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Abstract

In real-time planning, the planner must select the next ac-
tion within a fixed time bound. Because a complete plan may
not have been found, the selected action might not lead to
a goal and the agent may need to return to its current state.
To preserve completeness, real-time search methods incor-
porate learning, in which heuristic values are updated. Pre-
vious work in real-time search has used table-based heuris-
tics, in which the values of states are updated individually.
In this paper, we explore the use of abstraction-based heuris-
tics. By refining the abstraction on-line, we can update the
values of multiple states, including ones the agent has not
yet generated. We test this idea empirically using Cartesian
abstractions in the Fast Downward planner. Results on vari-
ous benchmarks, including the sliding tile puzzle and several
IPC domains, indicate that the approach can improve perfor-
mance compared to traditional heuristic updating. This work
brings abstraction refinement, a powerful technique from off-
line planning, into the real-time setting.

Introduction
In some AI applications, it is unacceptable for the system to
exhibit unbounded pauses while planning. In real-time plan-
ning, the planner must return the next action for the system
to take within a strict time limit. Real-time search is a well-
established area addressing this through dedicated heuristic
search algorithms (e.g. Korf 1990; Bulitko and Lee 2006;
Koenig and Sun 2009; Bulitko et al. 2011; Hernández and
Baier 2012; Kiesel, Burns, and Ruml 2015). One important
issue in this context is completeness: guaranteeing that the
agent will eventually reach a goal state. In domains without
dead-ends (unsolvable states from which a goal is not reach-
able), this can be achieved through the refinement of state-
value estimates: optimistic estimates of the true goal dis-
tance of a state, continuously refined throughout the search,
possibly until convergence to optimal values. Traditionally,
real-time search algorithms do this by storing distance esti-
mates for individual states, and refining these with Bellman
state-value updates (Bellman 1957).

However, more effective methods may exist. In particular,
abstraction is a well-explored means to approximate transi-
tion systems (e.g. Clarke, Grumberg, and Long 1994), in-
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cluding the approximation of goal distance (e.g. Edelkamp
2001; Haslum et al. 2007; Seipp and Helmert 2013; Helmert
et al. 2014). In this paper, we explore abstract state spaces
that are quotient graphs of the state space, where abstract
states are blocks in a state partition, and the goal distance es-
timate for any state is the distance of its block to the nearest
goal block. Refinement operations split blocks into smaller
ones, converging at the latest when all blocks are singletons.

Compared to per-state updates, abstraction offers several
potential advantages: i) generalization, as a single refine-
ment operation may improve the estimates of many states;
ii) compactness, as an abstraction may use exponentially less
space to store the same value approximation; and iii) flexi-
bility, as the abstraction can be refined anywhere in the state
space, not just on the states explored by search. Of course,
it is a priori not clear how to realize this potential. Abstrac-
tion refinement i) is computationally more expensive than a
per-state update. Compactness ii) may be outweighed by the
overhead of maintaining a global heuristic function rather
than just a function on the state set seen thus far. Flexibility
iii) is a mixed blessing as it introduces the need to define
how and where to refine the abstraction.

Here we begin to explore these research questions. We de-
sign several strategies for refining abstractions given a real-
time lookahead search space. These strategies are, per se,
agnostic of how the abstraction is represented and how re-
finement operations are realized. Where relevant, we dis-
cuss these questions for Cartesian abstraction, which as-
sumes a representation of the state space in terms of state
variables, and restricts blocks to be cross-products of state-
variable domain subsets (Ball, Podelski, and Rajamani 2001;
Seipp and Helmert 2013). Cartesian abstraction allows fine-
grained state partitions yet supports effective refinement op-
erations, and it underlies the current state of the art in using
abstractions to design heuristic functions in planning (Seipp
and Helmert 2014; Seipp 2017; Seipp and Helmert 2018).

