G⟩. V is a finite
set of variables; each variable v ∈ V has a finite domain
dom(v). A partial state p is a variable assignment over
some variables V(p) ⊆ V ; p[v] is the value assigned to
v ∈ V(p) in p. A partial state s is a state if V(s) = V; S
denotes the set of all states. I is an initial state. G is a par-
tial state called goal, and a state s is a goal state if G ⊆ s.
A is a finite set of actions, a ∈ A is defined by its pre-

condition pre(a), effect eff(a), and cost cost(a) ∈ R+
0 . Pre-



conditions and effects are partial states. a ∈ A is applicable
in s ∈ S if pre(a) ⊆ s. Given s ∈ S ,A[s] is the set of all ac-
tions applicable in s. The resulting state of applying an ap-
plicable action a in a state s is s′ = sJaK s.t. s′[v] = eff(a)[v]
for every v ∈ V(eff(a)), and s′[v] = s[v] otherwise. A se-
quence of actions a⃗ = ⟨a1, . . . , an⟩ is applicable in s0 ∈ S
if there are states s1, . . . , sn s.t. ai is applicable in si−1 and
si = si−1JaiK, the resulting state is s0J⃗aK = sn. Given a⃗
applicable in s, the sequence ⟨s0, s1, . . . , sn⟩ of the afore-
mentioned states is called intermediate state sequence of
a⃗. The cost of a⃗ is defined as cost(⃗a) =

∑n
i=1 cost(ai). If

a⃗ is applicable in s and G ⊆ sJ⃗aK, a⃗ is called a plan for s.
We consider heuristic functions h as estimators for costs of
optimal plans, denoted as h(s), and optimal paths between
two states s and t, denoted h(s, t). h⋆(s) and h⋆(s, t) denote
optimal costs. We assume all heuristics are safe, i.e., for all
s ∈ S , h(s) =∞ implies h⋆(s) =∞.

Deterministic policies π : S → A∪{∅} map states to ap-
plicable actions or null (∅) if there is no applicable action.
The run (or trace) σπ(s) of a policy π on a state s, is an ac-
tion sequence σπ(s) = ⟨a1, . . . , an⟩ applicable in s (with its
intermediate state sequence ⟨s0, . . . , sn⟩) s.t. ai = π(si−1)
for all 1 ≤ i ≤ n, all intermediate states differ from each
other, and no si is a goal state unless i = n. The cost of
σπ(s) is costπ(s) = cost(σπ(s)) if sJσπ(s)K is a goal state,
and costπ(s) =∞ otherwise; costπs0(si, sj) (i < j) denotes
the cost of the subsequence of σπ(s0) between si and sj .

We adopt the testing framework of Steinmetz et al.
(2022): Given a task Π and a policy π, a state t is called
a bug in π if costπ(t) > h⋆(t).1 To find bugs, policy testing
(1) generates a pool P ⊆ S of test states using a fuzzing
process, and (2) runs test oracles on each pool state. Here,
we focus on (1) only. For (2), we fix a state-of-the-art oracle
of Eisenhut et al. (2023).

The fuzzing process proposed by Steinmetz et al. uses
random walks from I guided by a bias B, which is a func-
tion mapping states to numbers where higher numbers in-
dicate more promising states (more likely to lead to a bug
state). The fuzzer evaluates B on every successor state s,
and obtains a probability distribution over the respective ac-
tions by normalizing the biases B(s). We adopt this fuzzing
process here, though with some refinements as described in
the next section. Steinmetz et al. only explored a simple bias
Bπ(s) = costπ(s): the cost of the policy run. The fuzzing
process with Bπ prefers to explore states with more costly
policy traces. Under the assumption that such states are more
likely to be bugs, this makes sense, and indeed it often in-
creases the number of detected bugs in comparison to a uni-
form random fuzzer. Nevertheless, this bias encapsulates a
rather naı̈ve notion of “good” vs. “bad” policy traces. Here,
we investigate this topic more deeply, through new fuzzing
biases that aim at analyzing the shape of policy runs.

The oracle we employ in the second phase of the test-
ing process is a so-called bound maintenance oracle (BMO).
A BMO maintains upper bounds u(t) on h⋆(t) across the
states t it encounters during testing and attempts to propa-

1It covers both “quantitative” (π is sub-optimal on t) and “qual-
itative” (π does not solve solvable t) bugs used by Steinmetz et al.

