Learning Temporal Plan Preferences from Examples: An Empirical Study

Valentin Seimetz1, Rebecca Eifler2 and Jörg Hoffmann2

1German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
2Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

valentin.seimetz@dfki.de \{eifler, hoffmann\}@cs.uni-saarland.de

\section*{Abstract}

Temporal plan preferences are natural and important in a variety of applications. Yet users often find it difficult to formalize their preferences. Here we explore the possibility to learn preferences from example plans. Focusing on one preference at a time, the user is asked to annotate examples as good/bad. We leverage prior work on LTL formula learning to extract a preference from these examples. We conduct an empirical study of this approach in an oversubscription planning context, using hidden target formulas to emulate the user preferences. We explore four different methods for generating example plans, and evaluate performance as a function of domain and formula size. Overall, we find that reasonable-size target formulas can often be learned effectively.

\textbf{1} Introduction

Temporal plan preferences are natural and important in a variety of applications. Yet users often find it difficult to formalize their preferences. Here we explore the possibility to learn preferences from example plans. Focusing on one preference at a time, the user is asked to annotate examples as good/bad. We leverage prior work on LTL formula learning to extract a preference from these examples. We conduct an empirical study of this approach in an oversubscription planning context, using hidden target formulas to emulate the user preferences. We explore four different methods for generating example plans, and evaluate performance as a function of domain and formula size. Overall, we find that reasonable-size target formulas can often be learned effectively.

\begin{itemize}
 \item \textbf{(1)} fix an LTL target formula \(\phi \);
 \item \textbf{(2)} generate a set of example plans \(\Pi \);
 \item \textbf{(3)} annotate each \(\pi \) as good (bad) if it satisfies (does not satisfy) \(\phi \); and
 \item \textbf{(4)} invoke LTL formula learning to extract a formula \(\phi' \) correctly characterizing these examples.
\end{itemize}

In practice, the hidden target formula \(\phi \) will be inside the user's head. Emulating users in this form allows us to systematically evaluate the merits of different algorithmic methods.

We instantiate (1) with hand-made formulas suited for a collection of benchmarks, based on PDDL3 preferences as well as formula skeletons often used in model checking [Manna and Pnueli, 1990; Dwyer \textit{et al}., 1999; Menghi \textit{et al}., 2019]. We instantiate (4) with Camacho and McIlraith's [2019a] techniques, which learn a smallest LTL formula \(\phi' \).

The main question we consider is how to instantiate (2). Top-\(K \) methods with a focus on diversity are natural candidates, as they aim at producing \(K \) good-quality (in our context: short) yet qualitatively different plans. This makes intuitive sense for our purposes as the example plans should be different, and should not be obviously bad. We experiment with three different methods from the literature [Katz \textit{et al}., 2018; Katz and Sohrabi, 2020; Speck \textit{et al}., 2020]. We furthermore experiment with a simple randomized version of greedy best-
first search using h^f_{FF} [Hoffmann and Nebel, 2001], which turns out to be more scalable.

We evaluate the performance of different methods as a function of domain and formula size. We investigate a variety of aspects, including not only computational effort, but also the quality of the learned formula ϕ' relative to the hidden formula ϕ, and the quality of plan examples in the sense of how many examples are needed to learn a high-quality formula. Overall, we find that reasonable-size target formulas can often be learned effectively.

The paper is structured as follows. Section 2 gives the planning context. Section 3 describes the building blocks that we assemble in our approach, i.e., plan-generation techniques, LTL formula learning, and temporal plan preferences. Section 4 explains our system architecture and implementation. Section 5 explains the experiments setup, before we describe our empirical findings in Section 6.