Based on the Fast Downward (FD) planning system
(Helmert 2006) and its implementation of Cartesian abstrac-
tion, we run experiments on standard planning benchmarks
from the International Planning Competition (IPC), as well
as on a planning encoding of the sliding tiles puzzle. Our
results exhibit complementary strengths and weaknesses, of
traditional Bellman updates vs. Cartesian abstraction refine-
ment. On a variety of benchmarks our methods result in sig-



nificant coverage improvements, in particular on Logistics,
Mprime, Parcprinter, Termes, Transport, and Woodworking.

Background
We briefly provide the necessary background in real-time
search, classical planning, and Cartesian abstractions.

Real-Time Search
Following the seminal work of Korf (1990), the conven-
tional paradigm in real-time heuristic search has two phases:
lookahead, in which the planner expands nodes starting from
the agent’s current state to form a local search space, and
then learning, in which the heuristic cost-to-go values of
nodes on the lookahead frontier are used to derive possibly-
improved heuristic values for states in the local search space.
If the current heuristic value of a state is lower than the min-
imum, over all of its successors, of the cost to the successor
plus the successor’s heuristic value, then the state’s heuristic
value can be raised to that value. This update is a determin-
istic version of Bellman’s backup (Bellman 1957) as used in
value iteration methods from Markov decision processes and
reinforcement learning (Barto, Bradtke, and Singh 1995).
Although Korf’s algorithms updated only the value of the
agent’s current state, Koenig and Sun (2009) noted that the
entire local search space can be updated. If the lookahead
is bounded, then the learning is bounded, and the agent can
select an action within a real-time bound.

Most heuristic search research considers domains with
discrete states, and updated heuristic values are usually
stored in a hash table. In continuous domains, as often con-
sidered in reinforcement learning, or in very large domains,
generalization across states is crucial and heuristic state val-
ues are often approximated, e.g. by linear functions whose
parameters are adjusted during learning (Boyan and Moore
1995; Lagoudakis and Parr 2003). Here, we consider dis-
crete domains but aim at generalization through abstraction.

Heuristics based on abstraction have been extensively ex-
plored in off-line search. Often these heuristics are con-
structed before search begins (e.g. Edelkamp 2001), al-
though in hierarchical search methods the heuristic is cre-
ated on-line by instantiating only the portion of the abstract
state space that is relevant for the states reached during
search (e.g. Larsen et al. 2010). However, in these methods
the abstraction itself is defined before search begins. In this
paper, we aim to revise the abstraction online using experi-
ence from the on-going search.

Classical Planning
While the methods we explore in this paper are in princi-
ple applicable to any domain addressed by real-time search,
our current implementation and experiments are done in
the context of classical planning. Planning as a sub-area
of AI is concerned with sequential decision making prob-
lems where the state space is compactly represented through
factored models of states and actions (Ghallab, Nau, and
Traverso (2004) give an overview). In classical planning,
the initial state is completely known, actions are determin-
istic, and the agent’s objective is to reach one of a set of

goal states using a plan of minimum cost. Specifically, we
consider the finite-domain representation (FDR) (Bäckström
and Nebel 1995; Helmert 2009), where a planning task is
a tuple Π = (V,A, c, I,G), with V being the set of finite-
domain state variables, each v ∈ V with a finite domainDv;
A the set of actions; c : A 7→ R+

0 the cost function; I the
initial state, and G the goal. States s are value-assignments
to V . An action a is modeled by its precondition prea, a
partial assignment to V that must hold for a to be applica-
ble; and its effect eff a, a partial assignemnt to V that is set
by a when applied. If a is applicable in a state s, the result
of applying a to s is the state s[[a]], whose variable values
are given by s[[a]](v) := eff a(v) if eff a(v) is defined, and
s[[a]](v) := s(v) otherwise. G is a partial assignment to V
that must hold at the end of a solution (a plan): an action
sequence that, applied in I , leads to a state that contains G.

