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Abstract

In classical planning as heuristic search, the guiding heuris-
tic function is typically treated as a black box. While many
heuristics support refinement operations, they are typically
only used for its initialization before search, but further re-
finement during search could make use of additional infor-
mation not available in the initial state. We explore online re-
finement for additive Cartesian abstraction heuristics. These
abstractions are computed through counter-example guided
abstraction refinement, which can be applied online as well
to further improve the abstractions. We introduce three oper-
ations, refinement, merging, and reordering, which are com-
bined to a converging online-refinement algorithm. We de-
scribe how online refinement can effectively be used in A∗

and evaluate our approach on the IPC benchmarks, where it
outperforms offline-generated abstractions in many domains.

Introduction
Heuristic search is one of the most successful approaches to
classical planning. Many heuristics have a parameter to in-
crease the level of precision which typically implies a trade-
off with respect to the computational complexity when eval-
uating the heuristic. For abstraction heuristics (Edelkamp
2001; Helmert et al. 2014; Seipp and Helmert 2013), the
size of the abstraction can be chosen to range from the null
heuristic h0 = 0 to the perfect heuristic h∗. Partial delete
relaxation heuristics (Keyder, Hoffmann, and Haslum 2014;
Domshlak, Hoffmann, and Katz 2015; Fickert, Hoffmann,
and Steinmetz 2016) interpolate between fully relaxed se-
mantics and real semantics.

These heuristics are often instantiated through iterative
refinement operations. The heuristic starts out with a basic
relaxation, and is repeatedly refined until a time or memory
bound is reached. Given sufficiently large bounds the heuris-
tic may converge, making the relaxation exact (e.g. (Haslum
et al. 2007; Seipp and Helmert 2013; Helmert et al. 2014;
Keyder, Hoffmann, and Haslum 2014). This process is tra-
ditionally done offline, i.e. once before search, and the re-
sulting heuristic is treated as a black box throughout search.

However, as search progresses and new information be-
comes available, this additional knowledge might be used to
further improve the heuristic, e.g. to eliminate flaws in the
relaxation that were not apparent in the initial construction
of the heuristic and were only detected later in the search

process. Additional refinement steps performed online can
address such issues and further improve the heuristic.

So far, online refinement of heuristic functions is mostly
unexplored. Fickert and Hoffmann (2017) introduced on-
line refinement for the hCFF heuristic in an enforced hill-
climbing setting. The heuristic is refined whenever search is
stuck in a local minimum, thus effectively removing local
minima from the search space surface instead of attempting
to escape them through brute-force search.

There are several other forms of online learning that do
not refine a heuristic function. One such technique is updat-
ing values on a per-state basis, e.g. in transposition tables
(Akagi, Kishimoto, and Fukunaga 2010) or LRTA∗ (Korf
1990). Similarly, Wilt and Ruml (2013) use backward search
to improve the heuristic estimation: Since the h∗ value is
known for a backward expanded node, it can be used to com-
pute the minimal error of the heuristic and use it to update
the heuristic values during forward search. Another example
is refining combinations of multiple heuristics (e.g. (Felner,
Korf, and Hanan 2004; Katz and Domshlak 2010)), but the
individual heuristics remain unchanged.

In this work we introduce online refinement of additive
Cartesian abstraction heuristics (Seipp and Helmert 2014).
The refinement operation for these heuristics is based on
splits of abstract states, which allows a locally restricted re-
finement in small steps and is well suited for online refine-
ment. Seipp briefly touched online refinement in his Mas-
ter’s Thesis (Seipp 2012), but the explored design space is
small and the approach was restricted to single abstractions.

Our online-refinement algorithm defines three basic oper-
ations: refinement, merging and reordering. Refinement ex-
tends individual abstractions, using the same procedure that
is also applied in offline refinement. The merge operation
is necessary to preserve convergence against h∗ when mul-
tiple additive abstractions are used. Finally, the reordering
operation provides an alternative way to improve the heuris-
tic by generating new orderings for the cost partitioning, as
different orders are useful in different states (Seipp, Keller,
and Helmert 2017). We combine these three operations to a
monotone online-refinement procedure that converges to h∗.

We show how online refinement of Cartesian abstraction
heuristics can be used in A∗ (Hart, Nilsson, and Raphael
1968) to improve the heuristic during search. We evaluate
our approach on the IPC benchmarks and compare it to



offline-generated Cartesian abstraction heuristics.

Preliminaries
In the following we consider classical planning using the
finite-domain representation (FDR) (Bäckström 1995). A
planning task is a 5-tuple Π = (V,A, c, I,G), where
• V is a finite set of state variables where each v ∈ V has

a finite domain D(v). A variable/value pair v = d with
v ∈ V and d ∈ D(v) is called a fact.

• A is a finite set of actions. Each action a ∈ A is a
pair (prea, effa) of partial variable assignments which are
called preconditions and effects respectively.