2 Preliminaries

2.1 Oversubscription Planning

We are using a variant of oversubscription planning (OSP) [Smith, 2004; Domshlak and Mirkin, 2015] with finite-domain variables [Bäckström and Nebel, 1995; Helmert, 2009]. An OSP task is a tuple $\tau = (V, A, c, I, G^\text{hard}, G^\text{soft}, b)$, V is the set of variables, A is the set of actions, $c: A \to \mathbb{R}^+_0$ is the action cost function, and I is the initial state. G^hard (G^soft) is the hard (soft) goal, given as a partial assignment to V. G^hard and G^soft are defined over disjoint sets of variables. $b \in \mathbb{R}^+_0$ is the cost bound. A state is a complete assignment to V. Facts are variable-value pairs $v = d$. We represent partial variable assignments with sets of facts. Each action $a \in A$ has a precondition pre_a and an effect eff_a, both partial assignments to V. An action a is applicable in a state s if $\text{pre}_a \subseteq s$. Applying a to s denoted as $s[[a]]$ results in state s' where $s'(v) = \text{eff}_a(v)$ for those v on which eff_a is defined and $s'(v) = s(v)$ otherwise. The resulting state of an iteratively applicable action sequence π is denoted by $s[[\pi]]$.

A plan is an action sequence π whose summed-up cost is $\leq b$ and where $G^\text{hard} \subseteq I[[\pi]]$.

Following Eifler et al. [2020a], we do not define a plan utility over G^soft. Instead, G^soft is a set of temporal plan preferences (encoded into soft-goal facts [Edelkamp, 2006; Baier and McIlraith, 2006]), and the analysis they provide identifies dependencies between these (plan-space entailments, see below). The issue we tackle here is the specification of the temporal plan preferences G^soft.

2.2 Finite Linear Temporal Logic

We use finite Linear Temporal Logic LTL$_f$, an adaption of LTL to finite traces [Baier and McIlraith, 2006; De Giacomo and Vardi, 2013], to represent temporal preferences.

Given a planning task τ, let S be a set of symbols for all facts in τ and $\mathcal{L}(S)$ the set of all first-order formulas over S.

$$\phi ::= \varphi \mid | \neg \phi \mid \phi_1 \land \phi_2 \mid \bigcirc \phi \mid \phi_1 \mathcal{U} \phi_2$$

with $\varphi \in \mathcal{L}(S), l \in \{\text{final}, \text{true}, \text{false}\}$

LTL_f formulas are interpreted over a finite sequence of states (finite trace) $\sigma = s_0 s_1 \cdots s_n$ where each state s_i is a first-order interpretation over the symbols in S. We use the abbreviation σ_i for $s_i \cdots s_n$. Given a finite trace σ and a LTL$_f$ formula ϕ we say $\sigma \models \phi$ iff:

- $\sigma_i \models \text{final}$ iff $i = n$.
- $\sigma_i \models \text{true}$ and $\sigma_i \not\models \text{false}$.
- $\sigma_i \models \varphi$, where $\varphi \in \mathcal{L}(S)$ iff $s_i \models \varphi$.
- $\sigma_i \models \neg \phi$ iff $\sigma_i \not\models \phi$.
- $\sigma_i \models \phi \land \psi$ iff $\sigma_i \models \phi$ and $\sigma_i \models \psi$.
- $\sigma_i \models \bigcirc \phi$ iff $i < n$ and $\sigma_{i+1} \models \phi$.
- $\sigma_i \models \phi \mathcal{U} \psi$ iff $\exists j : i \leq j \leq n$ such that $\sigma_j \models \psi$ and $\forall k : i < k < j : \sigma_k \models \phi$.

Additionally, the following standard temporal operators are used: release: $\phi \mathcal{R} \psi := \neg(\neg \phi \mathcal{U} \neg \psi)$, always: $\square \phi := \text{true} \mathcal{R} \phi$, eventually: $\Diamond \phi := \text{true} \mathcal{U} \phi$, weak until: $\phi \mathcal{W} \psi := (\Diamond \phi) \mathcal{U} \psi \lor \Diamond \phi$. The size of a LTL$_f$ formula $|\phi|$ is defined as the number of subformulas.

Part of our discussion below will draw on Eifler et al.’s [2020a] definition of plan-space entailment. Let Π be the set of plans of τ, and ϕ, ψ two LTL$_f$ formulas. The subset of plans that satisfy ϕ is denoted by $\mathcal{M}_\Pi(\phi) := \{\pi \mid \pi \in \Pi, \pi \models \phi\}$. We write $\tau \models \phi \Rightarrow \psi$ if $\mathcal{M}_\Pi(\phi) \subseteq \mathcal{M}_\Pi(\psi)$, and $\tau \models \phi \Leftrightarrow \psi$ if $\mathcal{M}_\Pi(\phi) = \mathcal{M}_\Pi(\psi)$.