Cartesian Abstraction Heuristics
Many kinds of admissible heuristics have been developed
for FDR problems; one prominent type is based on abstrac-
tion. Given that the number of states in a planning task
is exponential in its size, the question arises how an ab-
straction – a partition of the state space – should be rep-
resented. Available answers are pattern databases (Cul-
berson and Schaeffer 1998; Edelkamp 2001; Haslum et
al. 2007), where an abstraction is defined in terms of a
state-variable subset projected onto; merge-and-shrink ab-
straction (Dräger, Finkbeiner, and Podelski 2006; Helmert,
Haslum, and Hoffmann 2007; Helmert et al. 2014), which
computes arbitrary abstractions by iteratively merging state
variables and abstracting (shrinking) the product; and Carte-
sian abstraction (Ball, Podelski, and Rajamani 2001; Seipp
and Helmert 2013), where abstract states are restricted to be
cross-products of state-variable domain subsets.

We use Cartesian abstraction here as it allows fine-grained
state partitions (in difference to pattern databases) yet sup-
ports effective refinement operations (in difference to merge-
and-shrink abstraction). Furthermore, Cartesian abstractions
can provide state-of-the-art performance when using not one
but an ensemble of abstractions, made additive through cost
partitioning (Katz and Domshlak 2008; Seipp and Helmert
2014; Seipp 2017) where the cost of each action is dis-
tributed across abstractions.

To obtain a Cartesian abstraction in practice, i.e., to find
and compute a concrete abstraction, counter-example guided
abstraction refinement (CEGAR) is used (Seipp and Helmert
2018). This procedure iteratively splits abstract states, start-
ing from a trivial abstraction (single abstract state con-
taining the entire state space). In each iteration, an opti-
mal solution is computed in the abstraction as a trace (an
alternating sequence of abstract states and actions) τ =
〈[s′0], a1, . . . , [s

′
n−1], an, [s

′
n]〉, where [s] denotes the ab-

stract state containing the state s. If no solution can be found,
the task is unsolvable and we are done. Otherwise, we test if
τ can be converted into a concrete trace τ ′. By applying the
actions in τ ′ we obtain a sequence of states s0, s1, . . . , sn.
One of the following flaws may occur in the concrete trace:

1. The action ai+1 is not applicable in the concrete state si.



2. The concrete state si is not contained in the correspond-
ing abstract state [s′i] in τ , i.e. [si] 6= [s′i].

3. The concrete trace is completed, but sn is not a goal state.

If there is no flaw, we already have a solution to the task.
Otherwise, we can split an abstract state such that the flaw
cannot occur in future iterations as follows, corresponding
to the cases above:

1. Split [si] into [t′] and [u′] such that si ∈ [t′] and ai+1 is
not applicable in any of the states contained in [t′].

2. Split [si−1] into [t′] and [u′] such that si−1 ∈ [t′] and ai
does not lead from a state in [t′] to a state in [s′i].

3. Split [sn] into [t′] and [u′] such that sn ∈ [t′] and [t′] does
not contain a goal state.

The abstraction is then updated by replacing the state that
was split with the two resulting states, and the transitions
are updated accordingly.

The CEGAR process is traditionally run offline, before
the search for a plan begins. Left running indefinitely, it will
eventually either find a plan for the task, or prove the task
unsolvable (i.e., the CEGAR process converges). In practice,
this is infeasible, so instead some termination criterion (typ-
ically a time or memory bound) is used to abort the process
early on. This termination criterion controls the trade-off be-
tween heuristic accuracy vs. computational overhead.

Eifler and Fickert (2018) have recently proposed a setup
where, in addition to the offline CEGAR process, the ab-
straction is continuously refined online, during an A∗ search,
to improve weaknesses encountered. We adopt this setting to
the real-time context here, where the initial heuristic func-
tion is obtained through offline CEGAR, while further re-
finements are made in each real-time search iteration. In
particular, we employ the framework of Eifler and Fick-
ert (2018) to realize refinement operations for additive en-
sembles of Cartesian abstractions. To guarantee convergence
in this setting, this framework combines standard refinement
steps (splitting abstract states) with abstraction-merging op-
erations as well as operations adding more saturated cost
partitionings based on different orders.

Eifler and Fickert (2018) have explored the benefit of on-
line heuristic function refinement over offline such refine-
ment, in a complete search setting. Here we instead focus on
using online refinement in real-time search.