• c : A 7→ R+
0 is the cost function, mapping each action to

a non-negative real number.
• I is a complete assignment of variables describing the ini-

tial state.
• G is a partial assignment of variables describing the goal.
The state space of Π is the labeled transition system ΘΠ =
(S,L, c, T, I, SG). The states S are the complete variable
assignments. The value of a variable in a state s ∈ S is
denoted by s(v). An action is applicable in a state s if
prea ⊆ s. In this case, the values for all variables v ∈ V
in the state appl(s, a) resulting from applying a in s are de-
fined as appl(s, a)(v) := effa(v) if effa(v) is defined and
appl(s, a)(v) := s(v) otherwise. The labels L of the state
space correspond to the actions A and the cost function c to
that of Π. The transition relation T ⊆ S × L× S is defined
as T = {s a−→ appl(s, a) | prea ⊆ s}. The initial state I is
the same as in Π. The goal states SG = {s ∈ S | G ⊆ s}
are the states that satisfy G. A plan for Π is an iteratively
applicable sequence of actions which starts in I and leads to
a goal state s ∈ SG. A plan is optimal if the summed up cost
of all actions is minimal among all plans of I .

A heuristic function h : S 7→ R+
0 ∪ {∞} maps each state

to a non-negative real number or ∞. We write h[ci] to de-
note that the heuristic h is computed on a modification of
Π where the cost function c is replaced by ci. The perfect
heuristic h∗ assigns each state s its remaining cost, which is
the cost of an optimal plan for s, or∞ if no plan for s exists.
A heuristic h is admissible if h(s) ≤ h∗(s) for all s ∈ S and
consistent if h(s) ≤ h(s′) + c(a) for all transitions s a−→ s′.
Given the transition system Θ = (S,L, c, T, I, SG), an ab-
straction of Θ is a surjective function α : S 7→ Sα. The
abstract state space induced by α, written Θα, is the transi-
tion system Θα = (Sα, L, c, Tα, Iα, SαG) with Iα = α(I),
SαG = {α(s) | s ∈ SG} and Tα = {(α(s), l, α(t)) |
(s, l, t) ∈ T}. By ∼α we denote the induced equivalence
relation on Θ, defined by s ∼α t iff α(s) = α(t) and the
equivalence classes by [s]. The heuristic function induced
by α, written hα, is the heuristic function which maps each
state s ∈ S to h∗Θα(α(s)).

A cost partitioning for a planning task with actions A is
a set of functions C = {c1, . . . , cn : A 7→ R+

0 } such that
for all a ∈ A :

∑n
i=1 ci(a) ≤ c(a). We say that an ad-

missible heuristic h has a local error in state s ∈ S if it
does not satisfy the Bellman optimality equation: h(s) ≤
min(s,a,s′)∈Th(s′) + c(a).

Additive Cartesian Abstraction Heuristics
An abstraction is Cartesian if all its states are Cartesian sets,
i.e., they have the form A1 × · · · × An, where Ai ⊆ D(vi)
for all 1 ≤ i ≤ n. The abstraction is built starting with
the trivial abstraction and iteratively splitting states using
counterexample-guided abstraction refinement (Seipp and
Helmert 2013), which we summarize in the following.

In every iteration, an optimal solution as a trace τ =
〈[s′0], a1, . . . , [s

′
n−1], an, [s

′
n]〉, an alternating sequence of

abstract states and actions, is computed. If no solution ex-
ists, the problem is unsolvable. Otherwise we check if τ can
be converted to a solution of the concrete state space. During
iteratively applying the actions in τ , resulting in a sequence
of concrete states s0, s1, . . . , sn, we check if one of the fol-
lowing flaws occurs:

1. The concrete state si does not fit the abstract state [s′i] in
τ , i.e. [si] 6= [s′i].

2. The concrete trace is completed, but sn is not a goal state.

3. The action ai+1 is not applicable in the concrete state si.

If none of the flaws occurs, we found a solution. Otherwise,
a state can be split according to the following rules (the num-
bers correspond to the cases above):

1. Split [si−1] into [t′] and [u′] such that si−1 ∈ [t′] and ai
does not lead from a state in [t′] to a state in [s′i].

2. Split [sn] into [t′] and [u′] such that sn ∈ [t′] and [t′] does
not contain a goal state.

3. Split [si] into [t′] and [u′] in such a way that si ∈ [t′] and
ai+1 is inapplicable in all states in [t′].

As the size of the abstract state space grows larger, the num-
ber of refinement iterations that are necessary to result in an
increase of the heuristic estimate also becomes larger. In or-
der to avoid this problem, a set of multiple small abstractions
can be used instead. Multiple abstractions can be generated
by only considering one goal fact in each abstraction, such
that each abstraction covers different parts of the planning
task (Seipp and Helmert 2014).1

Cost partitionings can be used to admissibly combine a
set of heuristics. The saturated cost partitioning (SCP) is an
effective way to construct an additive ensemble of multiple
Cartesian abstractions (Seipp and Helmert 2014).