3 Building Blocks

The two main building blocks of our approach are the generation of plans and the learning of LTL$_f$ formulas. In the following, we point to related work in this area, while describing the approaches we decided to use in more detail.

3.1 Plan Generation

To provide a set of sample plans Π to the user, we have to generate multiple plans for the given planning task τ. These plans ideally should cover different parts of the search space, exhibiting different possibilities to reach G^hard. Optimality with respect to plan cost is not a necessity, indeed is undesirable as it may exclude interesting plan options. So we want to allow sub-optimal plans, up to the cost bound b. Nevertheless, a bias to small plan cost can make sense as cheap plans are generally preferable.

Given this, we explore four different plan generation techniques. Three of these are variants of top-k planning (TopK) [Katz et al., 2018; Speck et al., 2020], which is adequate as it is specifically designed to provide multiple plans. The default variant returns the best k plans in terms of cost. In domains with independent objects (like two trucks which can move independently) TopK often leads to plans which are permutations of each other. So as a second approach we use top-k planning with an additional filter, removing plans that are permutations of already found plans. This leaves us with plans that pairwise have at least one distinct action (TopK-Fl). Our third variant is agile diverse planning (AgDiv) by [Katz and Sohrabi, 2020] which takes not only plan quality but also
solution diversity into account, and thus is a very natural approach for our purposes. It uses satisficing planning and iteratively computes new plans while forbidding all possible reorderings of already given plans.

As a simple method that actually turns out to work quite well, we also run a randomized version of h^IF [Hoffmann and Nebel, 2001] in greedy best-first search (RNDhFF). The randomization adds a positive random number to each heuristic value. As this approach does not guarantee to find different plans, the plans are filtered for uniqueness in a post-process.

All of these approaches can be run as an anytime search, allowing to generate plans until a time limit is reached or a certain amount of plans is found.

3.2 Learning

There is substantial work [Neider and Gavran, 2018; Camacho and McIlraith, 2019a; Kim et al., 2019] in the area of learning LTL formulas from sample traces we can build on. The approach by [Kim et al., 2019] is based on probabilistic Bayesian models. It relies on templates so it cannot learn arbitrary LTL formulas. The probabilistic model enables robustness with respect to noise in the input data. In our context, such noise would reflect plans incorrectly annotated by the user. This could be an interesting consideration for future work, but for now we assume that such noise does not exist (the user either annotates an example plan correctly or not at all). Therefore, we follow instead other works [Neider and Gavran, 2018; Camacho and McIlraith, 2019a] that use SAT encodings to learn a smallest formula identifying the positive and negative examples perfectly. These do not rely on templates and can learn arbitrary formulas. In our implementation we use a modified re-implementation of the approach by Camacho & McIlraith [2019a].

The input of the learner are two sets of finite traces reflecting the positive and negative examples. The learning is an iterative process over the size of the learned formula. In each step a SAT encoding of all LTL_{\tau} formulas with the given size and the input traces is generated. The first satisfiable assignment the SAT-solver can find is then used to reconstruct the corresponding LTL_{\tau} formula. If the SAT encoding is unsatisfiable the size bound is increased.

3.3 Plan Preferences

We focus on commonly used temporal formulas in planning and model checking. We use those PDDL3 Preferences [Gerevini et al., 2009] that do not have a numeric argument. Additionally, we include templates often used in model checking [Manna and Pnueli, 1990; Dwyer et al., 1999; Menghi et al., 2019]. Table 1 lists the formula templates we will consider (for the construction of hidden target formulas) in our empirical evaluation. While these do not exploit the full expressiveness of LTL_{\tau}, arguably user preferences tend to be temporally simple (reflected for example in the fact that PDDL3 caters for only a small fraction of LTL_{\tau}).