Real-Time Search with Abstraction
Refinement

In keeping with the real-time setting, we consider time inter-
vals of a fixed, predetermined size. Because we are compar-
ing methods that use very different primitive operations, we
use actual CPU time instead of node expansions to demar-
cate each time slot. This requires some care, as we explain
below, as it is not obvious how much time before the end of
the slot to reserve for the learning phase.

Bellman Updates
As a baseline, we implement the heuristic update scheme of
the popular LSS-LRTA* algorithm (Koenig and Sun 2009),

1 1 2 2

Figure 1: Time distribution for Bellman updates. The indi-
vidual time intervals are marked with the black bars. The
blue part in each time interval represents the time spent on
lookahead, the read part is time spent on performing Bell-
man backups. The numbers indicate the lookahead search
spaces to which the phases belong.

which uses a Dijkstra-like method to organize backups from
the lookahead frontier back through the local search space.
To avoid having to predict how long this will take, we per-
form the learning step of one lookahead at the start of the
next iteration (see Figure 1). While sensible, our implemen-
tation is not strictly real-time: the Bellman updates are al-
ways completely executed even if the time slot is exceeded,
and in the lookahead phase, at least one state is expanded so
that the agent can commit to an action.

To identify the most promising action in constant time,
we label each successor of the agent’s current state with the
action taken to reach it, and then subsequent states inherit
during lookahead the label of their best known parent.

Abstraction Refinement
We can replace the Bellman-style per-state updates by re-
finement of the heuristic function. In each time interval, we
employ a similar scheme as with the Bellman updates. We
perform the same lookahead search procedure, but reserve a
fraction of the time slot for the refinement of the abstraction
underlying the heuristic function. This fraction is controlled
by a lookahead ratio parameter l, which allows for a trade-
off between lookahead and refinement (see Figure 2).

1 1 2 2 3 3

l

Figure 2: Time distribution for abstraction refinement. The
orange part is time spent on refinement.

After the lookahead, the abstraction is iteratively refined
on the current root state until the end of the time interval.

While Bellman updates only improve the heuristic on the
states seen during the lookahead, abstraction refinement im-
proves it for the remainder of the search, including states
not yet visited. However, the refinement process refines the
heuristic based on conflicts in the abstract solution, starting
backwards from the goal. Thus, many refinement operations
may be necessary until the heuristic value changes across
states in the local search space around the current state.

Abstraction Refinement + Bellman Updates
Abstraction refinement can be combined with Bellman up-
dates to combine the strengths of both: Bellman back-
ups help quickly distinguishing between states in the lo-
cal search space, while abstraction refinement improves the
heuristic estimates also on future states.
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Figure 3: Time distribution for Abstraction Refinement +
Bellman Updates. Note that l now describes a fraction of
the remaining time frame after the Bellman updates.

In each time interval, we first apply the Bellman updates
for the previous interval, then the remaining time of the cur-
rent time frame is used for abstraction refinement and looka-
head, again controlled by a parameter l (see Figure 3). Addi-
tionally, the refinement is stopped early if the Bellman equa-
tion is satisfied in the state on which refinement is called,
leaving more time for the next lookahead which allows more
states to be considered for the Bellman update (this im-
proved results on preliminary experiments).

In this setting, we can slightly simplify the refinement
algorithm by not merging abstractions. This modification
avoids the most costly suboperation which may take several
full time intervals to resolve. While it breaks convergence of
the heuristic, we still retain completeness due to the conver-
gence of the Bellman updates.

The heuristic function is now computed as the maximum
of the value in the Bellman table and the heuristic value of
the abstraction heuristic.

Simulating Bellman Updates by Refinement
Bellman updates can be simulated by abstraction refinement,
i.e. performing the refinement in a way such that afterwards,
every state in the lookahead satisfies the Bellman equation.
To achieve this, we use a modified refinement algorithm de-
scribed in the following. We restrict this to a heuristic using
only a single abstraction (this is explained below).