For a heuristic h and cost function c, the saturated cost
function saturate(h, c) is defined as the minimal cost func-
tion c′ ≤ c with h[c′](s) = h[c](s) for all states s. Given
a set of heuristic functions H = {h1, · · · , hn} for Π and
an order ω = (h1, · · · , hn) of those functions, the saturated
cost partitioning C = c1, · · · cn and the remaining cost func-
tions c̄0, · · · , c̄n are defined as

c̄0 = c

ci = saturate(hi, c̄i−1)

c̄i = c̄i−1 − ci
1Seipp and Helmert also define a decomposition based on land-

marks, which we do not consider here as it requires non-trivial ex-
tensions to the online refinement and merging procedures.



If h is an abstraction heuristic based on an abstract tran-
sition system Tα of Π with labels L, then the saturated
cost function ĉ(a) for a ∈ L is defined as ĉ(a) =
max

s
a−→s′∈Tα max{0, h(s)−h(s′)}. This ensures that each

abstraction only uses the minimal amount of cost required to
preserve the cost of an optimal plan from each state.

Running Example Our example consists of a robot who
has to visit certain cells on a small grid (Figure 1).

(1, 1) (2, 1)

(0, 0)

R
(1, 0) (2, 0)

Figure 1: Sample task: the robot R must visit the green cells.

The state variables are the robot position at (which can be
any of the five locations, initially (1, 0)) and the boolean
variables v00 and v20 indicating if the corresponding cells
have been visited (initially 0, must be 1 in the goal). The
robot can move between adjacent cells x, y ∈ D(at), x 6= y
with a move action m(x, y) with preconditions {at = x}
and effects {at = y}. If the target position of the move is
either one of the goal locations (y = (0, 0) or y = (2, 0)),
the effects include achieving the corresponding visited fact
(v00 = 1 or v20 = 1 respectively). All action costs are 1,
except the move action from (1, 0) to (1, 1), which costs 2.

The offline-refined Cartesian abstractions of the example
are shown in Figure 2. The procedure starts with a trivial ab-
straction of a single abstract state for each goal. Initially, the
abstract solution is empty because the abstract initial state is
already a goal state. To prevent this flaw, the abstract state
is split on the goal fact v00 = 1 respectively v20 = 1. This
results in the abstractions shown in Figure 2. Since now the
abstract solution corresponds to the concrete solution in the
individual goal abstractions, the refinement terminates.

v00 = {0}v00 = {1}
m(10, 00)

(a) A1

v20 = {0} v20 = {1}
m(10, 20)

m(21, 20)

(b) A2

Figure 2: Abstractions of the running example after offline
refinement. If a variable is not mentioned in a state all val-
ues are possible. Self loops are omitted. The SCP order is
ω = {A1,A2}. Goal states are marked in green. Actions are
abbreviated, e.g. as m(10, 00) instead of m((1, 0), (0, 0)).

Online Refinement Operations
In the following, we describe the three operations refine-
ment, merging, and reordering, that make up our online-
refinement approach.

Refinement of Additive Cartesian Abstractions
The refinement operation is based on the refinement algo-
rithm described in the previous section. The essential modi-
fication for online refinement is the start state of the trace τ .

While offline refinement always starts from the initial state,
online refinement uses the current search state. If the solu-
tion for each individual goal is short, but the goals influence
each other strongly, the abstractions refined offline largely
underestimate the remaining cost. The reason is that an ab-
straction refined offline does not consider going into a wrong
direction first, and states that are not on an optimal path for
the initial state in the abstraction are never refined further.

If the sample abstractions are refined on the state sru =
{at = (2, 0), v00 = 0, v20 = 1} where the robot is in the
right upper cell, A1 changes as shown in Figure 3. The ac-
tion m(10, 00) of the abstract solution is not applicable in
sru, so the starting cell of the robot is split from the other
cells. As a result, the heuristic value of the refined state in-
creases from 1 to 2. The abstraction A2 does not change
because it is refined on a goal state.

at = {(0, 0), (2, 0),
(1, 1), (2, 1)}
v00 = {0}

s3

at = {(1, 0)}
v00 = {0}
s2

v00 = {1}
s1

m(20, 10)
m(11, 10)

m(10, 20)
m(10, 11)

m(10, 00)

Figure 3: A1 after online refinement on the state {at =
(2, 0), v00 = 1, v20 = 0}. Solid transitions have cost 1,
dashed ones have cost 0.

Influence on Cost Partitioning After every refinement of
the abstractions the cost partitioning needs to be recom-
puted. Here, two undesirable effects can occur. The first ab-
straction absorbs more and more of the cost. Thereby the
impact of the additive component of the abstractions at the
end of the cost partitioning order is diminished. Secondly, it
is possible that the heuristic estimation of a state decreases
after the cost is redistributed by the saturated cost partition-
ing algorithm, as illustrated in the following example.

at = {(0, 0),
(1, 1), (2, 1)}
v00 = {0}

3 s3b

at = {(2, 0)}
v00 = {0}

2
s3aat = {(1, 0)}

v00 = {0}

1

s2

v00 = {1}
0

s1 m
(1
1
, 1
0
)2

m
(1
0
, 1
1
)

m(10, 20)

m(20, 10)

m
(2
1
, 2
0
)

m
(2
0
, 2
1
)

m(10, 00)

Figure 4: A1 after online refinement on state at =
(2, 1), v00 = 0, v20 = 1. The blue numbers correspond to
the remaining cost of the state.