Algorithm 1: Refined version of Steinmetz et al.’s
fuzzer.

Input: Action policy π, bias function B, initial state I
Parameters: Max. pool size N , runtime limit T ,

max. walk length L, budgets Bexpansion
and Bstate

Output: Pool P of test states
1 P ← {I};
2 while |P| < N ∧ runtime ≤ T do
3 l← uniformRandom({1, . . . , L});
4 s0 ← uniformRandom(P);
5 s← s0;
6 for i = 1 . . . l do
7 S′ ← ∅;
8 j ← Bexpansion;
9 for s′ ∈ {sJaK | a ∈ A[s], G ⊈ sJaK} do

10 if hmax(s′) =∞ then continue;
11 if B requires computing costπs′ then
12 if j ≤ 0 then break;
13 σ ← partialRun(π, s′,min(j, Bstate));
14 b← (∞ if π fails in σ else B(s′));
15 j ← j − |σ|;
16 else b← B(s′);
17 if b > −∞ then S′ ← S′ ∪ {(s′, b)};
18 if S′ = ∅ then goto 2;
19 s← weightedSelect(S′);
20 P ← P ∪ {s};

gate and decrease these bounds through state comparisons
based on quantitative dominance functions (Torralba 2017).
The underlying idea of how these bounds can be propa-
gated is simple. Assume that we know that a previously en-
countered state s is solvable with a cost of at most 5 (i.e.,
h⋆(s) ≤ u(s) = 5) and that t dominates s by cost 2 (i.e.,
h⋆(t) ≤ h⋆(s) − 2). We can then easily conclude that 3
must be an upper bound on h⋆(t), update u(t) accordingly,
and flag t as a bug if h⋆(t) ≤ u(t) < costπ(t). While the
most basic BMO uses the cost of policy runs as the single
initial source of upper bounds (as h⋆(t) ≤ costπ(t)), any
other sources such as search methods or external tools can
be readily integrated. Crucially, this means that we do not
require an optimal planning process in order to prove that
the policy is suboptimal on a state.

The Fuzzing Process
We design a refined version of the fuzzer introduced by
Steinmetz et al. (2022), see Algorithm 1. Within a runtime
limit T , we iteratively generate a pool P of maximal size
N by random walks of maximal length L. Random walks
start from a randomly selected pool state s0 and are steered
by a bias function B, influencing which successor state s′ is
selected in each step of the random walk. Steinmetz et al.
only considered the bias Bπ returning the cost of the policy
run. Here, we use bias functions B : S → R ∪ {−∞,∞}
allowing negative bias values as well as −∞ and∞.

The application of B is still straightforward. In each step



of the random walk, we compute a set S′ containing pairs
(s′, b) of successor states s′ and bias values b, ignoring goal
states and states with bias value−∞. As Steinmetz et al., we
employ the safe heuristic hmax (Bonet and Geffner 2001) as
a dead end detector, i.e., if hmax(s′) =∞, we ignore s′ as it
is a dead end and hence cannot be a bug.

Having generated S′, we then pick one of the states in S′

as follows (function weightedSelect): if there is any (s′,∞)
in S′, we pick one s′ among all such s′ uniformly at ran-
dom. Otherwise, we determine the minimal bias value bmin.
If bmin < 0, we increase all b by |bmin| so that all b are non-
negative. Finally, we normalize the bias values to sum up to
1 and select s′ according to this probability distribution.

For biases that require computing the cost of partial pol-
icy runs (Bπ and all biases introduced next), our fuzzer in-
cludes further additions. For each successor state s′, we use
the function partialRun(s′, π, k) to obtain the partial policy
trace σ of π on s′ of at most k steps, which is then analyzed
by B. If we can infer from σ that π fails on s′, we ignore
B(s′) and assign b = ∞ instead, i.e., we consider only pol-
icy runs that could lead to a goal state. As we ignore goal
states, this also means B(s′) is not computed if σ is empty.

Since evaluating policies is often very time-consuming,
we introduce simple mechanisms bounding the number of
policy evaluations. We limit the number of steps of individ-
ual policy runs by Bstate, and we limit the overall number of
policy steps per successor state by Bexpansion.