Initially, the abstraction is refined such that each abstract
state either only contains goal states, or none of the con-
tained states is a goal. In each time frame, we perform refine-
ment on each state s expanded in the lookahead as follows
(in the same order as the Bellman updates).

In order to satisfy the Bellman equation, h(s) must be at
least B(s) := mina∈A h(s[[a]]) + c(a). By Bellman refine-
ment, we refer to the following process. While h(s) < B(s),
let A′ be an abstract successor state of A = [s] that is
reached by applying the action a′, with h(A′) + c(a′) <
B(s). Then the action a′ is a shortcut in the abstraction,
leading to the estimate being too low in s. As applying a′
in s can by construction of B(s) not lead to a shortcut, this
must be due to a state t ∈ A, t 6= s, in which a′ is applicable
and leads to a state contained in A′. Thus we can split A to
address this issue (illustrated in Figure 4):

• If a′ is not applicable in s, then we split A into states A0

and A1 such that s ∈ A0 and a′ is not applicable in any of
the states contained in A0 (this is similar to the first case
in the CEGAR algorithm, c.f. Background).

• Otherwise, we split A into states A0 and A1 such that
s ∈ A0 and a′ does not lead from a state inA0 to a state in
A′ (similar to the second case in the CEGAR algorithm).
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A′′ A′

s

s′

t

t′

a′ a′

sh
or

tc
ut

A0 A1

a′ leads to A′a′ leads to A′′

A
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s t
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a′
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ut

A0 A1

a′ applicablea′ not applicable

Figure 4: Illustration of the splits performed by the Bellman
refinement procedure when there is a shortcut, i.e. there is
an action a′ with its abstract successor A′ such that h(A′) +
c(a′) < B(s).

Proposition 1. Let Π = (V,A, c, I,G) be a planning task,
and h a heuristic function for Π represented by a Cartesian
abstraction. Let s be a state that does not satisfy the Bellman
equation, and let hb be the outcome of updating s in h. Then
Bellman refinement terminates after at most

∑
v∈V (|Dv| −

1) iterations, and the outcome heuristic hbr dominates hb.

Proof. The second part of the claim holds because 1)
heuristic values can only increase through abstraction refine-
ment, and 2) after Bellman refinement, by construction we
have h(s) = mina∈A h(s[[a]]) + c(a), i.e., s satisfies the
Bellman equation.

To see the first part of the claim, observe that the abstract
state A that contains s becomes smaller in each iteration:
for at least one state variable v, at least one value d ∈ Dv ,
d 6= s(v), is removed from the subset of Dv underlying
A. Hence, denoting that latter subset by A[v], after at most∑

v∈V (|Dv|−1) iterations, for all v we haveA[v] = {s(v)}.
Then s is the only state left in A, so there are no shortcuts
anymore, and the process stops.

This variant is mainly of theoretical interest, because typ-
ically, the number of refinement operations required to sat-
isfy the Bellman equation for all states in the lookahead is
prohibitively high in practice.

In principle, it is possible to adapt this algorithm to use an
additive set of abstractions, but several issues arise. First, it
may happen that the sum of the abstractions does not satisfy
the Bellman equation, but all the individual ones do. Fur-
thermore, it is not guaranteed that a shortcut as described
in the algorithm exists in a specific abstraction. These issues
could be fixed by merging abstractions whenever such a case
occurs, but this is a very costly operation, and presumably,
many abstractions would need to be merged very quickly.
Thus, we only consider using a single abstraction here, and
leave the question how this can be done efficiently with an
additive set of abstractions for future work.

Experiments
Our techniques are implemented in Fast Downward (FD)
(Helmert 2006), building upon the implementation of Carte-
sian abstraction heuristics (Seipp and Helmert 2018) and its
online-refinement framework (Eifler and Fickert 2018).



We use the notation hb for the configurations using Bell-
man updates, hr for abstraction refinement, and hr+b for the
combination of refinement with Bellman updates.

We evaluate our techniques on IPC benchmarks and on
the 15-puzzle domain. The experiments are run on a cluster
of Intel Xeon E5-2650 v3 machines, with a time limit of
10 minutes and memory limit of 4 GB. Since we use CPU
time to bound the time intervals, the results can differ across
several runs. Hence, we average all results over three runs,
counting an instance as solved if it was solved in at least two.