If A1 in Figure 3 is further refined on the state srl =
{at = (2, 1), v00 = 0, v20 = 1}, state s3 is split as shown in
Figure 4. The first action of the abstract solution m(20, 10)
is not applicable in srl, so the precondition at = (2, 0) is
split from s3. The solid arrows indicate the actions which
retain their cost after the saturation of the abstraction. As
the action m(10, 11) has a cost of 2, the cost of the action
m(21, 20) is necessary to preserve the optimal plan cost of
s3b. As a result, there is no cost for m(10, 20) remaining in
A2, which now evaluates to 0 for any state. Overall, in the



additive heuristic of A1 and A2, the heuristic estimation for
the states abstracted by s3b in Figure 4 increased by 1, while
for all others it decreased by 1.

Both problems, the dominance of the first abstractions in
the order and the decreasing estimation, can be solved by
a slight adaptation of the SCP algorithm. Instead of com-
pletely redistributing the cost, every abstraction can keep the
cost of the previous iteration, and only gains new cost from
the cost which is not used by any other abstraction in the
previous iteration. In the following, this cost is called un-
used cost. For the abstraction in Figure 4 this means that it
can not use the cost of the action m(21, 20), because it is
already used byA2. Therefore, the heuristic estimation does
not decrease for any state.

Definition 1 Given the cost partitioning Cl−1 =
{cl−1

1 , · · · , cl−1
n } of the previous iteration, the online

saturated cost partitioning (OSCP) Cl = {cl1, . . . , cln} and
the remaining cost functions c̄l0, . . . , c̄

l
n are defined as

c̄l0 = c−
n∑
j=1

cl−1
j (unused cost)

cli = saturate(hi, c̄
l
i−1 + cl−1

i )

c̄li = c̄li−1 − cli

Useful Splits Every split of an abstract state increases the
memory size of the abstraction and the evaluation time of
the heuristic. Hence, it is only useful to split an abstract state
if this could increase the heuristic value of some state. If a
state s is split into the states s′ and s′′, the heuristic can only
increase if the cost of all actions in at least one direction be-
tween s′ and s′′ is greater than 0. Otherwise, it is still possi-
ble to move between these states for free and the split has no
impact on the remaining cost of any abstract state. Exactly
this behavior happens in the split of state s3 in Figures 3 and
4. When performing the OSCP, none of the actions between
the states s3a and s3b has a cost larger than zero. Therefore,
the heuristic estimation can not increase.

In the following, a split of a state s is called useful, if all
actions in at least one direction between the resulting states
s′ and s′′ have a non-zero cost after recomputing the cost
partitioning. The check if a split is useful is implemented
by testing if there is still unused cost or cost reserved by
the abstraction (in any order in O, c.f. Section Reordering)
for all actions in at least one direction between s′ and s′′.
Since a non-useful split can sometimes be necessary to make
a useful split reachable in refinement, it is possible that the
useful split check prevents heuristic from increasing.

Merging
Originally the reason to use multiple small abstractions in-
stead of one large abstraction was a slow increase in the
heuristic estimation. But this separation of the goal facts pre-
vents a convergence of the heuristic against h∗. This behav-
ior can be observed for the initial state of the sample task.
The heuristic value based on the two abstractions will never
be 3 for the initial state, independent of the number of re-
finement operations. We can restore this convergence prop-

erty by replacing two abstractions A1 and A2 by their syn-
chronized product whenever further improvement based on
refinement it not possible. The synchronized product are the
non-empty intersections of the abstract states ofA1 andA2.
The merge result is Cartesian because the intersection of two
Cartesian sets is again Cartesian (Seipp 2012).

Considering again our example, the synchronized product
of A1 (Figure 3) and A2 (Figure 2) is shown in Figure 5.

at = {(0, 0), (2, 0),
(1, 1), (2, 1)}
v00 = {0}
v20 = {0}

at = {(1, 0)}
v00 = {0}
v20 = {0}

v00 = {1}
v20 = {0}

at = {(0, 0), (2, 0),
(1, 1), (2, 1)}
v00 = {0}
v20 = {1}

at = {(1, 0)}
v00 = {0}
v20 = {1}

v00 = {1}
v20 = {1}

m(10, 11)

m(11, 10)

m(21, 20)

m(10, 00)

m
(1
0,

20
) m(10, 20)

m(21, 20)

m(21, 20)

m(11, 10)
m(20, 10)

m(10, 11)
m(10, 20)

m(10, 00)

Figure 5: Synchronized product of the abstractions A1 (Fig-
ure 3) and A2 (Figure 2).