4 Architecture

We now discuss how to assemble these building blocks into an architecture for plan preference learning. We first briefly re-explain the workflow in our approach, highlighting the issues and relevant special cases that can arise. We then briefly outline our implementation. Recall in what follows that in our experiments we will assume a hidden target formula, denoted \phi_t, inside the user’s head.

4.1 Workflow: Issues and Special Cases

Step 1: Plan Generation. In the first step we generate a set \Pi_\Phi of plans for the given planning task, using one of the introduced approaches RNDhFF, TopK, TopKFil or AgDiv. As \phi_t is hidden, the plan generation cannot be tailored to generate positive and negative examples for \phi_t. So we simply consider the first n plans generated. We will experimentally explore the impact of the parameter n.

An important complication is that the learning step requires at least one example from each class, i.e., at least one positive and at least one negative example. Obviously this may not be true in the first n plans, in which case one has to either give up or increase the value of n. An issue with the latter is that the hidden user preference may actually be a tautology in the planning task, i.e., may be true (or false) in all plans. In practice we won’t be able to check that. Note though that tautological preferences are not meaningful (they do not distinguish between plans at all). Presumably, users will typically know enough about the task at hand to come up with meaningful preferences only. In our experiments, we consider only non-tautological preferences.

Step 2: Plan Annotation. We provide the set of plans \Pi_\Phi to the user and ask her to annotate the plans with respect to her hidden target preference \phi_t as positive \Pi_\Phi and negative \Pi_\bar{\Phi} examples. Clearly, the number n of plans the user has to annotate should be as small as possible. We will evaluate empirically how many plans are necessary to learn \phi_t.

Importantly, in practice, one could interleave plan annotation and formula learning until the user is satisfied with the result. In our setting here, this corresponds to analyzing learning performance as a function of n.

Step 3: Learning. Given \Pi_\Phi and \Pi_\bar{\Phi}, we call the learner to obtain the set \Phi_t of smallest LTL_{\tau} formulas perfectly identifying \Pi_\Phi and \Pi_\bar{\Phi}. As \phi_t is not known, \Phi_t can not be filtered.

<table>
<thead>
<tr>
<th>meaning</th>
<th>formula</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>always</td>
<td>\Box a</td>
<td>2</td>
</tr>
<tr>
<td>sometimes</td>
<td>\Diamond a</td>
<td>2</td>
</tr>
<tr>
<td>at most once</td>
<td>\Box (a \rightarrow (a \lor \neg a))</td>
<td>8</td>
</tr>
<tr>
<td>sometimes before</td>
<td>\neg a \land \neg b \lor \neg (a \land \neg b)</td>
<td>10</td>
</tr>
<tr>
<td>sometimes after</td>
<td>\Box (a \rightarrow \Box b)</td>
<td>5</td>
</tr>
<tr>
<td>never</td>
<td>\neg a</td>
<td>3</td>
</tr>
<tr>
<td>a before b</td>
<td>\neg b \land a</td>
<td>4</td>
</tr>
<tr>
<td>at the same time</td>
<td>\Diamond (a \land b)</td>
<td>4</td>
</tr>
<tr>
<td>not together</td>
<td>\neg (a \land b)</td>
<td>5</td>
</tr>
<tr>
<td>sequence</td>
<td>\Diamond (a \land \Box b)</td>
<td>5</td>
</tr>
<tr>
<td>b forbids a</td>
<td>\Diamond (b \rightarrow \neg a)</td>
<td>6</td>
</tr>
<tr>
<td>response</td>
<td>\Box (a \land \Diamond b)</td>
<td>6</td>
</tr>
<tr>
<td>persistent response</td>
<td>\Diamond (a \land \Diamond \Box b)</td>
<td>6</td>
</tr>
<tr>
<td>stability</td>
<td>\Diamond a \land \Diamond (a \rightarrow \Box a)</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1: LTL templates used to simulate the user.
further without additional information from the user. Hence all formulas in Φ_t are forwarded to the user for inspection.