One metric we will discuss is goal achievement time
(GAT), which is the overall time spent on planning and ex-
ecution of the plan (Kiesel, Burns, and Ruml 2015). We as-
sume the execution of an action takes exactly one time step.

Planning Benchmarks
We ran experiments on all STRIPS benchmarks from the
optimal tracks of all IPCs up to IPC’18, yielding 1797 in-
stances from 47 domains in total. Note that some of the
domains have dead ends, where the real-time search ap-
proaches considered here are incomplete since decisions
leading into a dead end cannot be reversed.

Ratio between Lookahead and Refinement First, we try
to find the best ratio between lookahead and refinement in
hr by scaling the lookahead parameter l from 0.1 to 0.9. The
results for time slots of 0.1 seconds are shown in Figure 5.

With more lookahead (increasing l), more expansions are
necessary because the heuristic is less informed (see Fig-
ure 5b). However, with a lot of refinement, there is only lit-
tle time left to do lookahead, so the decision which action
should be applied has less information as fewer states were
observed. The peak in both overall coverage (Figure 5a) and
goal achievement time (Figure 5d) is at l = 0.8, yielding the
best trade-off between lookahead and refinement.

The number of iterations until a goal is found can be less
than the plan length (see Figure 5e), because whenever we
find a goal in the lookahead, we immediately commit to all
actions leading to this state.

For the remaining experiments, we use the overall best
performing value of l = 0.8 for hr. We use l = 0.7 for
hr+b, which we determined from similar experiments.

Coverage Results Table 1 shows the coverage results on
the IPC domains for hb, hr, and hr+b, with time steps of
0.01 and 0.1 seconds. All heuristics are initialized with an
additive Cartesian abstraction heuristic of at most 1000 ab-
stract states. The table also shows data for goal achievement
time and generalization, which is discussed later.

With time intervals of 0.01 seconds, hb performs best
overall with 904 solved instances in total. The hr configu-
ration is best in only three domains (Logistics, Parcprinter,
and Woodworking), but with significant margins to the next
best heuristic in Parcprinter (+13) and Woodworking (+12).
The combination of Bellman updates with abstraction refine-
ment works better than only refinement, but remains slightly
worse than hb in most domains. Overall, hb performs best in
14 domains, hr in 3 domains, and hr+b in 10 domains.

At larger time intervals of 0.1 seconds, the results for our
abstraction refinement techniques improve as the reduced