While the merge operation itself does not change the heuris-
tic value, it allows further refinement operations to be per-
formed on the resulting abstraction. Afterwards, the cost par-
titioning for all abstractions is recomputed using the sum of
the cost functions of A1 and A2 as the cost function of the
merge result.

Reordering

The order in which the cost functions for the saturated cost
partitioning are computed can have a huge impact on the
informativeness of the heuristic. The performance of the
heuristic can be improved by using a set of orders O. When
evaluating a state, the heuristic can use the maximum esti-
mation of all cost partitionings corresponding to the orders
O (Seipp, Keller, and Helmert 2017). Diverse orders are ob-
tained by generating several potentially useful orders, and
only retaining those that lead to an improved estimation on
at least one randomly sampled state.

These approaches can be transferred to the online phase
to potentially gain better orders, because instead of random
sample states, actual search states can be used.

We start out with one order based on the hadd value of the
goal fact of the abstractions, following the default configu-
ration by Seipp and Helmert (2014). If, during search, an or-
der leading to a higher estimation for the current search state
is found, it is added to O and can be used in all following
states. If the structure of any abstraction changes, either by
refinement or merging, the cost partitioning for each order
ω ∈ O is recomputed through OSCP.

When generating a new order, we order the abstractions
by their impact on the current search state. More specifi-
cally, the abstractions are ordered descendingly according
to their individual goal distance, using the original cost func-
tion. This strategy worked best in preliminary experiments.



Converging Online Refinement
We now describe our converging online-refinement proce-
dure that combines the three introduced operations (Algo-
rithm 1). Our approach relies on the Bellman equation to
identify states with a local error, which the online refinement
algorithm aims to correct.

Algorithm 1: Online Refinement
Input: An additive Cartesian abstraction heuristic h

with abstractions A1, . . . ,An and orders O, and
a state s where h does not satisfy Bellman

ω′ := FINDORDER(h, s)
cω′ := SCP(h, ω′)
if h(s) increases when using cω′ then
O := O ∪ {ω′}

while ¬BELLMAN(h, s) do
for i := 1, . . . , n do

REFINE(Ai, s)
if no abstraction Ai was modified then

Let Ax,Ay be the two abstractions in h with
the fewest abstract states

MERGE(Ax,Ay)

for ω ∈ O do
OSCP(h, ω)

First the algorithm tries to improve the heuristic by finding a
better cost partitioning order for the current state. If this does
not suffice to satisfy the Bellman equation, all abstractions
are refined on the current search state until either there is no
local error anymore or no further refinement is possible. In
the latter case, the two smallest abstractions are merged to
gain new refinement opportunities.

Theoretical Properties
Theorem 1 Let Π = (V,A, c, I,G) be a planning task, H
be a set of Cartesian Abstraction heuristics, and O a set of
orderings for H. Then the heuristic estimation for any state
can not decrease after applying any of the introduced opera-
tions (refining (i), merging (ii) or reordering (iii)) and subse-
quent recomputation of the cost partitioning for (i) and (ii).

Proof Sketch:
For (i): Refinement of an abstraction without changing the
cost function is monotone. As the OSCP does not decrease
the cost of any action (unless decreasing the cost preserves
the optimal plan cost for all states) it can not lead to a
cheaper solution for any state. If the refinement of all heuris-
tics is monotone then so is the sum of them.
For (ii): For any state s, an optimal plan p for s in the syn-
chronized product of two abstractions A1 and A2 is also
a (not necessarily optimal) plan in both A1 and A2. Let
ci be the cost function of Ai and cM of the merge result.
Then it suffices to show that

∑
a∈p cM (a) ≥

∑
a∈p c1(a) +∑

a∈p c2(a) because an optimal plan in Ai is as most as ex-
pensive as p. The inequality holds since cM is defined as
cM = c1 + c2. The recomputation of the cost partitioning is
monotone as shown in (i).

For (iii): As orders are only added to O and we always take
the maximum estimation of all orders, the estimation can
only increase for any state.
Theorem 2 Let Π = (V,A, c, I,G) be a planning task,
and h an additive Cartesian abstraction heuristic. Then us-
ing the refinement procedure described in Algorithm 1 the
heuristic converges towards h∗.
Proof Sketch:
Whenever no further refinement operations are possible, two
abstractions are merged. If necessary, in the end this results
in one big abstraction containing all goal facts. This leads to
a convergence against h∗ in every planning task, as the op-
timal plan in the merged abstraction will also be an optimal
plan in the original task in the limit.