Note that Steinmetz et al.’s original fuzzer additionally al-
lows to filter out states based on a novelty measure (Lipovet-
zky and Geffner 2012), which we do not use here to make
the experimental results easier to interpret.

Bias Functions Measuring Policy-Trace Shape
The only bias from prior work preferred policy traces with
high cost, which may be due to bad policy behavior, but may
just as well simply be due to high plan cost. Here, we in-
stead introduce measures of policy-trace shape, encapsulat-
ing deeper notions of policy-trace quality. Specifically, we
introduce what we call the loopiness bias, detour bias, and
surface bias. All three biases consider pairs of states si and
sj on the policy trace, and maximize a measure of “trace-
shape badness” over all such state pairs. These measures all
rely on heuristic functions h estimating state distances; we
consider both, the idealized setting where h = h⋆, as well
as h = hFF which we use in practice. As part of our exper-
iments, we run the idealized biases with h⋆ where feasible,
to evaluate the impact of using hFF instead.

We next introduce each bias in turn. In the following, let
s denote the current state reached by a random walk as per
Algorithm 1, let ⟨a1, . . . , an⟩ denote a non-empty partial run
of the policy π on s, i.e., the first n steps of the policy run
σπ(s), and let ⟨s0, . . . , sn⟩ denote the respective intermedi-
ate state sequence where s = s0.

Loopiness Bias
The loopiness bias is geared at estimating whether, at some
point along the policy trace, that trace is close to forming a

loop. The bias is defined as follows:

Blooph (s) = max
0≤i<j≤n

costπs (si, sj)− h(sj , si).

For every state si and later state sj along the policy trace,
we measure (a) the cost of the policy path from si to sj , mi-
nus (b) the estimated cost of a plan from sj back to si. This
measure will be high if si and sj are distant on the policy
trace, but only few steps are needed to go back from sj to si.
Note here that, while one may be tempted to use only (b) and
minimize over its values, (a) is useful because states close to
each other on the path may naturally have very small values
for (b). Indeed, in invertible planning tasks where every ac-
tion has a direct inverse of the same cost, this is necessarily
the case as (b) will be the cost of a single action for every
state pair si and sj with j = i+ 1 along the trace.

Invertible tasks also form a special case regarding the out-
come of the maximization in the idealized setting:

Proposition 1. In invertible planning tasks, Blooph⋆ (s) =
costπs (s0, sn)− h⋆(sn, s0).

Proof. Let i < j be arbitrary. If we decrease i, the value
of costπs (si, sj) − h⋆(sj , si) can only increase because
costπs (si−1, sj) is cost(ai) higher and h⋆(sj , si−1) is at
most cost(ai) higher (we can take the inverse of ai to
get from si back to si−1). If we increase j, the value of
costπs (si, sj) − h⋆(sj , si) can also only increase because
costπs (si, sj+1) is cost(aj+1) higher and h⋆(sj+1, si) is at
most cost(aj+1) higher (we can take the inverse of aj+1 to
get from sj+1 back to sj). It follows that the maximal value
is obtained at i = 0, j = n.

Of course, this does not hold if we replace h⋆ with hFF.
We considered to save computational effort (avoiding max-
imization) for Blooph⋆ by detecting invertible planning tasks
automatically (e.g., Hoffmann 2005), but these automatic
tests failed to find any invertible tasks in our benchmark set.

Detour Bias
The detour bias aims to directly measure whether a policy
trace is sub-optimal. We consider every segment from si to
sj on the trace and compare its cost under the policy to the
estimated cost of a path from si to sj :

Bdetourh (s) = max
0≤i<j≤n

costπs (si, sj)− h(si, sj)

Large values of costπs (si, sj) − h(si, sj) indicate that the
policy trace “takes a detour” from si to sj . Note that, syn-
tactically, the only difference to the loopiness bias is the or-
der of si and sj in the call to h. That difference can lead to
arbitrary differences in bias value however.

For h⋆ (but not for hFF), maximization here is not needed
as any subpath detour is contained in the overall path:

Proposition 2. Bdetourh⋆ (s) = costπs (s0, sn)− h⋆(s0, sn).

Proof. Same argument as for Proposition 1, except we do
not need to rely on inverse actions.