Coverage hb hr hr+b hb hr hr+b Gen.
Time Steps 0.01s 0.1s
Agricola (20) 1 0 0 9 4 4 0.00
Airport (50) 21 19 21 27 24 27 0.31
Barman (34) 0 0 0 0 2 0 –
Blocks (35) 16 11 21 17 14 19 0.45
Childsnack (20) 0 0 0 2 0 1 –
DataNetwork (20) 10 9 10 12 12 12 0.40
Depots (22) 8 5 11 10 9 18 0.52
Driverlog (20) 16 13 16 17 15 20 0.82
Elevators (50) 29 10 20 34 27 33 0.72
Floortile (40) 0 0 0 0 0 0 –
Freecell (80) 69 19 52 76 36 73 0.31
GED (20) 7 5 9 10 11 12 0.16
Grid (5) 2 2 5 3 3 3 0.63
Gripper (20) 20 19 20 20 19 20 1.00
Hiking (20) 13 7 13 14 20 20 0.54
Logistics (63) 36 41 37 42 52 52 0.89
Miconic (150) 150 115 150 150 150 150 0.96
Mprime (35) 17 25 20 21 30 27 0.48
Mystery (30) 11 11 11 14 16 15 0.14
Nomystery (20) 6 10 6 10 10 9 0.49
Openstacks (100) 76 76 72 75 80 76 0.01
OrgSynth (20) 7 7 7 7 7 7 –
OrgSynth-Split (20) 1 1 1 1 1 1 –
Parcprinter (50) 12 25 11 17 27 13 0.50
Parking (40) 0 0 0 0 0 0 –
Pathways (30) 4 4 2 4 4 4 –
Pegsol (50) 10 8 8 21 23 13 0.25
PetriNetAlign (20) 0 0 1 0 0 0 –
Pipes-NT (50) 33 9 25 36 22 42 0.45
Pipes-T (50) 11 6 12 15 12 20 0.34
PSR (50) 48 47 49 47 48 47 0.84
Rovers (40) 20 19 19 33 21 25 0.85
Satellite (36) 7 6 7 8 9 12 0.58
Scanalyzer (50) 21 16 19 22 29 43 0.64
Snake (20) 18 15 9 20 18 15 0.69
Sokoban (50) 11 7 13 15 11 21 –
Spider (20) 9 5 6 15 10 12 0.11
Storage (30) 19 14 19 20 17 23 0.47
Termes (20) 0 2 12 1 1 4 0.86
Tetris (17) 14 7 12 14 9 16 0.61
Tidybot (40) 39 12 32 40 28 37 0.11
TPP (30) 26 13 20 23 21 12 0.49
Transport (70) 16 11 24 22 17 32 0.45
Trucks (30) 2 2 1 3 5 2 0.99
Visitall (40) 40 35 40 40 39 40 0.90
Woodworking (50) 11 24 12 15 28 15 0.73
Zenotravel (20) 17 13 14 20 20 20 0.71
Sum (1797) 904 705 869 1022 961 1067 0.54
#best 14 3 10 9 9 14
GAT (s) 0.21 0.29 0.26 2.59 2.85 3.13

Table 1: Coverage on the IPC domains for time steps of 0.01
and 0.1 seconds. For each time frame size, the best value
is highlighted. The lookahead ratio is set to 0.8 and 0.7 for
hr and hr+b respectively. The second to last row shows the
number of domains in which each configuration was the best
performing one (no ties). The last row shows the geometric
mean of the goal achievement time across all domains. The
rightmost column shows the generalization for hr, with the
average over all domains in the last row.

lookahead is compensated better by an improved heuristic
through abstraction refinement. Here, hr+b is the best per-
forming configuration overall with a total coverage of 1067.
It is best in 14 domains, compared to 9 and 9 domains for
hb and hr respectively. The biggest advantages over hb are
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Figure 6: Number of expansions for hb and hr+b on com-
monly solved instances with time steps of 0.1s.

in Scanalyzer (+14), Transport (+10), and Depots (+8);
bad domains are e.g. TPP (−10), Rovers (−8), and Agri-
cola (−5). The hr configuration works best in Parcprinter
and Woodworking, where online refinement of Cartesian ab-
stractions also works exceptionally well in the offline plan-
ning setting (Eifler and Fickert 2018).

Expansions and Goal Achievement Time Figures 6 and
7 show the number of expansions respectively the goal
achievement time on commonly solved instances of hr+b

compared to hb. Selected domains are highlighted to exem-
plify observations, where Depots and Hiking are examples
where hr+b works well, and Elevators and Gripper as exam-
ples for domains where hb is better.

Almost universally, we can observe a significant reduction
in the number of expansions (Figure 6), often by more than
one order of magnitude (e.g. on the larger instances of De-
pots and Hiking). In the Elevators domain, the abstraction
refinement is not as effective, and on some instances hr+b

has more expansions than hb.
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Figure 7: Goal achievement time for hb and hr+b on com-
monly solved instances with time steps of 0.1s.

The last row of Table 1 shows the mean goal achievement
time over all domains. On average, the abstraction refine-
ment approaches perform worse than Bellman updates in
that regard. The biggest reason is that at the end of each time
interval, we have to wait for the last refinement operation
to finish, which can slightly extend the time frame (which
means spending time on planning without having an action
execution in parallel). For time slots of 0.1 seconds, the time
frames are extended by 14% for hr on average. This effect
is amplified in domains where many merges are necessary,
e.g. Gripper or Visitall. The most extreme case is Termes,
where time frames are extended by almost a factor of 4. With
smaller time steps of 0.01 seconds this effect is also more
pronounced, extending time frames by 23% on average.