Observe that the formulas $\phi_l \in \Phi_l$ can be related to the target formula ϕ_t in exactly one of the following ways:

(a) we learn the same formula: $\phi_l = \phi_t$
(b) ϕ_l is equivalent to ϕ_t: $\tau \models \phi_l \iff \phi_t$
(c) ϕ_l is an overapproximation of ϕ_t: $\tau \models \phi_l \Rightarrow \phi_t$
(d) ϕ_l is an underapproximation of ϕ_t: $\tau \models \phi_l \Rightarrow \phi_t$
(e) no direct relation, i.e., none of (1)–(4) holds.

Case (a) is the ideal case and provides the result the user is expecting. In the worst case (e), the user is confronted with a set of formulas not related to what she has in mind at all.

The intermediate cases are more difficult to judge. As for equivalence (b), this may seem unproblematic, but depending on how similar ϕ_l and ϕ_t are, the user may not be able to recognize the equivalence. In our experiments, we observed surprising equivalent formulas, that identified subtle dependencies in the planning task. On the positive side though, this form of dependency identification constitutes an alternative application of our techniques, as a new form of plan-space explication in the sense of Eifler et al. [2020a]. The plan annotation and formula learning then used to automatically find new formulas that relate in particular ways to previously identified preferences. We illustrate this possible alternative use of our techniques at the end of the experiments (Section 6.5).

The usefulness of over/under-approximations (c) and (d) of ϕ_l also highly depends on their similarity to ϕ_t. A useful result would for example be $\phi_l = \Box a$ given the target formula $\phi_t = \Box (a \lor b)$, or in general if $\phi_l \rightarrow \phi_t$ based on the LTL$_l$ semantic regardless of the planning task. In our experiments we often observed that the learning identified instead subtle unexpected dependencies, again suggesting the above-mentioned alternative use in the sense of Eifler et al. [2020a].

4.2 Implementation

For plan generation we used the publicly available implementations of SymK [Speck et al., 2020] for TopK and TopKF11, forbiditerative [Katz and Sohrabi, 2020] for AgDiv, and Fast Downward [Helmer, 2006] for RNDhFP. The plan selection for TopKF11 is supported by SymK as an internal filter. We extended the translator of each planner by the LTL$_l$ compilation implementation by [Eifler et al., 2020b]. This is required for our experimental setup as explained in the next section.

The preferences we consider are LTL$_l$ formulas over facts. To convert plans to lists of fact sets we use VAL [Howey et al., 2004]. We discard the static facts (that are always true, e.g. defining the road connections in transportation domains).

The implementation we use for LTL$_l$ learning is a reimplementation of Camacho & McIlraith’s tool [Camacho and McIlraith, 2019a]. The original implementation only outputs one formula of the given size. As we do not have a reason to prefer one formula over another, we extended the implementation to provide all formulas of that size: we call the SAT solver repeatedly, adding a new clause each time to enforce that previously found formulas are excluded.

5 Experiment Setup

Some words are in order regarding our benchmark design and other particularities of our experiments setup.

5.1 Benchmark Design

The planning instances we consider are based on the resource-constrained planning instances used by Eifler et al. [Eifler et al., 2020a]. These consist of variants of Blocksworld, Nomystery, Rovers and TPP. In all domains, the action-cost budget b is set to 1.5 times the optimal cost necessary to achieve all hard goals (this setting allows to achieve some, but not very many, additional temporal soft goals). The Blocksworld is a version with two hands. No-mystery is a simple transportation domain over a road-map graph. In TPP, multiple markets offer different goods, which need to be bought and transported to a depot. In Rovers, one has to navigate a road map, take rock/soil samples, and take pictures of objectives with limited view. From each of these domains we selected 10 instances with a fixed number of hard goals (Blocksworld 6, Nomystery 4, Rovers 6 and TPP 4).

To generate hidden target formulas for our experiments, we used the LTL templates given in Table 1. For each planning task $\tau = (V, A, c, I, G^\text{hard}, G^\text{soft}, b)$ we iteratively instantiated each template with random facts from $\bigcup_{a \in A} \text{eff}_a$. For templates up to size 4 we also included extended versions, by instantiating a or b with a conjunction or disjunction of two facts. Then, for each candidate formula ϕ we checked whether ϕ is non-tautological: τ, ϕ is added to our benchmark set only if both $G^\text{hard} \cup \{\phi\}$ and $G^\text{hard} \cup \neg \phi$ are solvable. For each task τ, we included at most two formulas based on the same template. To guaranty termination we skip a template after at most 30 failed candidate formula checks. This procedure generated on average 30 formulas per task, resulting in a benchmark set of 1284 task-formula pairs.