Online Refinement in A∗

The A∗ search algorithm needs one adaption to handle a dy-
namically changing heuristic. The open list stores the search
nodes according to the sum of the heuristic estimation and
the shortest known distance from the initial state. When the
heuristic function changes, the open list must be resorted in
order to always use the best known estimation in the expan-
sion order. Other possibilities would be to restart the search
or spawning parallel search processes (Arfaee, Zilles, and
Holte 2011). Both approaches seem unsuitable if the heuris-
tic changes frequently but locally restricted. Not updating
the open list would lead to an admissible but inconsistent
heuristic resulting in reopened search nodes. As the heuris-
tic function can only increase for any state (Theorem 1), it is
not necessary to reorder the entire open list. Instead, we can
do this lazily: Every time a state is expanded, we check if the
heuristic value using the current heuristic is the same as the
one when the state was inserted into the open list. If this is
the case the state is expanded, otherwise it is reinserted into
the open list with the updated heuristic value. Whenever a
state that is currently being expanded has a local error, the
refinement procedure is called.

Experiments
We implemented our techniques in Fast Downward (FD)
(Helmert 2006) based on the existing implementation of
Cartesian abstraction heuristics (Seipp and Helmert 2013;
2014). The experiments were run on Intel Xenon E5-2650
v3 processors with a clock rate of 2.3 GHz. The time and
memory limit were set to 30 minutes and 4 GB. As bench-
marks we use all domains from the optimal tracks of all IPCs
up to 2014 (excluding the trivial Movie domain), for a total
of 1637 problem instances.

First, we look at the search behavior of our online-
refinement algorithm and analyze the overhead added by
online-refinement. As this overhead can sometimes be pro-
hibitive, we devise additional configurations in an attempt
to reduce this. We compare our configurations to offline-
refined Cartesian abstraction heuristics.

Overview
For our base configuration hon, we initialize the heuristic
with 1000 (offline-refined) abstract states in total. During



search, we apply our online-refinement procedure in each
state until the Bellman equation is satisfied.

As our comparison baseline, we use an offline-refined
heuristic hoff with a refinement timeout of 15 minutes. The
cost partitioning order uses the default setting of a descend-
ing order of the hadd values of the goal facts that correspond
to the individual abstractions.

Domain hon hoff hon
0.1 exp time hSCP

div
Airport (50) 23 34 33 0.02 0.57 30
Barman (34) 0 4 4 1.02 2.90 4
Blocksworld (35) 10 18 22 0.24 1.07 28
Childsnack (20) 0 0 0 – – 0
Depot (22) 2 5 9 0.11 0.38 11
Driverlog (20) 8 11 14 0.08 0.41 14
Elevators (50) 36 37 42 0.52 1.43 44
Floortile (40) 0 2 4 0.22 1.08 2
FreeCell (80) 6 19 20 0.11 1.04 65
GED (20) 5 15 16 1.09 4.37 15
Grid (5) 1 2 3 0.02 0.30 3
Gripper (20) 6 8 7 0.77 3.84 8
Hiking (20) 6 12 13 0.71 3.35 13
Logistics (63) 28 26 30 0.07 0.50 39
Miconic (150) 104 63 100 < 0.01 0.19 144
Mprime (35) 26 29 29 0.32 1.87 27
Mystery (30) 16 18 18 0.06 2.58 17
Nomystery (20) 11 16 20 0.10 0.37 20
Openstacks (100) 18 49 45 0.55 7.10 51
Parcprinter (50) 28 20 32 0.13 0.86 39
Parking (40) 0 0 3 – – 8
Pathways (30) 4 4 5 0.18 0.98 4
Pegsol (50) 6 46 48 0.30 4.47 48
Pipesw.-NT (50) 4 17 21 0.21 0.78 23
Pipesw.-T (50) 4 14 16 0.47 1.21 16
PSR (50) 48 49 49 1.16 2.02 49
Rovers (40) 4 8 10 0.25 0.76 7
Satellite (36) 4 6 7 0.03 0.55 7
Scanalyzer (50) 11 21 23 0.16 1.04 23
Sokoban (50) 44 41 45 0.53 1.50 45
Storage (30) 10 16 15 1.26 2.43 16
Tetris (17) 1 9 9 0.25 0.66 9
Tidybot (40) 3 26 30 1.45 2.24 22
TPP (30) 7 11 8 – 0.98 8
Transport (70) 7 24 28 0.68 2.07 25
Trucks (30) 3 10 10 0.17 0.70 12
Visitall (40) 12 13 13 0.16 1.07 16
Woodw. (50) 18 21 35 < 0.01 0.24 32
Zenotravel (20) 8 12 13 0.17 0.80 13
aggregate (1637) 562 766 879 0.19 1.11 987

Table 1: Coverage for the basic online-refinement approach
hon, the baseline hoff, and online-refinement with restricted
refinement time hon

0.1 in the leftmost columns. The middle
columns show the ratio of the expansions until the last f -
layer is reached and search time for hon

0.1 compared to hoff.
The rightmost column shows coverage data for a state-of-
the-art configuration of Cartesian abstraction heuristics.