It is furthermore easy to see that the idealized detour bias
carries exact information about bugs and their optimality gap
(note that unsolvable states can by definition not be bugs):

Proposition 3. Let s be a solvable state. If Bdetourh⋆ (s) > 0,
then s is a bug. If s is a bug and ⟨a1, . . . , an⟩ reaches the
goal, then Bdetourh⋆ (s) > 0 and there exists a plan for s whose
cost is at most costπs (s0, sn)− Bdetour

h⋆ (s).

Proof. If Bdetourh⋆ (s) > 0 then the partial run of π on s is
sub-optimal so the overall run cannot be optimal.

For the second part of the claim, say that ⟨a1, . . . , an⟩
reaches the goal. If s is a bug, then ⟨a1, . . . , an⟩ is a
sub-optimal plan and hence Bdetourh⋆ (s) > 0. Furthermore,
by Proposition 2 we have costπs (s0, sn) − Bdetour

h⋆ (s) =
costπs (s0, sn)− (costπs (s0, sn)− h⋆(s0, sn)) = h⋆(s0, sn).
As sn is a goal state we have h⋆(s0, sn) ≥ h⋆(s), and hence
costπs (s0, sn)− Bdetour

h⋆ (s) ≥ h⋆(s).

Surface Bias
Search space surface has previously been investigated as a
way of examining the quality of heuristic functions (e.g.,
Hoffmann 2005, 2011). Here we take a related perspective,
considering the surface of the policy trace when taking h-
values as the vertical dimension. On an optimal path to the
goal and if h = h⋆, this surface will decline smoothly, i.e.,
it will reduce by cost(ai) in each step. The surface bias
aims at measuring the degree to which this is not the case:
Bsurfh (s) ={
−∞ h(s) =∞
max0≤i<j≤n cost

π
s (si, sj)− (h(si)− h(sj)) h(s) ̸=∞

If h(s) =∞, s is unsolvable, so we return the minimal bias
value −∞. Otherwise, this measure includes (a) the cost of
the policy path from si to sj , minus (b) the decrease in h
value from si to sj . If (a) is larger than (b), then the policy-
trace surface between si and sj does not decline as smoothly
as it should. In particular, if sj is far from si on the path, but
is estimated to be further from the goal, i.e., h(sj) > h(si),
the surface bias will be very high, indicating that the trace is
meandering around, not making progress towards the goal.
Of course, outside the idealized h⋆ setting such an indication
may be misguided merely due to local minima in h. Again,
maximization here is never needed for h = h⋆:

Proposition 4. Bsurfh⋆ (s)=costπs(s0,sn)−(h⋆(s0)−h⋆(sn)).

Proof. Same argument as for Proposition 2, except we con-
sider h⋆(si) and h⋆(sj) separately.

The bug information in the idealized setting is even
stronger than for the detour bias:

Proposition 5. Let s be a solvable state. If Bsurfh⋆ (s) > 0,
then s is a bug. If s is a bug and ⟨a1, . . . , an⟩ reaches the
goal, then Bsurfh⋆ (s) > 0 and the optimal plan cost for s is
exactly costπs (s0, sn)− Bsurf

h⋆ (s).

Proof. The first part of the claim holds because optimal
paths are exactly those where h⋆ decreases by action cost
in every step.

For the second part of the claim, say that ⟨a1, . . . , an⟩
reaches the goal. By Proposition 4 we have costπs (s0, sn)−
Bsurfh⋆ (s) = costπs (s0, sn) − (costπs (s0, sn) − (h⋆(s0) −
h⋆(sn)) = h⋆(s0) − h⋆(sn). As sn is a goal state we have
h⋆(sn) = 0, so costπs (s0, sn) − Bsurf

h⋆ (s) = h⋆(s). In par-
ticular, if s is a bug, then ⟨a1, . . . , an⟩ is a sub-optimal plan
and hence Bsurfh⋆ (s) > 0.

The surface bias also has a desirable property in a non-
idealized setting:

Proposition 6. For any safe heuristic function h, Bsurfh (s) =
∞ only if ⟨a1, . . . , an⟩ ends in a dead-end state.

Proof. By definition we have that h(s) <∞. So Bsurfh (s) =
∞ iff h(si) =∞ for at least one state si, i > 0.