5.2 Hypothetical Best-Case for Plan Generation

In practice, plan generation cannot be tailored to the planning formula ϕ_t, as that is hidden in the user’s head. Yet, intuitively, it is important for the example plans to be balanced: same numbers of positive and negative instances. A highly imbalanced set of examples can be expected to impede formula learning, as it will fail to clarify the distinction line between the two classes.

We evaluate this hypothesis here by exploring two different setups for plan generation: the realistic application setup Gen_{app}, where plans are generated without knowledge of ϕ_t; vs. the hypothetical idealized setup $\text{Gen}_{\text{ideal}}$ where we generate perfectly balanced example plan sets by enforcing ϕ_t and $\neg \phi_t$ each in half of the plan-generation runs. (Kim et al.’s [2019] experiment setup featured a related construction.)

The idealized setup also serves to shed light on what could potentially be achieved in future work by advanced methods trying to incorporate partial information about the user preference (i.e., what kinds of structures are of interest).

5.3 Evaluation with Respect to the Target Formula

In our experiments, to evaluate the quality of the learned formula, our foremost criterion naturally is the degree of direct
6 Experimental Results

Our evaluation is structured into five parts. The first two parts evaluate plan generation, in terms of computational performance, and the balance of the resulting plan sets. The third part evaluates the quality of the learned formulas relative to the hidden target formula, as a function of target formula size, plan generation method, and number \(n\) of annotated example plans. In the fourth part, we give some illustrative examples and conclude in the fifth part with a brief evaluation of the alternative application of our techniques as a new form of plan-space explication.

6.1 Plan Generation: Computational Performance

Figure 1 shows the average number of plans generated over time. Top-k planning (TopK) clearly produces most plans fastest, followed by randomized \(h^F\) (RNDhFF). Agile diverse planning (AgDiv) generates about half of the requested 50 plans within the given time limit. Top-k planning with permutation filter (TopKFil) is least apt at generating many example plans; the permutation filtering turns out to be quite aggressive given the top-k search output, effectively cutting off plan generation after a few seconds.

Figure 1: Average number of plans generated over time.

6.2 Plan Generation: Balance

At least one positive and negative example is necessary for the learning step. So the first question is in how many of our 1284 benchmark instances (task-formula pairs) this is the case. The answer is: 205 for TopK, 536 for TopKFil, 659 for AgDiv, and 628 for RNDhFF. The most striking observation concerns TopK, which generates the largest number of example plans, yet often yields examples of only one category. This is due to its tendency to generate plan permutations.

In what follows, we consider, for each plan-generation method, only those benchmark instances where both positive and negative example plans are generated. The set of all these benchmark instances (union across plan-generation methods) is denoted \(I_{pkn}\). Figure 2 (left) evaluates how balanced the sets of example plans are for each plan-generation method.

It may seem surprising here at first, given the above, that TopK generates the most balanced example plan sets within \(I_{pkn}\). On closer inspection, this is somewhat due to the smaller benchmark basis underlying the data for TopK. As Figure 2 (right) shows, on these 205 benchmark instances also AgDiv and RNDhFF tend to be more balanced. Overall, the superior plan generation algorithm in terms of balancedness is TopKFil, which exhibits strong behavior especially for target formulas relating to reachability (e.g. \(\Phi\)).

6.3 Quality of Learned Formulas

Figure 3 provides our evaluation of learning quality. Our main criterion for assessing quality are categories (a)-(e) relative to the target formula. We say that an instance is solved if either the target formula or an equivalent formula is learned.