In the two leftmost columns of Table 1, the coverage of
both configurations is displayed. The online-refinement ver-
sion solves a total of 562 tasks, 204 less than the offline
version. In 32 domains hoff solves more tasks than hon, in
3 domains they solve equally many, and in 4 domains hon

solves more tasks. Our online refinement approach works
best in the Miconic domain, where it solves 104 instances
compared to 63 with hoff. Online refinement seems unsuit-
able for the Openstacks, Pegsol, and Tidybot domains, as the
overall coverage drops by 31, 40, and 23 respectively.

The left side of Figure 6 compares the number of expan-
sions until the last f -layer is reached for commonly solved
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Figure 6: Left: Number of expansions until the last f -layer.
Right: Search time per expanded state per task in ms. The x-
and y-axes correspond to hon respectively hoff.

instances of hon and hoff. With very few exceptions, hon

needs significantly fewer expansions, up to 5 orders of mag-
nitude fewer in some instances. On larger instances, this
observation becomes more pronounced, as the heuristic is
more frequently refined and in the end much more infor-
mative than hoff. Since initially hoff may have more abstract
states than hon, on some (very few) smaller instances there
are cases where more expansions are necessary.

This decrease in expansions comes with a trade-off in
search time, as shown on the right side of Figure 6. While
the maximum time for each expansion is consistently low in
hoff, hon can spend a lot of time in refinement and use up
almost the entire search time to refine a few states. On com-
monly solved instances, the search time for hon is 15 times
larger than for hoff on average. Exceptions are Logistics, Mi-
conic, and Woodworking, where hon has lower search time,
resulting in higher coverage in Miconic and Logistics.

Operation Time Distribution A significant fraction of
the search time is used to improve the heuristic. This time
is distributed over the three operations refine, merge and re-
order (each including the recomputation of the cost parti-
tioning and the updating of the stored h∗ values in the ab-
straction), evaluating the Bellman equation, and updating the
open list. Figure 7 shows the time distribution for each do-
main. The percentages are averaged over all instances of the
domain (including unsolved ones).
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Figure 7: Average ratio between the time to improve the
heuristic and the search time. The improvement time is split
in five parts. Displayed is the average ratio per domain ex-
cluding tasks which have been solved in 0.01s or less.
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Figure 8: Results for hon
p with p ranging from 0.01 to 0.4.

On average, about two thirds of the search time is used
only to refine abstractions, but the variance is high and heav-
ily depends on the domain. The extreme cases are Sokoban,
where no time at all is spent on refinement, and Transport,
with 99%. In Sokoban, there are applicable zero-cost actions
in every state leading to states with equal heuristic value, so
the Bellman equation is always satisfied. The impact of the
merge operation depends on the number of goals facts. In do-
mains with many goal facts, e.g. GED or Gripper, there are
many small abstractions which need to be merged to enable
further refinement operations. With about 1% the reorder
time is negligible in all domains, which can be attributed to
our simple ordering strategy. The time spent on the Bellman
equation check highly depends on the branching factor of the
domain as more heuristic values must be compared. In most
domains, this accounts for less than 10% of the overall time,
the only exceptions are Miconic (17%) and Sokoban (14%).
The open list time is below 5% in almost all domains. This
is mainly due to the fact that the open list stays relatively
small due to the low number of expanded states.

Used Cost The OSCP algorithm is based on the assump-
tion that there is still unused cost. In Figure 9 the average
fraction of used cost per domain is shown, both for the initial
abstractions and the final value when the instance is solved
or the timeout is reached.
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Figure 9: Fraction of the actions which are used in any ab-
straction with a non-zero cost. Displayed is the average over
all orders per domain for the initial abstractions, and after
the instance is solved or the time limit is reached.

On average only 45% of the actions are used with non-
zero cost in any abstraction in the beginning of the search, so
typically there is enough unused cost that can be distributed
among the abstractions in the OSCP. However, this number

has a high variance depending on the domain, and there are
some domains where almost the entire cost is used in the be-
ginning already (e.g. Elevators and GED). In some domains,
there is still a large amount of unused cost remaining, even
at the end of the search (Mprime, Mystery, Tetris, Trucks).

Reducing the Refinement Overhead
If every local erroneous state is refined, the overhead intro-
duced by the online-refinement procedure is very high. This
leaves only little time remaining for the actual search pro-
cess (c.f. the grey bars in Figure 7).

Addressing this issue, we experimented with additional
configurations hon

p where a parameter p is introduced that
limits the time spent on refinement to a fixed fraction of the
overall search time. The refinement process is only executed,
if currently the fraction of the overall search time that is
spent on refinement is below that threshold. The time spent
to satisfy the Bellman equation in one state can still be very
high. Therefore, we only perform at most one refinement
operation in each state and do not merge any abstractions.

A graphical overview of the results for these configura-
tions, using the values 0.01, 0.05, 0.10, . . . , 0.40 is shown
in Figure 8 and 0.1 for p. As we increase the refinement pa-
rameter p, the final abstraction size increases and with it the
number of expansions needed to reach the final f -layer de-
creases. On the other hand, too much refinement overhead is
also detrimental to the overall performance of this approach.
The sweet spot lies at p = 0.1, where the highest overall
coverage of 879 and lowest average search time is reached.