More detailed statistics for the goal achievement time are
shown in Figure 7. In most domains, hb has a better goal
achievement time than hr+b, though e.g. in the Depots do-
main, hr+b performs better. This is more pronounced on
larger instances, and this trend can be observed in other do-
mains, too (e.g. Hiking, and Elevators to some degree).



Generalization The biggest advantage of abstraction re-
finement over Bellman updates is that the learned infor-
mation in one lookahead phase results in a more informed
heuristic even on states not seen so far. We measure the gen-
eralization by the fraction of states that, when first encoun-
tered in the search, have a heuristic value different to the
original (un-refined) estimate. We only collect this statistic
starting at the second iteration, i.e. after the first refinement.

The rightmost column in Table 1 shows this for each
domain (average over all solved instances). Across all do-
mains, on average 54% of newly visited states have a dif-
ferent heuristic value compared to the orignal heuristic. The
best generalization can be observed in Gripper, Trucks, and
Miconic, with a generalization very close to 1. On the other
hand, on Agricola and Openstacks, the abstraction refine-
ment does not translate to a more informed heuristic on
states not seen before.

Compactness Finally, we compare the compactness of the
abstraction heuristic to that of the lookup table used for Bell-
man updates. In order to make a fair comparison, we con-
sider the abstraction refinement variant that simulates Bell-
man updates, and use a heuristic with only one abstraction
for both configurations. We compare the number of abstract
states to the number of entries in the lookup table on com-
monly solved instances (see Figure 8).
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Figure 8: Compactness: number of entries in the lookup ta-
ble for Bellman updates compared to the number of abstract
states added during search when simulating Bellman updates
through abstraction refinement.

The number of abstract states is almost always lower than
the number of entries in the lookup table. In the most ex-
treme cases, the advantage is more than three orders of mag-
nitude. While the memory required to store an abstract state
is slightly more than it takes to store an entry in the lookup
table, this difference is only constant.

On the other hand, each refinement operation is very
costly, and many refinement operations are required to sim-
ulate Bellman updates, leading to a detrimental trade-off
in runtime and non-competitive performance on the IPC

benchmarks (333 and 328 overall coverage with time steps
of 0.01 and 0.1 seconds respectively).

15-Tile Puzzle
We generated a benchmark set for the 15-Puzzle by perform-
ing random walks of length up to 100 (in increments of 10)
backwards from the goal, and then grouping the instances by
optimal plan length.

The results for time steps of 0.1 and 1 seconds are shown
in Figures 9 and 10 respectively. While the results for all
three configurations are close, hr tends to have a higher cov-
erage than the other two, especially on larger instances. The
biggest advantage over Bellman updates is at an optimal so-
lution length of 18 for time steps of 0.1 seconds (0.57 vs.
0.46), and 24 and 26 for time steps of 1 second (0.45 vs.
0.30 and 0.28 vs. 0.15 respectively).
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Figure 9: Coverage results as fraction of solved instances on
the 15-Puzzle with time steps of 0.1 seconds. The instances
are grouped by optimal plan length on the x-axis, the number
of instances for each plan length is depicted at the top of the
plot. The y-axis shows the fraction of solved instances with
asymmetric confidence intervals of 95%.
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Figure 10: Coverage results as fraction of solved instances
on the 15-Puzzle with time steps of 1 second.

Conclusion
Completeness in real-time search requires learning tech-
niques to avoid infinite looping behavior. While the tradi-
tional learning method on discrete domains are per-state up-
dates, we observe that one can leverage known abstraction
refinement methods instead. Our initial exploration of this
idea reveals that it has potential. Much remains to be done



to fully understand the technique and its empirical impli-
cations. Apart from better understanding its strengths and
weaknesses relative to traditional methods, an interesting
line of research are more radical adaptations of abstraction
refinement, re-designing them to interact more deeply with
the information provided by lookahead searches and Bell-
man state updates.
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