Consider first the leftmost part of the figure. It provides data for the realistic plan-generation setup Gen\(_{app}\) where the hidden target formula is not taken into account in plan generation. To make the complete picture visible, we also include those cases where learning was not possible as only positive/negative example plans were generated. For very small formulas (size 2 and 3), all plan generation approaches solve a large fraction of those benchmark instances \(I_{pkn}\) where learning could be run. For larger target formulas performance drops sharply though, with less than a quarter of the benchmark instances being solved.

Comparing across plan-generation methods, up to size 5, AgDiv is best, closely followed by RNDhFF and TopKFil. For larger sizes, there is no superior method. This ranking of plan generation approaches is exactly the ranking according to the number of instances in \(I_{pkn}\) (659 AgDiv, 628 RNDhFF, 536 TopKFil, 205 TopK). While TopK tends to produce highly balanced plan sets (Figure 2), it does not produce a notably better ratio of high-quality learned formulas.
Turning now to the middle part of Figure 3, we vividly see that the bottleneck of our approach is the quality of plan generation. Recall that in Gen_{ideal}, the plan-generation methods have access to the target formula and produce perfectly balanced example plan sets. Learned-formula quality increases dramatically relative to Gen_{app}, with formula sizes 1 and 2 consistently solved perfectly, equivalent formulas learned frequently even for large formulas, and formulas unrelated to the target learned almost never. The key question for future work is how to alleviate this performance gap between Gen_{app} and Gen_{ideal}. We get back to this in the conclusion.

Consider finally the rightmost part of Figure 3, which provides an evaluation of plan-generation methods in terms of the number \(n \) of example plans needed to solve a benchmark instance. To enable a meaningful comparison, we require commonly solved benchmarks, need to exclude TopK, and exclude uninteresting instances solved by any method with \(n = 1 \). Given these restrictions, Gen_{app} does not provide a sufficient basis for a meaningful comparison, so we consider Gen_{ideal} instead. Overall, RNDhFF performs best. Its median is never larger than \(n = 10 \), and variance is small. TopKFil and AgDiv in contrast frequently suffer from high \(n \). We emphasize that these results are important, as annotating many example plans (larger \(n \)) is a burden on the user.

6.5 Alternative Use: Plan Space Explication

While learned formulas not identical to the target formula may not be easily recognizable to the user, as mentioned before they can also serve for plan space explication in the sense of Eiffler et al. [2020a]. In this alternative application setting, the task is not to learn a hidden target formula, but instead to automatically identify new formulas entailing, or entailed by, a known (previously already specified) plan preference \(\phi_0 \). This may elucidate non-obvious properties of plan space.

For illustration, in TPP for target formula \(\Diamond(\text{at}(t_1, m_1)) \) we learn the underapproximation \(\Diamond \neg \text{at}(t_1, d) \), and hence uncover the entailment \(\tau \models \Diamond \neg \text{at}(t_1, d) \Rightarrow \Diamond(\text{at}(t_1, m_1)) \) which shows that, if truck \(t_1 \) leaves depot \(d \), then it must visit market \(m_1 \). In Blocksworld for target formula \(\Diamond(\text{ontable}(b_4) \land \text{ontable}(b_1)) \) we learn the overapproximation \(\neg \text{ontable}(b_3) \cup \text{ontable}(b_1) \), and uncover the entailment \(\tau' \models \Diamond(\text{ontable}(b_4) \land \text{ontable}(b_1)) \Rightarrow \neg \text{ontable}(b_3) \cup \text{ontable}(b_1) \) which shows that, if \(b_1 \) and \(b_4 \) are both on the table at some point, then \(b_3 \) must stay clear until \(b_1 \) is on the table.

7 Conclusion

We have assembled technology learning user preferences from annotated plan examples. The results are encouraging and constitute a first step towards the deeper investigation of this form of preference elicitation in planning.

The key question for future work is how to alleviate the large performance gap between practical plan generation (without access to the hidden target formula) and idealized plan generation (with such access). Presumably, addressing this requires some information about the target formula, e.g. what kinds of objects or predicates are of interest, which formula templates/temporal structures are of interest, etc. Given such information, it may be possible to devise plan-diversity measures tailored to produce balanced example sets.

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-18-1-0245, and by the German Research Foundation (DFG) under grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science).
References