Compared to our base configuration hon, the increase in
coverage is consistent across almost all domains (the only
exception is Miconic). Our configuration with restricted re-
finement diminishes the negative effect of the refinement
overhead, and considerably improves over both hon and hoff.
It has a higher coverage than hoff in 26 domains, and only
loses in 5 domains. On average, the number of expansions
until the last f -layer is reduced by 81% (c.f. column “exp”
in Table 1). However, the search time on commonly solved
instances is often greater due to the added overhead of online
refinement on instances where it is not required (c.f. column
“time” in Table 1).

Comparison to State of the Art As a comparison to the
state of the art in Cartesian abstractions, we compare our
best performing configuration hon

0.1 to an additive Cartesian
abstractions heuristic hoff

div that also uses landmark decom-



position, and uses a diversified set of greedily instantiated
orders for the saturated cost partitioning (Seipp 2017).

The results for hoff
div are shown in the rightmost column

in Table 1. In terms of overall coverage, hoff
div beats our ap-

proach by a large margin, but mostly due to the big gaps
in the FreeCell (+45) and Miconic (+44) domains. In 14
domains hoff

div has higher coverage than hon
0.1, while our ap-

proach works better in 10 domains. The biggest advantage
for online refinement can be observed in Tidybot (+8).

Useful Splits In order to best evaluate the impact of the
useful split check we use our hon

p configuration with p = 1.
Enabling this check can prevent the Bellman equation from
being satisfied, so we can not use hon.
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Figure 10: Left: Number of expansions until last f -layer.
Right: Number of abstract states. The x- and y-axes corre-
spond to without respectively with useful splits.

Figure 10 shows the number of expansions until the last
f -layer is reached and the size of the abstractions. It shows
that using the useful splits check can sometimes significantly
reduce the size of the resulting abstractions while retaining
very similar heuristic informativeness.

This improvement also translates to a higher coverage
(709 with vs. 682 without useful splits). The domains ben-
efitting the most are Pegsol (+8) and Scanalyzer (+4), but
there are also domains where the coverage decreases, e.g.
−3 in GED. For hon

0.1, enabling the useful split check did not
improve the overall results.

Online vs. Offline Refinement
Finally, we want to examine whether refinement based on
the current search states leads to a more informed heuristic
than doing refinement only in the initial state. While we al-
ready showed that hon can reach the final f -layer with much
fewer expansions than hoff (Figure 6), in that comparison the
online-refined abstractions were allowed to grow a lot bigger
than those generated offline.

In order to create a fair environment, both abstractions
should have the same number of abstract states. The abstract
state space size using goal abstractions and only offline re-
finement is often strictly limited. Hence, for this comparison,
we use only a single abstraction containing all goal facts.

For this experiment, we first do a run with online refine-
ment, starting from the trivial abstraction, and performing
the online refinement procedure until each state satisfies the
Bellman equation. After this run (when a solution is found or
a time limit of 15 minutes is reached), we restart the search

and use the resulting abstraction Aon without further online
refinement. We compare this setting to a run with an offline-
refined abstraction Aoff, using the number of abstract states
of Aon as the abstract state space size bound during offline
refinement.
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Figure 11: Comparison of the expansions until the last f -
layer. The x- and y-axes correspond toAon respectivelyAoff.

Figure 11 compares the number of expansions until reach-
ing the final f -layer for both resulting heuristics. The online-
refined abstractions tend to need fewer expansions, on com-
monly solved instances the expansions are reduced to a fac-
tor of only 0.66 compared to Aoff. In only 4 out of 37 do-
mainsAoff is better, in all other domains usingAon results in
a smaller search space. The greatest search space reduction
can be observed in the domains Grid (0.12), Hiking (0.14),
and Mprime (0.09). This also leads to a better overall cover-
age for Aon (690 vs. 679). Interestingly, the initial heuristic
value is often much lower withAon compared toAoff (4.2 vs.
14.2, geometric mean over all instances). This shows that the
fineness of the abstract state space is distributed more evenly
in the online-refined abstraction.

Conclusion
We introduced a monotone converging online-refinement
procedure for a set of additive Cartesian abstraction heuris-
tics consisting of the three operations refine, merge, and
reorder. Our results show that online refinement consid-
erably improves the accuracy of the heuristic, but it has
to be used carefully to avoid prohibitive overhead. When
this overhead is bounded to a managable amount, our ap-
proach significantly improves over a heuristic using basic
offline-refined abstractions, and even beats a heuristic us-
ing additional techniques such as landmark decomposition
and greedily instantiated cost partitioning orders on many
domains. In principle, these techniques could be combined
with online refinement as well, so there is still more poten-
tial.

Another interesting direction for future work is devis-
ing more sophisticated strategies for refinement (i.e. which
states to refine and how much). Similarly, different strate-
gies to select which abstractions to merge could be tried, in
particular for domains with many goals (and thus, many in-
dividual abstractions that can be merged).
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