Experiments
For our experiments, we extend the testing framework by
Eisenhut et al. (2023), which builds on the one by Stein-
metz et al. (2022). As in this previous work, we test AS-
Net policies (Toyer et al. 2018, 2020). We use our own, less
resource intensive, C implementation of ASNets. We also
experiment with a more comprehensive benchmark set for
ASNets, which contains additional IPC domains, as well as
a new “Beluga” domain. The latter domain is named after
the Airbus transport aircraft used for moving aircraft com-
ponents, and is an abstract encoding of a problem occurring
in the Airbus manufacturing process. The problem involves
unloading parts from a Beluga airplane; storing them on in-
termediate storage racks that behave like queues with access
to front and end element; and transporting parts from the
racks to a factory in the required order.

We also consider the GNN policies by Ståhlberg et al.
(2022a; 2022b). Here, we test the original policies provided
by Ståhlberg, Bonet, and Geffner (2022b) on a subset of their
benchmark set (excluding Logistics and Spanner). That is,
we include only the domains in which the policies work well
without augmenting states with derived atoms.

Both kinds of policies are run in separate processes with
their own memory limit of 2 GiB for ASNets and 8 GiB for
GNNs. The testing engine uses a limit of 2 GiB. All experi-
ments were run on a cluster with Intel E5-2660 processors.2

We compare our new biases (in hFF and h⋆ configuration)
with two baselines: the constant bias B0 = 0 and Bπ defined
as Bπ(s) = costπs (s0, sn). Given our additions to the fuzzer,
Bπ differs from Steinmetz et al.’s definition in that it only
computes the cost of partial runs.

For each bias B and planning task, we run the fuzzer from
Algorithm 1 for at most one hour to generate a pool P of up
to N = 100 states. We limit the length of random walks to
L = 5 and use the budgets Bstate = 50 and Bexpansion = 200.
For the test oracle, we use the best-performing oracle of
Eisenhut et al. (2023) (“BMO-100 + Aras/EHC”). We run
this oracle for at most two hours per test pool P , to deter-
mine how many states in P can be classified as bugs.

2Our code, the benchmarks, and the policies are available at
https://github.com/fai-saarland/bughive/tree/icaps24-biases.



Policy Domain #Π S
Oracle coverage (practical biases)

S
Oracle coverage (all biases)

B0 Bπ Bdetour
hFF Bsurf

hFF Bloop

hFF B0 Bπ Bdetour
hFF Bdetour

h⋆ Bsurf
hFF Bsurf

h⋆ Bloop

hFF Bloop
h⋆

ASNets

Beluga 67 4476.4 35.9 41.7 51.8 44.4 41.1 2509.8 14.0 19.7 31.6 33.6 23.7 18.5 18.8 19.2

Blocks 21 1488.0 7.6 7.2 7.3 7.4 7.6 21.0 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8
Elevator 58 5279.8 75.0 89.8 92.6 90.6 91.4 341.2 45.4 66.3 77.1 73.6 68.4 68.4 71.0 73.6
Floortile 14 1400.0 11.3 5.2 5.2 4.0 4.1 182.4 8.5 4.0 4.0 3.9 3.9 31.4 3.9 3.9
Gripper 35 2967.6 0.0 0.0 0.0 0.0 0.0 752.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MBlocks 16 1477.0 15.1 13.9 14.0 14.3 13.5 524.6 13.3 12.5 13.3 13.5 13.5 66.4 12.9 13.5
Satellite 15 1210.0 67.1 83.8 86.0 89.1 85.9 388.8 48.4 69.7 74.3 81.8 78.3 68.3 73.7 83.1
Scanalyzer 48 2796.2 42.4 68.2 73.5 70.1 71.1 543.0 26.3 57.9 62.8 89.3 59.0 56.1 59.1 59.1
Storage 19 1137.4 47.6 78.7 79.5 80.0 81.4 486.2 32.0 59.3 58.8 59.2 61.3 59.6 61.3 59.2
Transport 26 1946.8 62.1 79.5 81.9 82.6 83.0 944.4 36.5 66.3 71.1 70.5 71.4 63.2 73.5 70.5
VisitAll 30 1812.0 67.6 81.1 85.9 80.7 81.6 566.4 44.2 56.1 64.1 64.4 56.4 53.7 58.4 58.5
Woodwork 38 3700.6 55.6 78.2 81.1 88.5 75.9 1779.4 46.7 68.4 71.6 68.8 83.6 66.3 66.0 64.7

GNNs

Blocks 35 2944.6 34.9 34.6 36.0 36.1 36.4 1646.6 14.1 14.7 15.4 28.2 15.7 15.0 16.0 28.2
Delivery 26 2113.8 18.2 17.5 21.6 17.3 23.3 1925.2 15.3 13.5 16.9 22.2 14.6 14.6 20.7 22.5
Gripper 17 986.8 24.1 25.7 21.4 21.1 24.4 312.0 26.7 27.9 20.5 18.8 9.9 7.5 28.3 22.5
Miconic 67 4020.0 34.2 32.3 38.1 34.5 32.6 3886.4 33.1 31.4 37.0 38.5 33.3 30.8 31.9 29.6
Reward 20 1329.2 39.6 38.7 41.3 45.8 41.5 1298.4 39.7 38.7 40.4 43.8 45.8 42.8 41.8 39.0
Visitall 16 431.0 41.3 59.4 51.9 51.1 58.6 206.2 17.7 33.6 19.6 32.2 18.3 20.5 28.9 25.8

Table 1: Oracle coverage (in %) for two sets of biases. #Π is the number of problem instances per domain; we only include
tasks where π solves the initial state. S is the overall number of considered states (sum over domain). Oracle coverage is the
percentage of states in the respective combined pool (of size S) identified as bugs (see text). Results averaged over five runs.
Beluga is a new domain, abstractly encoding a problem occuring in the Airbus manufacturing process (see text).

We refer to the percentage of tested pool states (across the
entire domain) classified as bugs as oracle coverage. To fos-
ter comparison of oracle coverage across biases, we use the
same number of test states across all biases for each problem
instance. If we have, e.g., 90 pool states for B1 but only 50
for B2, we consider only the first 50 pool states for B1.

Table 1 shows the results. The left part shows the compar-
ison of practical biases (not using h⋆). In general, the behav-
ior is highly domain specific and there is no bias that works
best universally. However, in 8 of the 12 domains consid-
ered for ASNets and in 4 out of 6 domains for GNNs, one of
our new biases achieves a higher oracle coverage than both
baselines. The new biases perform significantly better than
B0 in most cases, though they often provide only a slight ad-
vantage over Bπ . Oracle coverage varies, however, greatly
between domains. For example, coverage for ASNets in El-
evator is at least 75% across all biases, but we do not detect a
single bug state for ASNets in Gripper (presumably, the pol-
icy there is optimal). We are able to increase coverage by 10
percentage points (from Bπ) in Beluga and Woodworking,
but in Blocks the difference between all biases is negligible.

The right part of Table 1 shows the results when including
all biases. As this includes h⋆ based biases, the number of
considered states S is mostly much lower (e.g., the pools
for ASNets in Blocksworld contain the initial state only).
While there are cases where the h⋆ variant outperforms its
hFF proxy (e.g. Bdetourh⋆ for ASNets in Scanalyzer), this is
not the case in general, indicating that hFF works reasonably
well here in replacing h⋆. Note also that, here, there is only
a single case (GNNs in Visitall) where a baseline achieves
better results than all configurations of our new biases.

Conclusion

With the proliferation of learned action policies, how to
meaningfully test them is becoming very relevant. We con-
tribute more advanced fuzzing biases for policy testing in
classical planning, measuring path-shape features instead of
merely path cost. The results with respect to previous sim-
pler biases show that advanced biases can be useful, though
often to only a small degree.

We are skeptical whether much more can be gained by
investigating additional fuzzing biases. In particular, our h⋆

based biases have ideal theoretical properties – carrying ex-
act information about whether a state is a bug, and even on
the optimality gap (Propositions 3 and 5). Yet, while they do
sometimes outperform our practical biases, the performance
gap is generally not huge.

Beyond investigating further techniques to increase test-
ing performance, the primary challenges for policy testing
in our view remain fault analysis (which specific policy de-
cisions cause sub-optimality), extension to richer planning
paradigms, and connections to policy re-training.
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